1
|
Zhao Y, Day B. Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1. FRONTIERS IN PLANT SCIENCE 2024; 15:1473944. [PMID: 39735778 PMCID: PMC11681384 DOI: 10.3389/fpls.2024.1473944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4T166) in Arabidopsis transgenic lines expressing various RIN4 variants. Our pathological and molecular genetic analyses reveal that RIN4T166 phosphorylation disrupts its localization to the plasma membrane (PM) and represses plant defense activation. We found that RIN4's PM tethering relies on Exo70B1-mediated exocytosis and the integrity of the host cytoskeletal actin network. Phosphorylation at RIN4T166 disrupts its PM localization due to reduced binding affinity with Exo70B1. This disruption was further evidenced by the 35S::RIN4T166D/rin124 transgenic line, which exhibited suppressed PTI responses similar to the exo70b1 mutant. Our findings demonstrate that RIN4's subcellular localization is regulated by phosphorylation, suggesting that plants use a sophisticated network of signaling processes to precisely control the timing and localization of immune signaling activation. This study uncovers a mechanism by which PTI is repressed through RIN4 phosphorylation, providing new insights into the spatial regulation of RIN4 within plant immune signaling pathways.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, United States
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Saballos AI, Brooks MD, Tranel PJ, Williams MM. Mapping of flumioxazin tolerance in a snap bean diversity panel leads to the discovery of a master genomic region controlling multiple stress resistance genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1404889. [PMID: 39015289 PMCID: PMC11250381 DOI: 10.3389/fpls.2024.1404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Introduction Effective weed management tools are crucial for maintaining the profitable production of snap bean (Phaseolus vulgaris L.). Preemergence herbicides help the crop to gain a size advantage over the weeds, but the few preemergence herbicides registered in snap bean have poor waterhemp (Amaranthus tuberculatus) control, a major pest in snap bean production. Waterhemp and other difficult-to-control weeds can be managed by flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO). However, there is limited knowledge about crop tolerance to this herbicide. We aimed to quantify the degree of snap bean tolerance to flumioxazin and explore the underlying mechanisms. Methods We investigated the genetic basis of herbicide tolerance using genome-wide association mapping approach utilizing field-collected data from a snap bean diversity panel, combined with gene expression data of cultivars with contrasting response. The response to a preemergence application of flumioxazin was measured by assessing plant population density and shoot biomass variables. Results Snap bean tolerance to flumioxazin is associated with a single genomic location in chromosome 02. Tolerance is influenced by several factors, including those that are indirectly affected by seed size/weight and those that directly impact the herbicide's metabolism and protect the cell from reactive oxygen species-induced damage. Transcriptional profiling and co-expression network analysis identified biological pathways likely involved in flumioxazin tolerance, including oxidoreductase processes and programmed cell death. Transcriptional regulation of genes involved in those processes is possibly orchestrated by a transcription factor located in the region identified in the GWAS analysis. Several entries belonging to the Romano class, including Bush Romano 350, Roma II, and Romano Purpiat presented high levels of tolerance in this study. The alleles identified in the diversity panel that condition snap bean tolerance to flumioxazin shed light on a novel mechanism of herbicide tolerance and can be used in crop improvement.
Collapse
Affiliation(s)
- Ana I. Saballos
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| | - Matthew D. Brooks
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| | - Patrick J. Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Martin M. Williams
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| |
Collapse
|
3
|
He SL, Li B, Zahurancik WJ, Arthur HC, Sidharthan V, Gopalan V, Wang L, Jang JC. Overexpression of stress granule protein TZF1 enhances salt stress tolerance by targeting ACA11 mRNA for degradation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1375478. [PMID: 38799098 PMCID: PMC11122021 DOI: 10.3389/fpls.2024.1375478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Tandem CCCH zinc finger (TZF) proteins play diverse roles in plant growth and stress response. Although as many as 11 TZF proteins have been identified in Arabidopsis, little is known about the mechanism by which TZF proteins select and regulate the target mRNAs. Here, we report that Arabidopsis TZF1 is a bona-fide stress granule protein. Ectopic expression of TZF1 (TZF1 OE), but not an mRNA binding-defective mutant (TZF1H186Y OE), enhances salt stress tolerance in Arabidopsis. RNA-seq analyses of NaCl-treated plants revealed that the down-regulated genes in TZF1 OE plants are enriched for functions in salt and oxidative stress responses. Because many of these down-regulated mRNAs contain AU- and/or U-rich elements (AREs and/or UREs) in their 3'-UTRs, we hypothesized that TZF1-ARE/URE interaction might contribute to the observed gene expression changes. Results from RNA immunoprecipitation-quantitative PCR analysis, gel-shift, and mRNA half-life assays indicate that TZF1 binds and triggers degradation of the autoinhibited Ca2+-ATPase 11 (ACA11) mRNA, which encodes a tonoplast-localized calcium pump that extrudes calcium and dampens signal transduction pathways necessary for salt stress tolerance. Furthermore, this salt stress-tolerance phenotype was recapitulated in aca11 null mutants. Collectively, our findings demonstrate that TZF1 binds and initiates degradation of specific mRNAs to enhance salt stress tolerance.
