1
|
Doireau R, Jaślan J, Cubero-Font P, Demes-Causse E, Bertaux K, Cassan C, Pétriacq P, De Angeli A. AtALMT5 mediates vacuolar fumarate import and regulates the malate/fumarate balance in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:811-824. [PMID: 39238122 DOI: 10.1111/nph.20077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Malate and fumarate constitute a significant fraction of the carbon fixed by photosynthesis, and they are at the crossroad of central metabolic pathways. In Arabidopsis thaliana, they are transiently stored in the vacuole to keep cytosolic homeostasis. The malate and fumarate transport systems of the vacuolar membrane are key players in the control of cell metabolism. Notably, the molecular identity of these transport systems remains mostly unresolved. We used a combination of imaging, electrophysiology and molecular physiology to identify an important molecular actor of dicarboxylic acid transport across the tonoplast. Here, we report the function of the A. thaliana Aluminium-Activated Malate Transporter 5 (AtALMT5). We characterised its ionic transport properties, expression pattern, localisation and function in vivo. We show that AtALMT5 is expressed in photosynthetically active tissues and localised in the tonoplast. Patch-clamp and in planta analyses demonstrated that AtALMT5 is an ion channel-mediating fumarate loading of the vacuole. We found in almt5 plants a reduced accumulation of fumarate in the leaves, in parallel with increased malate concentrations. These results identified AtALMT5 as an ion channel-mediating fumarate transport in the vacuoles of mesophyll cells and regulating the malate/fumarate balance in Arabidopsis.
Collapse
Affiliation(s)
- Roxane Doireau
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Justyna Jaślan
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Paloma Cubero-Font
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Elsa Demes-Causse
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Karen Bertaux
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Cédric Cassan
- UMR BFP, University Bordeaux, INRAE, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Alexis De Angeli
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| |
Collapse
|
2
|
Seidel T. Detection of Stress-Induced Changes in Subcellular Protein Distribution. Methods Mol Biol 2024; 2832:115-132. [PMID: 38869791 DOI: 10.1007/978-1-0716-3973-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Proteins often show alterations in their subcellular localization with changing environmental conditions; transcription factors enter the nucleus or are actively removed from the nucleus; some even bind to endo-membranes by conditional membrane anchors; and other proteins and mRNA arrange in RNA granules. These are some examples of the complex regulation of subcellular localization, which often depends on posttranslational modifications and is triggered by environmental stressors. The challenge is the precise identification of the compartments, the quantitative analysis of proteins, which reside in multiple compartments, and their transport dynamics. Therefore, appropriate compartment markers and routines for a reproducible quantitative workflow are required.
Collapse
Affiliation(s)
- Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
3
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
4
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
5
|
Duan Z, Li K, Duan W, Zhang J, Xing J. Probing membrane protein interactions and signaling molecule homeostasis in plants by Förster resonance energy transfer analysis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:68-77. [PMID: 34610124 DOI: 10.1093/jxb/erab445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane proteins have key functions in signal transduction, transport, and metabolism. Therefore, deciphering the interactions between membrane proteins provides crucial information on signal transduction and the spatiotemporal organization of protein complexes. However, detecting the interactions and behaviors of membrane proteins in their native environments remains difficult. Förster resonance energy transfer (FRET) is a powerful tool for quantifying the dynamic interactions and assembly of membrane proteins without disrupting their local environment, supplying nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we briefly introduce the basic principles of FRET and assess the current state of progress in the development of new FRET techniques (such as FRET-FLIM, homo-FRET, and smFRET) for the analysis of plant membrane proteins. We also describe the various FRET-based biosensors used to quantify the homeostasis of signaling molecules and the active state of kinases. Furthermore, we summarize recent applications of these advanced FRET sensors in probing membrane protein interactions, stoichiometry, and protein clustering, which have shed light on the complex biological functions of membrane proteins in living plant cells.
