1
|
Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Nurbekova Z, Srivastava S, Tiwari P, Dubey AK, Sagi M. Active O-acetylserine-(thiol) lyase A and B confer improved selenium resistance and degrade l-Cys and l-SeCys in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2525-2539. [PMID: 35084469 DOI: 10.1093/jxb/erac021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L. N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Poonam Tiwari
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
2
|
Bekturova A, Oshanova D, Tiwari P, Nurbekova Z, Kurmanbayeva A, Soltabayeva A, Yarmolinsky D, Srivastava S, Turecková V, Strnad M, Sagi M. Adenosine 5' phosphosulfate reductase and sulfite oxidase regulate sulfite-induced water loss in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6447-6466. [PMID: 34107028 DOI: 10.1093/jxb/erab249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/30/2021] [Indexed: 05/22/2023]
Abstract
Chloroplast-localized adenosine-5'-phosphosulphate reductase (APR) generates sulfite and plays a pivotal role in reduction of sulfate to cysteine. The peroxisome-localized sulfite oxidase (SO) oxidizes excess sulfite to sulfate. Arabidopsis wild type, SO RNA-interference (SO Ri) and SO overexpression (SO OE) transgenic lines infiltrated with sulfite showed increased water loss in SO Ri plants, and smaller stomatal apertures in SO OE plants compared with wild-type plants. Sulfite application also limited sulfate and abscisic acid-induced stomatal closure in wild type and SO Ri. The increases in APR activity in response to sulfite infiltration into wild type and SO Ri leaves resulted in an increase in endogenous sulfite, indicating that APR has an important role in sulfite-induced increases in stomatal aperture. Sulfite-induced H2O2 generation by NADPH oxidase led to enhanced APR expression and sulfite production. Suppression of APR by inhibiting NADPH oxidase and glutathione reductase2 (GR2), or mutation in APR2 or GR2, resulted in a decrease in sulfite production and stomatal apertures. The importance of APR and SO and the significance of sulfite concentrations in water loss were further demonstrated during rapid, harsh drought stress in root-detached wild-type, gr2 and SO transgenic plants. Our results demonstrate the role of SO in sulfite homeostasis in relation to water consumption in well-watered plants.
Collapse
Affiliation(s)
- Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Poonam Tiwari
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dmitry Yarmolinsky
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Veronika Turecková
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany ASCR, Slechtitelu 11, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany ASCR, Slechtitelu 11, Olomouc, Czech Republic
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker Campus, Israel
| |
Collapse
|
3
|
Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, Standing D, Dubey AK, Sagi M. Level of Sulfite Oxidase Activity Affects Sulfur and Carbon Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690830. [PMID: 34249061 PMCID: PMC8264797 DOI: 10.3389/fpls.2021.690830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Molybdenum cofactor containing sulfite oxidase (SO) enzyme is an important player in protecting plants against exogenous toxic sulfite. It was also demonstrated that SO activity is essential to cope with rising dark-induced endogenous sulfite levels and maintain optimal carbon and sulfur metabolism in tomato plants exposed to extended dark stress. The response of SO and sulfite reductase to direct exposure of low and high levels of sulfate and carbon was rarely shown. By employing Arabidopsis wild-type, sulfite reductase, and SO-modulated plants supplied with excess or limited carbon or sulfur supply, the current study demonstrates the important role of SO in carbon and sulfur metabolism. Application of low and excess sucrose, or sulfate levels, led to lower biomass accumulation rates, followed by enhanced sulfite accumulation in SO impaired mutant compared with wild-type. SO-impairment resulted in the channeling of sulfite to the sulfate reduction pathway, resulting in an overflow of organic S accumulation. In addition, sulfite enhancement was followed by oxidative stress contributing as well to the lower biomass accumulation in SO-modulated plants. These results indicate that the role of SO is not limited to protection against elevated sulfite toxicity but to maintaining optimal carbon and sulfur metabolism in Arabidopsis plants.