Collapse
Affiliation(s)
- Siou-Luan He
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Bin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Shandong, China
| | - Walter J. Zahurancik
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Henry C. Arthur
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Vaishnavi Sidharthan
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Venkat Gopalan
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Shandong, China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Xu L, Xiong X, Liu T, Cao J, Yu Y. Heterologous Expression of Two Brassica campestris CCCH Zinc-Finger Proteins in Arabidopsis Induces Cytoplasmic Foci and Causes Pollen Abortion. Int J Mol Sci 2023; 24:16862. [PMID: 38069184 PMCID: PMC10706035 DOI: 10.3390/ijms242316862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report that the heterologous expression of two Brassica campestris CCCH zinc-finger protein genes (BcMF30a and BcMF30c) in Arabidopsis thaliana can affect microgametogenesis by involving the formation of cytoplasmic foci. By monitoring the distribution of proteins and observing pollen phenotypes, we found that, when these two proteins were moderately expressed in pollen, they were mainly dispersed in the cytoplasm, and the pollen developed normally. However, high expression induced the assembly of cytoplasmic foci, leading to pollen abortion. These findings suggested that the continuous formation of BcMF30a/BcMF30c-associated cytoplasmic foci due to high expression was the inducement of male sterility. A co-localization analysis further showed that these two proteins can be recruited into two well-studied cytoplasmic foci, processing bodies (PBs), and stress granules (SGs), which were confirmed to function in mRNA metabolism. Together, our data suggested that BcMF30a and BcMF30c play component roles in the assembly of pollen cytoplasmic foci. Combined with our previous study on the homologous gene of BcMF30a/c in Arabidopsis, we concluded that the function of these homologous genes is conserved and that cytoplasmic foci containing BcMF30a/c may participate in the regulation of gene expression in pollen by regulating mRNA metabolism.
Collapse
Affiliation(s)
- Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (X.X.); (T.L.)
| | - Youjian Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
| |
Collapse
|
5
|
Xu J, Huang Z, Du H, Tang M, Fan P, Yu J, Zhou Y. SEC1-C3H39 module fine-tunes cold tolerance by mediating its target mRNA degradation in tomato. THE NEW PHYTOLOGIST 2023; 237:870-884. [PMID: 36285381 DOI: 10.1111/nph.18568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plants adapt to cold stress at the physiological and biochemical levels, thus enabling them to maintain growth and development. However, the molecular mechanism of fine-tuning cold signals remains largely unknown. We addressed the function of SlSEC1-SlC3H39 module in cold tolerance by using SlSEC1 and SlC3H39 knockout and overexpression tomato lines. A tandem CCCH zinc-finger protein SlC3H39 negatively modulates cold tolerance in tomato. SlC3H39 binds to AU-rich elements in the 3'-untranslated region (UTR) to induce mRNA degradation and regulates gene expression post-transcriptionally. We further validate that SlC3H39 participates in post-transcriptional regulation of a variety of cold-responsive genes. An O-linked N-acetylglucosamine transferase SlSEC1 physically interacts with SlC3H39 proteins and negatively regulates cold tolerance in tomato. Further study shows that SlSEC1 is essential for SlC3H39 protein stability and maintains SlC3H39 function in cold tolerance. Genetic analysis shows that SlC3H39 is epistatic to SlSEC1 in cold tolerance. The findings indicate that SlC3H39 negatively modulates plant cold tolerance through post-transcriptional regulation by binding to cold-responding mRNA 3'-UTR and reducing those transcripts. SlSEC1 promotes the O-GlcNAclation status of SlC3H39 and maintains SlC3H39 function in cold tolerance. Taken together, we propose a SlSEC1-SlC3H39 module, which allows plants to balance defense responses and growth processes.