Collapse
Affiliation(s)
- Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenwen Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. Mechanisms and regulation of organic acid accumulation in plant vacuoles. HORTICULTURE RESEARCH 2021; 8:227. [PMID: 34697291 PMCID: PMC8546024 DOI: 10.1038/s41438-021-00702-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In fleshy fruits, organic acids are the main source of fruit acidity and play an important role in regulating osmotic pressure, pH homeostasis, stress resistance, and fruit quality. The transport of organic acids from the cytosol to the vacuole and their storage are complex processes. A large number of transporters carry organic acids from the cytosol to the vacuole with the assistance of various proton pumps and enzymes. However, much remains to be explored regarding the vacuolar transport mechanism of organic acids as well as the substances involved and their association. In this review, recent advances in the vacuolar transport mechanism of organic acids in plants are summarized from the perspectives of transporters, channels, proton pumps, and upstream regulators to better understand the complex regulatory networks involved in fruit acid formation.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
8
|
Cosse M, Seidel T. Plant Proton Pumps and Cytosolic pH-Homeostasis. FRONTIERS IN PLANT SCIENCE 2021; 12:672873. [PMID: 34177988 PMCID: PMC8220075 DOI: 10.3389/fpls.2021.672873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Proton pumps create a proton motif force and thus, energize secondary active transport at the plasma nmembrane and endomembranes of the secretory pathway. In the plant cell, the dominant proton pumps are the plasma membrane ATPase, the vacuolar pyrophosphatase (V-PPase), and the vacuolar-type ATPase (V-ATPase). All these pumps act on the cytosolic pH by pumping protons into the lumen of compartments or into the apoplast. To maintain the typical pH and thus, the functionality of the cytosol, the activity of the pumps needs to be coordinated and adjusted to the actual needs. The cellular toolbox for a coordinated regulation comprises 14-3-3 proteins, phosphorylation events, ion concentrations, and redox-conditions. This review combines the knowledge on regulation of the different proton pumps and highlights possible coordination mechanisms.
Collapse
|
9
|
Feng S, Peng Y, Liu E, Ma H, Qiao K, Zhou A, Liu S, Bu Y. Arabidopsis V-ATPase d2 Subunit Plays a Role in Plant Responses to Oxidative Stress. Genes (Basel) 2020; 11:genes11060701. [PMID: 32630497 PMCID: PMC7349310 DOI: 10.3390/genes11060701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase), a multisubunit proton pump located on the endomembrane, plays an important role in plant growth. The Arabidopsis thaliana V-ATPase d subunit (VHA-d) consists of two isoforms; AtVHA-d1 and AtVHA-d2. In this study, the function of AtVHA-d2 was investigated. Histochemical analysis revealed that the expression of AtVHA-d1 and AtVHA-d2 was generally highly overlapping in multiple tissues at different developmental stages of Arabidopsis. Subcellular localization revealed that AtVHA-d2 was mainly localized to the vacuole. AtVHA-d2 expression was significantly induced by oxidative stress. Analysis of phenotypic and H2O2 content showed that the atvha-d2 mutant was sensitive to oxidative stress. The noninvasive microtest monitoring demonstrated that the net H+ influx in the atvha-d2 roots was weaker than that in the wild-type under normal conditions. However, oxidative stress resulted in the H+ efflux in atvha-d2 roots, which was significantly different from that in the wild-type. RNA-seq combined with qPCR analysis showed that the expression of several members of the plasma membrane H+-ATPase gene (AtAHA) family in atvha-d2 was significantly different from that in the wild-type. Overall, our results indicate that AtVHA-d2 plays a role in Arabidopsis in response to oxidative stress by affecting H+ flux and AtAHA gene expression.
Collapse
Affiliation(s)
- Shuang Feng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yun Peng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Enhui Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Hongping Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Shenkui Liu
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’An 311300, Zhejiang, China;
| | - Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: ; Tel.: +86-451-8219-2763
| |
Collapse
|
10
|
Mining and Quantifying In Vivo Molecular Interactions in Abiotic Stress Acclimation. Methods Mol Biol 2017. [PMID: 28735392 DOI: 10.1007/978-1-4939-7136-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Stress acclimation is initialized by sensing the stressor, transducing the signal, and inducing the response. In particular, the signal transduction is driven by protein-protein interactions and the response might involve de novo complex formation, shifts in subcellular localization and, thus, transportation that is mediated by other proteins. The investigation of protein-protein interactions and their regulation upon abiotic stress is crucial for a deeper understanding of the underlying mechanisms. FRET measurements by sensitized emission allow for the analysis of protein-protein interactions in real time and have a high potential to provide new insights into the regulation of protein-protein interaction with respect to subcellular localization and time. Within this section protocols are provided which allow for FRET analysis on the single cell level, the image acquisition procedure is described in detail and ImageJ plugins are suggested for the data evaluation.