Collapse
Affiliation(s)
- Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
- *Correspondence: Moshe Sagi
| |
Collapse
|
4
|
Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:20-34. [PMID: 32738579 DOI: 10.1016/j.plaphy.2020.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 05/24/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S), versatile signaling molecules, play multiple roles in plant growth, physiological and biochemical processes under heavy metal stress. However, the mechanisms through which NO in association with endogenous H2S mediated hexavalent chromium Cr(VI) toxicity mitigation are still not fully understood. Therefore, we investigated the role of NO and H2S in sulfur (S)-assimilation and the effect of NO on endogenous H2S, and cysteine (Cys) biosynthesis and maintenance of cellular glutathione (GSH) pool in tomato seedlings under Cr(VI) stress. Cr(VI) toxicity caused an increase in reactive oxygen species (ROS; O2•- and H2O2) formation and activity of chlorophyll (Chl) degrading enzyme [Chlorophyllase (Chlase)] and decrease in seedlings growth attributes, Chl a and b content, and activity of Chl synthesizing enzyme [δ-aminolevulinic acid dehydratase (δ-ALAD)], gas exchange parameters, S-assimilation, and Cys and H2S metabolism. An increase in the content of glycinebetaine (GB), total soluble carbohydrates (TSCs) and total phenols (TPls), and decrease in DNA damage and ROS in NO treated seedlings conferred Cr(VI) toxicity tolerance. Under Cr(VI) toxicity conditions, the inclusion of H2S scavenger hypotaurine (HT) in growth medium containing NO validated the role of endogenous H2S in S-assimilation, H2S and Cys and GSH metabolism by withdrawing activity of enzymes involved in S-assimilation [adenosine 5-phosphosulfatereductase (APS-R), ATP-sulfurylase (ATP-S)], in the biosynthesis of H2S [L-cysteine desulfhydrase (L-CD) and D-cysteine desulfhydrase (D-CD)], Cys [O-acetylserin (thiol) lyase (OAST-L)], and GSH [glutamylcysteine synthetase (γ-GCS) and glutathione synthetase (GS)], and in antioxidant system. On the other hand, application of cPTIO [2-(4-32 carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], a NO scavenger and HT diminished the effect of NO on internal H2S levels, Cys and glutathione homeostasis, and S-assimilation, which resulted in poor immunity against oxidative stress induced by Cr(VI) toxicity. The obtained results postulate that NO-induced internal H2S conferred tolerance of tomato seedlings to Cr(VI) toxicity and maintained better photosynthesis process and plant growth.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Iqbal R Khan
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
5
|
Xu Z, Wang M, Xu D, Xia Z. The Arabidopsis APR2 positively regulates cadmium tolerance through glutathione-dependent pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109819. [PMID: 31654864 DOI: 10.1016/j.ecoenv.2019.109819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/25/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a dangerous environmental pollutant with high toxicity to plants. The adenosine 5'-phosphosulfate reductase 2 (APR2) is the dominant APRs in Arabidopsis and plays an important role in reductive sulfate assimilation pathway. However, whether the involvement of plant APRs in Cd stress response is largely unclear. Herein, we report that APR2 functions in Cd accumulation and tolerance in Arabidopsis. The transcript levels of APR2 were markedly induced by Cd exposure. Transgenic plants overexpressing APR2 improved Cd tolerance, whereas knockout of APR2 reduced Cd tolerance. APR2-overexpressing plants with increased Cd accumulation and tolerance showed higher glutathione (GSH) and phytochelatin (PC) levels than the wild type and apr2 mutant plants, but lower H2O2 and TBARS contents upon Cd exposure. Moreover, exogenous GSH application effectively rescued Cd hypersensitivity in APR2-knockout plants. Further analysis showed that buthionine sulfoximine (BSO, an inhibitor of GSH synthesis) treatment completely eliminated the enhanced Cd tolerance phenotypes of APR2-overexpressing plants, implying that APR2-mediated enhanced Cd tolerance is GSH dependent. In addition, over-expression of the APR2 led to elevated expressions of the GSH/PC synthesis-related genes under Cd stress. Taken together, our results indicated that APR2 regulated Cd accumulation and tolerance possibly through modulating GSH-dependent antioxidant capability and Cd-chelation machinery in Arabidopsis. APR2 could be exploited for engineering heavy metal-tolerant plants in phytoremediation.