Collapse
Affiliation(s)
- Jin Xu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zelan Huang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongyu Du
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Pengxiang Fan
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
6
|
Singh S, Gaurav SS, Vasistha NK, Kumar U, Joshi AK, Mishra VK, Chand R, Gupta PK. Genetics of spot blotch resistance in bread wheat ( Triticum aestivum L.) using five models for GWAS. FRONTIERS IN PLANT SCIENCE 2023; 13:1036064. [PMID: 36743576 PMCID: PMC9891466 DOI: 10.3389/fpls.2022.1036064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Genetic architecture of resistance to spot blotch in wheat was examined using a Genome-Wide Association Study (GWAS) involving an association panel comprising 303 diverse genotypes. The association panel was evaluated at two different locations in India including Banaras Hindu University (BHU), Varanasi (Uttar Pradesh), and Borlaug Institute for South Asia (BISA), Pusa, Samastipur (Bihar) for two consecutive years (2017-2018 and 2018-2019), thus making four environments (E1, BHU 2017-18; E2, BHU 2018-19; E3, PUSA, 2017-18; E4, PUSA, 2018-19). The panel was genotyped for 12,196 SNPs based on DArT-seq (outsourced to DArT Ltd by CIMMYT); these SNPs included 5,400 SNPs, which could not be assigned to individual chromosomes and were therefore, described as unassigned by the vendor. Phenotypic data was recorded on the following three disease-related traits: (i) Area Under Disease Progress Curve (AUDPC), (ii) Incubation Period (IP), and (iii) Lesion Number (LN). GWAS was conducted using each of five different models, which included two single-locus models (CMLM and SUPER) and three multi-locus models (MLMM, FarmCPU, and BLINK). This exercise gave 306 MTAs, but only 89 MTAs (33 for AUDPC, 30 for IP and 26 for LN) including a solitary MTA detected using all the five models and 88 identified using four of the five models (barring SUPER) were considered to be important. These were used for further analysis, which included identification of candidate genes (CGs) and their annotation. A majority of these MTAs were novel. Only 70 of the 89 MTAs were assigned to individual chromosomes; the remaining 19 MTAs belonged to unassigned SNPs, for which chromosomes were not known. Seven MTAs were selected on the basis of minimum P value, number of models, number of environments and location on chromosomes with respect to QTLs reported earlier. These 7 MTAs, which included five main effect MTAs and two for epistatic interactions, were considered to be important for marker-assisted selection (MAS). The present study thus improved our understanding of the genetics of resistance against spot blotch in wheat and provided seven MTAs, which may be used for MAS after due validation.
Collapse
Affiliation(s)
- Sahadev Singh
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Shailendra Singh Gaurav
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Sirmaur, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Arun Kumar Joshi
- The International Maize and Wheat Improvement Center (CIMMYT), Borlaug Institute for South Asia (BISA), G-2, B-Block, NASC Complex, DPS Marg, New Delhi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Indian Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Indian Institute of Agricultural Science Banaras Hindu University, Varanasi, India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Borlaug Institute for South Asia (BISA), Ludhiana, India
- Murdoch’s Centre for Crop & Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
7
|
Navathe S, Pandey AK, Sharma S, Chand R, Mishra VK, Kumar D, Jaiswal S, Iquebal MA, Govindan V, Joshi AK, Singh PK. New Genomic Regions Identified for Resistance to Spot Blotch and Terminal Heat Stress in an Interspecific Population of Triticum aestivum and T. spelta. PLANTS (BASEL, SWITZERLAND) 2022; 11:2987. [PMID: 36365440 PMCID: PMC9657703 DOI: 10.3390/plants11212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most widely grown and consumed food crops in the world. Spot blotch and terminal heat stress are the two significant constraints mainly in the Indo-Gangetic plains of South Asia. The study was undertaken using 185 recombinant lines (RILs) derived from the interspecific hybridization of 'Triticum aestivum (HUW234) × T. spelta (H+26)' to reveal genomic regions associated with tolerance to combined stress to spot blotch and terminal heat. Different physiological (NDVI, canopy temperature, leaf chlorophyll) and grain traits (TGW, grain size) were observed under stressed (spot blotch, terminal heat) and non-stressed environments. The mean maturity duration of RILs under combined stress was reduced by 12 days, whereas the normalized difference vegetation index (NDVI) was 46.03%. Similarly, the grain size was depleted under combined stress by 32.23% and thousand kernel weight (TKW) by 27.56% due to spot blotch and terminal heat stress, respectively. The genetic analysis using 6734 SNP markers identified 37 significant loci for the area under the disease progress curve (AUDPC) and NDVI. The genome-wide functional annotation of the SNP markers revealed gene functions such as plant chitinases, NB-ARC and NBS-LRR, and the peroxidase superfamily Cytochrome P450 have a positive role in the resistance through a hypersensitive response. Zinc finger domains, cysteine protease coding gene, F-box protein, ubiquitin, and associated proteins, play a substantial role in the combined stress of spot blotch and terminal heat in bread wheat, according to genomic domains ascribed to them. The study also highlights T. speltoides as a source of resistance to spot blotch and terminal heat tolerance.