Collapse
|
11
|
Li Z, Zhen Z, Guo K, Harvey P, Li J, Yang H. MAPK-mediated enhanced expression of vacuolar H(+)-ATPase confers the improved adaption to NaCl stress in a halotolerate peppermint (Mentha piperita L.). PROTOPLASMA 2016; 253:553-69. [PMID: 25999237 DOI: 10.1007/s00709-015-0834-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/12/2015] [Indexed: 05/24/2023]
Abstract
Vacuolar H(+)-ATPase (V-H(+)-ATPase) has been proved to be of importance in maintenance of ion homeostasis inside plant cells under NaCl stress. In this study, the expression levels and salt-tolerate function of V-H(+)-ATPase genes were investigated in the roots and leaves of a halotolerate peppermint (Mentha × piperita L.) Keyuan-1 treated with different concentrations of NaCl. Results showed that the expressions of V-H(+)-ATPase in the transcriptional, protein and activity levels were significantly enhanced in the halotolerate peppermint Keyuan-1 compared to the wild-type (WT) peppermint under 50, 100, and 150 mM NaCl treatment. Moreover, inhibition experiments exhibited that V-H(+)-ATPase activity played vital roles in the salt tolerance of peppermint Keyuan-1 to 150 mM NaCl stress through increasing the vacuolar H(+) pumping activity and Na(+) compartmentalization capacity. Furthermore, results of Western blots showed that the activity of a mitogen-activated protein kinase (MAPK) was significantly increased under different concentrations of NaCl in the halotolerate peppermint Keyuan-1, which was much higher than that of WT peppermint. Further experiments with inhibitors suggested that this MAPK protein was responsible for the enhanced expression of V-H(+)-ATPase in the halotolerate peppermint Keyuan-1. In response to NaCl stress, increase of cytoplasmic calcium concentration ([Ca(2+)]cyt) occurred upstream of MAPK activation in the halotolerate peppermint Keyuan-1. In all, these findings demonstrated that increased V-H(+)-ATPase activity was positively correlated with the enhanced salt tolerance in the halotolerate peppermint Keyuan-1, providing the theoretic basis for the further development and utilization of peppermint in saline areas.
Collapse
Affiliation(s)
- Zhe Li
- Biotechnology Center, Shandong Academy of Sciences, Jinan, 250014, China.
| | - Zhen Zhen
- Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Kai Guo
- Biotechnology Center, Shandong Academy of Sciences, Jinan, 250014, China
| | - Paul Harvey
- Biotechnology Center, Shandong Academy of Sciences, Jinan, 250014, China
- Division of Ecosystem Science, Commonwealth Scientific and Industrial Research Organization, Clayton South, VIC, 3169, Australia
| | - Jishun Li
- Biotechnology Center, Shandong Academy of Sciences, Jinan, 250014, China
| | - Hetong Yang
- Biotechnology Center, Shandong Academy of Sciences, Jinan, 250014, China
| |
Collapse
|
12
|
Liu J, Ji Y, Zhou J, Xing D. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence. PLANT PHYSIOLOGY 2016; 170:1714-31. [PMID: 26739232 PMCID: PMC4775102 DOI: 10.1104/pp.15.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.
Collapse
Affiliation(s)
- Jian Liu
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Yingbin Ji
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Da Xing
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.).
| |
Collapse
|
13
|
Siek M, Marg B, M. Ehring C, Kirasi D, Liebthal M, Seidel T. Interplay of vacuolar transporters for coupling primary and secondary active transport. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
14
|
Rasool KG, Khan MA, Aldawood AS, Tufail M, Mukhtar M, Takeda M. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry. Int J Mol Sci 2015; 16:19326-46. [PMID: 26287180 PMCID: PMC4581299 DOI: 10.3390/ijms160819326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm.