Collapse
Affiliation(s)
- Ziwei Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongliang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 2019; 94:95-107. [PMID: 31707015 DOI: 10.1016/j.niox.2019.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.
Collapse
|
7
|
Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J. Melatonin Inhibits Cadmium Translocation and Enhances Plant Tolerance by Regulating Sulfur Uptake and Assimilation in Solanum lycopersicum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10563-10576. [PMID: 31487171 DOI: 10.1021/acs.jafc.9b02404] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sulfur (S) metabolism plays a vital role in Cd detoxification, but the collaboration between melatonin biosynthesis and S metabolism under Cd stress remains unaddressed. Using exogenous melatonin, melatonin-deficient tomato plants with a silenced caffeic acid O-methyltransferase (COMT) gene, and COMT-overexpressing plants with cosuppression of sulfate transporter (SUT)1 and SUT2 genes, we found that melatonin deficiency decreased S accumulation and aggravated Cd phytotoxicity, whereas exogenous melatonin or overexpression of COMT increased S uptake and assimilation, resulting in an improved plant growth and Cd tolerance. Melatonin deficiency promoted Cd translocation from root to shoot, but COMT overexpression caused the opposite effect. COMT overexpression failed to compensate the functional hierarchy of S when its uptake was inhibited by cosilencing of transporter SUT1 and SUT2. Our study provides genetic evidence that melatonin-mediated tolerance to Cd is closely associated with the efficient regulation of S metabolism, redox homeostasis, and Cd translocation in tomato plants.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Golam Jalal Ahammed
- College of Forestry , Henan University of Science and Technology , Luoyang 471023 , China
| | - Shuchang Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Mengqi Li
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Hanqin Yin
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement , Agricultural Ministry of China , 866 Yuhangtang Road , Hangzhou 310058 , China
| |
Collapse
|
8
|
Feldman-Salit A, Veith N, Wirtz M, Hell R, Kummer U. Distribution of control in the sulfur assimilation in Arabidopsis thaliana depends on environmental conditions. THE NEW PHYTOLOGIST 2019; 222:1392-1404. [PMID: 30681147 DOI: 10.1111/nph.15704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/13/2019] [Indexed: 05/24/2023]
Abstract
Sulfur assimilation is central to the survival of plants and has been studied under different environmental conditions. Multiple studies have been published trying to determine rate-limiting or controlling steps in this pathway. However, the picture remains inconclusive with at least two different enzymes proposed to represent such rate-limiting steps. Here, we used computational modeling to gain an integrative understanding of the distribution of control in the sulfur assimilation pathway of Arabidopsis thaliana. For this purpose, we set up a new ordinary differential equation (ODE)-based, kinetic model of sulfur assimilation encompassing all biochemical reactions directly involved in this process. We fitted the model to published experimental data and produced a model ensemble to deal with parameter uncertainties. The ensemble was validated against additional published experimental data. We used the model ensemble to subsequently analyse the control pattern and robustly identified a set of processes that share the control in this pathway under standard conditions. Interestingly, the pattern of control is dynamic and not static, that is it changes with changing environmental conditions. Therefore, while adenosine-5'-phosphosulfate reductase (APR) and sulfite reductase (SiR) share control under standard laboratory conditions, APR takes over an even more dominant role under sulfur starvation conditions.