Collapse
Affiliation(s)
- Sudhir Navathe
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Ajeet Kumar Pandey
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Sharma
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Kumar Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz 56237, Mexico
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi 110012, India
- International Maize and Wheat Improvement Center (CIMMYT), G-2, B-Block, NASC Complex, DPS Marg, New Delhi 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz 56237, Mexico
| |
Collapse
|
8
|
Wang D, Chai G, Xu L, Yang K, Zhuang Y, Yang A, Liu S, Kong Y, Zhou G. Phosphorylation-mediated inactivation of C3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1941-1959. [PMID: 35736512 PMCID: PMC9614498 DOI: 10.1093/plphys/kiac300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) triggers mitogen-activated protein (MAP) kinase 4 (MPK4)-mediated phosphorylation and induces downstream transcriptional reprogramming, but the mechanisms of the MPK4 defense pathway are poorly understood. Here, we showed that phosphorylation-mediated inactivation of the CCCH protein C3H14 by MPK4 positively regulates the immune response in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, loss-of-function mutations in C3H14 and its paralog C3H15 resulted in enhanced defense against Pst DC3000 in infected leaves and the development of systemic acquired resistance (SAR), whereas C3H14 or C3H15 overexpression enhanced susceptibility to this pathogen and failed to induce SAR. The functions of C3H14 in PAMP-triggered immunity (PTI) and SAR were dependent on MPK4-mediated phosphorylation. Challenge with Pst DC3000 or the flagellin peptide flg22 enhanced the phosphorylation of C3H14 by MPK4 in the cytoplasm, relieving C3H14-inhibited expression of PTI-related genes and attenuating C3H14-activated expression of its targets NIM1-INTERACTING1 (NIMIN1) and NIMIN2, two negative regulators of SAR. Salicylic acid (SA) affected the MPK4-C3H14-NIMIN1/2 cascades in immunity, but SA signaling mediated by the C3H14-NIMIN1/2 cascades was independent of MPK4 phosphorylation. Our study suggests that C3H14 might be a negative component of the MPK4 defense signaling pathway.
Collapse
Affiliation(s)
| | | | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kangkang Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yamei Zhuang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao 266101, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | | |
Collapse
|
9
|
Niñoles R, Planes D, Arjona P, Ruiz-Pastor C, Chazarra R, Renard J, Bueso E, Forment J, Serrano R, Kranner I, Roach T, Gadea J. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity. PLANT, CELL & ENVIRONMENT 2022; 45:2708-2728. [PMID: 35672914 DOI: 10.1111/pce.14374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Collapse
Affiliation(s)
- Regina Niñoles
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Planes
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Arjona
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carmen Ruiz-Pastor
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Rubén Chazarra
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Joan Renard
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Eduardo Bueso
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Javier Forment
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ramón Serrano
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - José Gadea
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
10
|
The ABCISIC ACID INSENSITIVE (ABI) 4 Transcription Factor Is Stabilized by Stress, ABA and Phosphorylation. PLANTS 2022; 11:plants11162179. [PMID: 36015481 PMCID: PMC9414092 DOI: 10.3390/plants11162179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
The Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response to abiotic stress and development. Expression of the ABI4 gene is tightly regulated, with low basal expression. Maximal transcript levels occur during the seed maturation and early seed germination stages. Moreover, ABI4 is an unstable, lowly expressed protein. Here, we studied factors affecting the stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV promoter, low steady-state levels of ABI4 were detected in the roots of seedlings grown under optimal conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and ABA. ABI4 is degraded rapidly by the 26S proteasome, and we report on the role of phosphorylation of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for controlling ABI4 reflects its central role in plant development and cellular metabolism.