Collapse
Affiliation(s)
- Khawaja Ghulam Rasool
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman Saad Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Muhammad Mukhtar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah 10021, United Arab Emirates.
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
15
|
Maxson ME, Grinstein S. The vacuolar-type H⁺-ATPase at a glance - more than a proton pump. J Cell Sci 2015; 127:4987-93. [PMID: 25453113 DOI: 10.1242/jcs.158550] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) has long been appreciated to function as an electrogenic H(+) pump. By altering the pH of intracellular compartments, the V-ATPase dictates enzyme activity, governs the dissociation of ligands from receptors and promotes the coupled transport of substrates across membranes, a role often aided by the generation of a transmembrane electrical potential. In tissues where the V-ATPase is expressed at the plasma membrane, it can serve to acidify the extracellular microenvironment. More recently, however, the V-ATPase has been implicated in a bewildering variety of additional roles that seem independent of its ability to translocate H(+). These non-canonical functions, which include fusogenicity, cytoskeletal tethering and metabolic sensing, are described in this Cell Science at a Glance article and accompanying poster, together with a brief overview of the conventional functions of the V-ATPase.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| |
Collapse
|
16
|
Gao Y, Zhou H, Chen J, Jiang X, Tao S, Wu J, Zhang S. Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. PHYSIOLOGIA PLANTARUM 2015; 153:603-15. [PMID: 25135193 DOI: 10.1111/ppl.12260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/28/2023]
Abstract
The length of pollen tubes grown in synthetic media is normally shorter than those grown in vivo. However, the mechanism(s) underlying the cessation of pollen tube growth under culture conditions remain(s) largely unknown. Here, we report a previously unknown correlation between vacuolar function and the cell's ability to sustain mitochondrial functions in pear pollen tubes. The pear pollen tubes in vitro grew slowly after 15 hours post-cultured (HPC) and nearly ceased growth at 18 HPC. There was increased malondialdehyde content and membrane ion leakage at 15 HPC compared with 12 HPC. Furthermore, cytoplasmic acidification mainly mediated by decreased vacuolar H(+)-ATPase [V-ATPase, Enzyme Commission (EC) 3.6.1.3] activity was observed in pollen tubes after 15 HPC, and this further resulted in mitochondrial dysfunction, including mitochondrial structure disruption, mitochondrial membrane potential collapse and decreases in both oxygen consumption and ATP production. Our findings suggest that vacuoles and mitochondria intimately linked in regulating pollen tube elongation.
Collapse
Affiliation(s)
- Yongbin Gao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Giesguth M, Sahm A, Simon S, Dietz KJ. Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett 2015; 589:718-25. [PMID: 25666709 DOI: 10.1016/j.febslet.2015.01.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
Abstract
The hypothesis is tested that some heat stress transcription factors (HSFs) are activated after formation of inter- or intramolecular disulfide bonds. Based on in silico analyses we identified conserved cysteinyl residues in AtHSFA8 that might function as redox sensors in plants. AtHSFA8 represents a redox-sensitive transcription factor since upon treatment of protoplasts with H2O2 YFP-labeled HSFA8 was translocated to the nucleus in a time-dependent manner. Site-directed mutagenesis of the conserved residues Cys24 and Cys269 blocked translocation of HSFA8 to the nucleus. The findings concur with a model where HSFA8 functions as redox sensing transcription factor within the stress-responsive transcriptional network.
Collapse
Affiliation(s)
- Miriam Giesguth
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Arne Sahm
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Swen Simon
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
18
|
Gavrin A, Kaiser BN, Geiger D, Tyerman SD, Wen Z, Bisseling T, Fedorova EE. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. THE PLANT CELL 2014; 26:3809-22. [PMID: 25217511 PMCID: PMC4213156 DOI: 10.1105/tpc.114.128736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 05/19/2023]
Abstract
In legume-rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Brent N Kaiser
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Stephen D Tyerman
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Zhengyu Wen
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elena E Fedorova
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| |
Collapse
|
19
|
Abstract
Reversible disassembly of their V1 and Vo complexes is a regulatory mechanism of V-ATPases as had been shown by in vitro experiments. Our in vivo results indicate that not the whole V1 complex, but only its subunit C, dissociates into the yeast cytosol.