Collapse
Affiliation(s)
- Anna Feldman-Salit
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Nadine Veith
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Markus Wirtz
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Rüdiger Hell
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Ursula Kummer
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Hasan MK, Liu CX, Pan YT, Ahammed GJ, Qi ZY, Zhou J. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 2018; 8:10182. [PMID: 29976982 PMCID: PMC6033901 DOI: 10.1038/s41598-018-28561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Despite involvement of melatonin (MT) in plant growth and stress tolerance, its role in sulfur (S) acquisition and assimilation remains unclear. Here we report that low-S conditions cause serious growth inhibition by reducing chlorophyll content, photosynthesis and biomass accumulation. S deficiency evoked oxidative stress leading to the cell structural alterations and DNA damage. In contrast, MT supplementation to the S-deprived plants resulted in a significant diminution in reactive oxygen species (ROS) accumulation, thereby mitigating S deficiency-induced damages to cellular macromolecules and ultrastructures. Moreover, MT promoted S uptake and assimilation by regulating the expression of genes encoding enzymes involved in S transport and metabolism. MT also protected cells from ROS-induced damage by regulating 2-cysteine peroxiredoxin and biosynthesis of S-compounds. These results provide strong evidence that MT can enhance plant tolerance to low-S-induced stress by improving S uptake, metabolism and redox homeostasis, and thus advocating beneficial effects of MT on increasing the sulfur utilization efficiency.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.,Department of Agricultural Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Chen-Xu Liu
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Ting Pan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhen-Yu Qi
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Agricultural Experiment Station, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Determination of Enzymes Associated with Sulfite Toxicity in Plants: Kinetic Assays for SO, APR, SiR, and In-Gel SiR Activity. Methods Mol Biol 2017. [PMID: 28735401 DOI: 10.1007/978-1-4939-7136-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The amino acid cysteine plays a major role in plant response to abiotic stress by being the donor of elemental sulfur for the sulfuration of the molybdenum cofactor, otherwise the last step of ABA biosynthesis, the oxidation of abscisic aldehyde, is inactivated. Additionally, cysteine serves as a precursor for the biosynthesis of glutathione, the reactive oxygen species scavenger essential for redox status homeostasis during stress. Cysteine is generated by the sulfate reductive pathway where sulfite oxidase (SO; EC 1.8.3.1) is an important enzyme in the homeostasis of sulfite levels (present either as a toxic intermediate in the pathway or as a toxic air pollutant that has penetrated the plant tissue via the stomata). SO is localized to the peroxisomes and detoxifies excess sulfite by catalyzing its oxidation to sulfate. Here we show a kinetic assay that relies on fuchsin colorimetric detection of sulfite, a substrate of SO activity. This SO assay is highly specific, technically simple, and readily performed in any laboratory.5'-adenylylsulfate (APS) reductase (APR, E.C. 1.8.4.9) enzyme regulates a crucial step of sulfate assimilation in plants, algae and some human pathogens. The enzyme is upregulated in response to oxidative stress induced by abiotic stresses, such as salinity and hydrogen peroxide, to generate sulfite an intermediate for cysteine generation essential for the biosynthesis of glutathione, the hydrogen peroxide scavenger. Here we present two robust, sensitive, and simple colorimetric methods of APR activity based on sulfite determination by fuchsin.Sulfite reductase (SiR) is one of the key enzymes in the primary sulfur assimilation pathway. It has been shown that SiR is an important plant enzyme for protection plant against sulfite toxicity and premature senescence. Here we describe two methods for SiR activity determination: a kinetic assay using desalted extract and an in-gel assay using crude extract.Due to the energetically favorable equilibrium, sulfurtransferase (ST) activity measured as sulfite generation or consumption. Sulfite-generating ST activity is determined by colorimetric detection of SCN- formation at 460 nm as the red Fe(SCN)3 complex from cyanide and thiosulfate using acidic iron reagent. Sulfite-consuming (MST) activity is detected as sulfite disappearance in the presence of thiocyanate (SCN-) or as SCN- disappearance. To abrogate interfering SO activity, total ST activities is detected by inhibiting SO activity with tungstate.