Collapse
|
11
|
Xu L, Liu T, Xiong X, Shen X, Huang L, Yu Y, Cao J. Highly Overexpressed AtC3H18 Impairs Microgametogenesis via Promoting the Continuous Assembly of mRNP Granules. FRONTIERS IN PLANT SCIENCE 2022; 13:932793. [PMID: 35909782 PMCID: PMC9335048 DOI: 10.3389/fpls.2022.932793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plant CCCH zinc-finger proteins form a large family of regulatory proteins function in many aspects of plant growth, development and environmental responses. Despite increasing reports indicate that many CCCH zinc-finger proteins exhibit similar subcellular localization of being localized in cytoplasmic foci, the underlying molecular mechanism and the connection between this specific localization pattern and protein functions remain largely elusive. Here, we identified another cytoplasmic foci-localized CCCH zinc-finger protein, AtC3H18, in Arabidopsis thaliana. AtC3H18 is predominantly expressed in developing pollen during microgametogenesis. Although atc3h18 mutants did not show any abnormal phenotype, possibly due to redundant gene(s), aberrant AtC3H18 expression levels caused by overexpression resulted in the assembly of AtC3H18-positive granules in a dose-dependent manner, which in turn led to male sterility phenotype, highlighting the importance of fine-tuned AtC3H18 expression. Further analyzes demonstrated that AtC3H18-positive granules are messenger ribonucleoprotein (mRNP) granules, since they can exhibit liquid-like physical properties, and are associated with another two mRNP granules known as processing bodies (PBs) and stress granules (SGs), reservoirs of translationally inhibited mRNAs. Moreover, the assembly of AtC3H18-positive granules depends on mRNA availability. Combined with our previous findings on the AtC3H18 homologous genes in Brassica campestris, we concluded that appropriate expression level of AtC3H18 during microgametogenesis is essential for normal pollen development, and we also speculated that AtC3H18 may act as a key component of mRNP granules to modulate pollen mRNAs by regulating the assembly/disassembly of mRNP granules, thereby affecting pollen development.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Youjian Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
13
|
Zhang F, Fang H, Wang M, He F, Tao H, Wang R, Long J, Wang J, Wang GL, Ning Y. APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice. Nucleic Acids Res 2022; 50:5064-5079. [PMID: 35524572 PMCID: PMC9122607 DOI: 10.1093/nar/gkac316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/13/2023] Open
Abstract
Many transcription factors (TFs) in animals bind to both DNA and mRNA, regulating transcription and mRNA turnover. However, whether plant TFs function at both the transcriptional and post-transcriptional levels remains unknown. The rice (Oryza sativa) bZIP TF AVRPIZ-T-INTERACTING PROTEIN 5 (APIP5) negatively regulates programmed cell death and blast resistance and is targeted by the effector AvrPiz-t of the blast fungus Magnaporthe oryzae. We demonstrate that the nuclear localization signal of APIP5 is essential for APIP5-mediated suppression of cell death and blast resistance. APIP5 directly targets two genes that positively regulate blast resistance: the cell wall-associated kinase gene OsWAK5 and the cytochrome P450 gene CYP72A1. APIP5 inhibits OsWAK5 expression and thus limits lignin accumulation; moreover, APIP5 inhibits CYP72A1 expression and thus limits reactive oxygen species production and defense compounds accumulation. Remarkably, APIP5 acts as an RNA-binding protein to regulate mRNA turnover of the cell death- and defense-related genes OsLSD1 and OsRac1. Therefore, APIP5 plays dual roles, acting as TF to regulate gene expression in the nucleus and as an RNA-binding protein to regulate mRNA turnover in the cytoplasm, a previously unidentified regulatory mechanism of plant TFs at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiawei Long
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Wang L, Chen J, Zhao Y, Wang S, Yuan M. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1116-1130. [PMID: 35293133 DOI: 10.1111/jipb.13249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Rice OsLIC encoding a CCCH zinc finger transcription factor plays an important role in immunity. However, the immune signaling pathways that OsLIC-involved and the underlying mechanisms that OsLIC-conferred resistance against pathogens are largely unclear. Here, we show that OsLIC, as a substrate for OsMAPK6, negatively regulates resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) by directly suppressing OsWRKY30 transcription. Biochemical assays showed that OsLIC bound to OsWRKY30 promoter and suppressed its transcription. Genetic assays confirmed that the osilc knockout mutants and OsWRKY30-overexpressing plants exhibited enhanced resistance to Xoo and Xoc, knocking out OsWRKY30 in the oslic mutants attenuated the resistance against bacterial pathogens. OsMAPK6 physically interacted with and phosphorylated OsLIC leading to decreased OsLIC DNA-binding activity, therefore, overexpression of OsLIC partially suppressed OsMAPK6-mediated rice resistance. In addition, both OsMAPK6-phosphorylated activation of OsLIC and phosphorylation-mimic OsLIC5D had reduced DNA-binding activity towards OsWRKY30 promoter, thereby promoting OsWRKY30 transcription. Collectively, these results reveal that OsMAPK6-mediated phosphorylation of OsLIC positively regulates rice resistance to Xoo and Xoc by modulating OsWRKY30 transcription, suggesting that OsMAPK6-OsLIC-OsWRKY30 module is an immune signaling pathway in response to the bacterial pathogens.