Collapse
|
20
|
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 2014; 6:32-43. [PMID: 24388746 DOI: 10.1016/j.celrep.2013.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/14/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2(+) transporters in bacteria only, that resides in the vacuolar membrane (tonoplast). In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H(+) P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H(+) transport activity on its own but can physically interact with PH5 and boost PH5 H(+) transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.
Collapse
Affiliation(s)
- Marianna Faraco
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Cornelis Spelt
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Mattijs Bliek
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Walter Verweij
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Atsushi Hoshino
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), 444-8585 Okazaki, Japan
| | - Luca Espen
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Bhakti Prinsi
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Rinse Jaarsma
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Eray Tarhan
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Albertus H de Boer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | | | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Morris CA, Owen JR, Thomas MC, El-Hiti GA, Harwood JL, Kille P. Intracellular localization and induction of a dynamic RNA-editing event of macro-algal V-ATPase subunit A (VHA-A) in response to copper. PLANT, CELL & ENVIRONMENT 2014; 37:189-203. [PMID: 23738980 DOI: 10.1111/pce.12145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 06/02/2023]
Abstract
A V-ATPase subunit A protein (VHA-A) transcript together with a variant (C793 to U), which introduces a stop codon truncating the subunit immediately downstream of its ATP binding site, was identified within a Fucus vesiculosus cDNA from a heavy metal contaminated site. This is intriguing because the VHA-A subunit is the crucial catalytic subunit responsible for the hydrolysis of ATP that drives ion transport underlying heavy metal detoxification pathways. We employed a chemiluminescent hybridization protection assay to quantify the proportion of both variants directly from mRNA while performing quantification of total transcript using Q-PCR. Polyclonal antisera raised against recombinant VHA-A facilitated simultaneous detection of parent and truncated VHA-A and revealed its cellular and subcellular localization. By exploiting laboratory exposures and samples from an environmental copper gradient, we showed that total VHA-A transcript and protein, together with levels of the truncated variant, were induced by copper. The absence of a genomic sequence representing the truncated variant suggests a RNA editing event causing the production of the truncated VHA-A. Based on these observations, we propose RNA editing as a novel molecular process underpinning VHA trafficking and intracellular sequestration of heavy metals under stress.
Collapse
Affiliation(s)
- C A Morris
- School of Biosciences, Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | | | | | | | | | | |
Collapse
|
22
|
Okamoto-Terry H, Umeki K, Nakanishi-Matsui M, Futai M. Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly. J Biol Chem 2013; 288:36236-43. [PMID: 24196958 DOI: 10.1074/jbc.m113.506741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proton (H(+)) pumping vacuolar-type ATPase (V-ATPase) is a rotary enzyme that plays a pivotal role in forming intracellular acidic compartments in eukaryotic cells. In Saccharomyces cerevisiae, the membrane extrinsic catalytic V1 and the transmembrane proton-pumping Vo complexes have been shown to reversibly dissociate upon removal of glucose from the medium. However, the basis of this disassembly is largely unknown. In the earlier study, we have found that the amino-terminal α-helical domain between Lys-33 and Lys-83 of yeast E subunit (Vma4p) in the peripheral stalk of the V1 complex has a role in glucose-dependent VoV1 assembly. Results of alanine-scanning mutagenesis within the domain revealed that the Vma4p Glu-44 is a key residue in VoV1 disassembly. Biochemical analysis on Vma4p Glu-44 to Ala, Asn, Asp, and Gln substitutions indicated that Glu-44 has a role in V-ATPase catalysis. These results suggest that Glu-44 is one of the key functional residues for subunit interaction in the V-ATPase stalk complex that allows both efficient rotation catalysis and assembly.
Collapse
Affiliation(s)
- Haruko Okamoto-Terry
- From the Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Futai Special Laboratory, Yahaba, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
23
|
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:413. [PMID: 24194740 PMCID: PMC3810607 DOI: 10.3389/fpls.2013.00413] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/29/2013] [Indexed: 05/20/2023]
Abstract
Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca(2+)-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy.