Collapse
|
11
|
Filiz E, Vatansever R, Ozyigit II. Insights into a key sulfite scavenger enzyme sulfite oxidase ( SOX) gene in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:385-395. [PMID: 28461726 PMCID: PMC5391365 DOI: 10.1007/s12298-017-0433-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 05/25/2023]
Abstract
Sulfite oxidase (SOX) is a crucial molybdenum cofactor-containing enzyme in plants that re-oxidizes the sulfite back to sulfate in sulfite assimilation pathway. However, studies of this crucial enzyme are quite limited hence this work was attempted to understand the SOXs in four plant species namely, Arabidopsis thaliana, Solanum lycopersicum, Populus trichocarpa and Brachypodium distachyon. Herein studied SOX enzyme was characterized with both oxidoreductase molybdopterin binding and Mo-co oxidoreductase dimerization domains. The alignment and motif analyses revealed the highly conserved primary structure of SOXs. The phylogeny constructed with additional species demonstrated a clear divergence of monocots, dicots and lower plants. In addition, to further understand the phylogenetic relationship and make a functional inference, a structure-based phylogeny was constructed using normalized RMSD values in five superposed models from four modelled plant SOXs herein and one previously characterized chicken SOX structure. The plant and animal SOXs showed a clear divergence and also implicated their functional divergences. Based on tree topology, monocot B. distachyon appeared to be diverged from other dicots, pointing out a possible monocot-dicot split. The expression patterns of sulfite scavengers including SOX were differentially modulated under cold, heat, salt and high light stresses. Particularly, they tend to be up-regulated under high light and heat while being down-regulated under cold and salt stresses. The presence of cis-regulatory motifs associated with different stresses in upstream regions of SOX genes was thus justified. The protein-protein interaction network of AtSOX and network enrichment with gene ontology (GO) terms showed that most predicted proteins, including sulfite reductase, ATP sulfurylases and APS reductases were among prime enzymes involved in sulfite pathway. Finally, SOX-sulfite docked structures indicated that arginine residues particularly Arg374 is crucial for SOX-sulfite binding and additional two other residues such as Arg51 and Arg103 may be important for SOX-sulfite bindings in plants.
Collapse
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750 Cilimli, Duzce, Turkey
| | - Recep Vatansever
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722 Goztepe, Istanbul, Turkey
| |
Collapse
|
12
|
González A, Moenne F, Gómez M, Sáez CA, Contreras RA, Moenne A. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees. FRONTIERS IN PLANT SCIENCE 2014; 5:512. [PMID: 25352851 PMCID: PMC4195311 DOI: 10.3389/fpls.2014.00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/12/2014] [Indexed: 05/27/2023]
Abstract
In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandra Moenne
- *Correspondence: Alejandra Moenne, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile e-mail:
| |
Collapse
|
13
|
Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, Eppel A, Fluhr R, Sagi M. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. PLANT PHYSIOLOGY 2014; 165:1505-1520. [PMID: 24987017 PMCID: PMC4119034 DOI: 10.1104/pp.114.241356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5'-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves.
Collapse
Affiliation(s)
- Dmitry Yarmolinsky
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Galina Brychkova
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Assylay Kurmanbayeva
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Aizat Bekturova
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Yvonne Ventura
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Inna Khozin-Goldberg
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Amir Eppel
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Robert Fluhr
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Moshe Sagi
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| |
Collapse
|
14
|
Xiang X, Pan G, Rong T, Zheng ZL, Leustek T. A luciferase-based method for assay of 5'-adenylylsulfate reductase. Anal Biochem 2014; 460:22-8. [PMID: 24857786 DOI: 10.1016/j.ab.2014.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023]
Abstract
A luciferase-based method was developed for measurement of 5'-adenylylsulfate (APS) reductase (APR), an enzyme of the reductive sulfate assimilation pathway in prokaryotes and plants. APR catalyzes the two-electron reduction of APS and forms sulfite and adenosine 5'-monophospahate (AMP). The luciferase-based assay measures AMP production using an enzyme-coupled system that generates luminescence. The method is shown to provide an accurate measurement of APR kinetic properties and can be used for both endpoint and continuous assays. APR activity can be measured from pure enzyme preparations as well as from crude protein extracts of tissues. In addition, the assay is ideally suited to high-throughput sample analysis of APR activity in a microtiter dish format. The method adds new capability to the study of the biochemistry and physiology of APR.