Collapse
Affiliation(s)
- Sara M. Müller
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
| | - Helena Galliardt
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
| | - Jessica Schneider
- Bioinformatic Resource Facility, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - B. George Barisas
- Chemistry Department, Colorado State UniversityFort Collins, CO, USA
| | - Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
- *Correspondence: Thorsten Seidel, Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, Universitätsstraße 25, 33501 Bielefeld, Germany e-mail:
| |
Collapse
|
24
|
Wolf H, Barisas BG, Dietz KJ, Seidel T. Kaede for detection of protein oligomerization. MOLECULAR PLANT 2013; 6:1453-62. [PMID: 23430050 DOI: 10.1093/mp/sst039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photoconvertible fluorescent proteins such as Kaede are routinely used for tracking proteins, organelles, and whole cells. Kaede was the first identified photoconvertible fluorescent protein and has since become the most commonly used photoconvertible fluorescent protein in vertebrates. Kaede can be irreversibly converted from a green to a red fluorescent form upon UV/blue light irradiation and fluorescence of each form can be isolated separately by appropriate filter sets. Spectral properties of the Kaede forms allow Förster resonance energy transfer (FRET) from the green form as donor to the red form as acceptor. As a sample containing oligomerized Kaede-containing proteins is exposed to UV or blue light, FRET first increases as green Kaede is converted to red and then decreases as the green donor becomes depleted. Thus, FRET information is potentially obtained from a number of independent measurements taken as photoconversion proceeds. We demonstrate here the application of this approach to detect homo-aggregation and conformational dynamics of plant protein constructs. Structural alterations of 2-cys peroxiredoxin–Kaede were successfully detected depending on the redox state in living plant cells. Photoconversion was performed gradually and donor emission, acceptor emission, and FRET-derived sensitized acceptor emission were measured at each step of conversion. Since photoconvertible proteins have not been routinely used in plants, two plasmids have been designed to facilitate plant applications. The plasmids allow either transient expression of Kaede-containing protein constructs in plant cells or Gateway cloning and stable transformation of plants.
Collapse
Affiliation(s)
- Heike Wolf
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, D-33501 Bielefeld, Germany
| | | | | | | |
Collapse
|
25
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
26
|
Enhanced expression of vacuolar H+-ATPase subunit E in the roots is associated with the adaptation of Broussonetia papyrifera to salt stress. PLoS One 2012; 7:e48183. [PMID: 23133565 PMCID: PMC3485061 DOI: 10.1371/journal.pone.0048183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023] Open
Abstract
Vacuolar H+-ATPase (V-H+-ATPase) may play a pivotal role in maintenance of ion homeostasis inside plant cells. In the present study, the expression of V-H+-ATPase genes was analyzed in the roots and leaves of a woody plant, Broussonetia papyrifera, which was stressed with 50, 100 and 150 mM NaCl. Moreover, the expression and distribution of the subunit E protein were investigated by Western blot and immunocytochemistry. These showed that treatment of B. papyrifera with NaCl distinctly changed the hydrolytic activity of V-H+-ATPase in the roots and leaves. Salinity induced a dramatic increase in V-H+-ATPase hydrolytic activity in the roots. However, only slight changes in V-H+-ATPase hydrolytic activity were observed in the leaves. In contrast, increased H+ pumping activity of V-H+-ATPase was observed in both the roots and leaves. In addition, NaCl treatment led to an increase in H+-pyrophosphatase (V-H+-PPase) activity in the roots. Moreover, NaCl treatment triggered the enhancement of mRNA levels for subunits A, E and c of V-H+-ATPase in the roots, whereas only subunit c mRNA was observed to increase in the leaves. By Western blot and immunocytological analysis, subunit E was shown to be augmented in response to salinity stress in the roots. These findings provide evidence that under salt stress, increased V-H+-ATPase activity in the roots was positively correlated with higher transcript and protein levels of V-H+-ATPase subunit E. Altogether, our results suggest an essential role for V-H+-ATPase subunit E in the response of plants to salinity stress.
Collapse
|