Collapse
Affiliation(s)
- Xiaoli Xiang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; Institute of Maize Research, Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- Institute of Maize Research, Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingzhao Rong
- Institute of Maize Research, Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| | - Thomas Leustek
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
15
|
Paritala H, Carroll KS. A continuous spectrophotometric assay for adenosine 5'-phosphosulfate reductase activity with sulfite-selective probes. Anal Biochem 2013; 440:32-9. [PMID: 23711725 DOI: 10.1016/j.ab.2013.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) adenosine 5'-phosphosulfate (APS) reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of essential reduced sulfur-containing biomolecules, such as cysteine, and is essential for survival in the latent phase of tuberculosis (TB) infection. Despite the importance of APR to Mtb and other bacterial pathogens, current assay methods depend on the use of (35)S-labeled APS or shunt adenosine 5'-monophosphate (AMP) to a coupled-enzyme system. Both methods are cumbersome and require the use of expensive reagents. Here, we report the development of a continuous spectrophotometric method for measuring APR activity by using novel sulfite-selective colorimetric or "off-on" fluorescent levulinate-based probes. Thus, the APR activity can be followed by monitoring the increase in absorbance or fluorescence of the resulting phenolate product. Using this assay, we determined Michaelis-Menten kinetic constants (K(m), k(cat), and k(cat)/K(m)) and the apparent inhibition constant (Ki) for adenosine 5'-diphosphate (ADP), which compared favorably with values obtained in the "gold standard" radioactive assay. The newly developed assay is robust and easy to perform with a simple spectrophotometer.
Collapse
|
16
|
Brychkova G, Grishkevich V, Fluhr R, Sagi M. An essential role for tomato sulfite oxidase and enzymes of the sulfite network in maintaining leaf sulfite homeostasis. PLANT PHYSIOLOGY 2013; 161:148-64. [PMID: 23148079 PMCID: PMC3532248 DOI: 10.1104/pp.112.208660] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
Little is known about the homeostasis of sulfite levels, a cytotoxic by-product of plant sulfur turnover. By employing extended dark to induce catabolic pathways, we followed key elements of the sulfite network enzymes that include adenosine-5'-phosphosulfate reductase and the sulfite scavengers sulfite oxidase (SO), sulfite reductase, UDP-sulfoquinovose synthase, and β-mercaptopyruvate sulfurtransferases. During extended dark, SO was enhanced in tomato (Solanum lycopersicum) wild-type leaves, while the other sulfite network components were down-regulated. SO RNA interference plants lacking SO activity accumulated sulfite, resulting in leaf damage and mortality. Exogenous sulfite application induced up-regulation of the sulfite scavenger activities in dark-stressed or unstressed wild-type plants, while expression of the sulfite producer, adenosine-5'-phosphosulfate reductase, was down-regulated. Unstressed or dark-stressed wild-type plants were resistant to sulfite applications, but SO RNA interference plants showed sensitivity and overaccumulation of sulfite. Hence, under extended dark stress, SO activity is necessary to cope with rising endogenous sulfite levels. However, under nonstressed conditions, the sulfite network can control sulfite levels in the absence of SO activity. The novel evidence provided by the synchronous dark-induced turnover of sulfur-containing compounds, augmented by exogenous sulfite applications, underlines the role of SO and other sulfite network components in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule.
Collapse
|