Collapse
Affiliation(s)
- Lihan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Seok HY, Kim T, Lee SY, Moon YH. Non-TZF Transcriptional Activator AtC3H12 Negatively Affects Seed Germination and Seedling Development in Arabidopsis. Int J Mol Sci 2022; 23:1572. [PMID: 35163496 PMCID: PMC8835867 DOI: 10.3390/ijms23031572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
CCCH zinc finger proteins are a large protein family and are classified as either tandem CCCH zinc finger (TZF) or non-TZF proteins. The roles of TZF genes in several plants have been well determined, whereas the functions of many non-TZF genes in plants remain uncharacterized. Herein, we describe biological and molecular functions of AtC3H12, an Arabidopsis non-TZF protein containing three CCCH zinc finger motifs. AtC3H12 has orthologs in several plant species but has no paralog in Arabidopsis. AtC3H12-overexpressing transgenic plants (OXs) germinated slower than wild-type (WT) plants, whereas atc3h12 mutants germinated faster than WT plants. The fresh weight (FW) and primary root lengths of AtC3H12 OX seedlings were lighter and shorter than those of WT seedlings, respectively. In contrast, FW and primary root lengths of atc3h12 seedlings were heavier and longer than those of WT seedlings, respectively. AtC3H12 was localized in the nucleus and displayed transactivation activity in both yeast and Arabidopsis. We found that the 97-197 aa region of AtC3H12 is an important part for its transactivation activity. Detection of expression levels and analysis of Arabidopsis transgenic plants harboring a PAtC3H12::GUS construct showed that AtC3H12 expression increases as the Arabidopsis seedlings develop. Taken together, our results demonstrate that AtC3H12 negatively affects seed germination and seedling development as a nuclear transcriptional activator in Arabidopsis. To our knowledge, this is the first report to show that non-TZF proteins negatively affect plant development as nuclear transcriptional activators.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
| | - Taehyoung Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
| | - Sun-Young Lee
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
| | - Yong-Hwan Moon
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
16
|
Guo C, Chen L, Cui Y, Tang M, Guo Y, Yi Y, Li Y, Liu L, Chen L. RNA Binding Protein OsTZF7 Traffics Between the Nucleus and Processing Bodies/Stress Granules and Positively Regulates Drought Stress in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:802337. [PMID: 35265093 PMCID: PMC8899535 DOI: 10.3389/fpls.2022.802337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 05/16/2023]
Abstract
Tandem CCCH zinc finger (TZF) proteins are the essential components of processing bodies (PBs) and stress granules (SGs), which play critical roles in growth development and stress response in both animals and plants through posttranscriptional regulation of target mRNA. In this study, we characterized the biological and molecular functions of a novel tandem zinc finger protein, OsTZF7. The expression of OsTZF7 was upregulated by abiotic stresses, including polyethylene glycol (PEG) 4000, NaCl, and abscisic acid (ABA) in rice. Accordingly, the overexpression of OsTZF7 increased drought tolerance and enhanced sensitivity to exogenous ABA in rice, whereas the knockdown of OsTZF7 resulted in the opposite phenotype. RNA-seq analysis revealed that genes related to "response to stress," "abscisic acid signaling," "methylated histone binding," and "cytoplasmic mRNA processing body" are regulated by OsTZF7. We demonstrated that OsTZF7 can traffic between the nucleus and PBs/SGs, and the leucine-rich nuclear export signal (NES) mediates the nuclear export of OsTZF7. Additionally, we revealed that OsTZF7 can bind adenine- and uridine-rich (AU-rich) element (ARE) or ARE-like motifs within the 3' untranslated region of downregulated mRNAs, and interact with PWWP family proteins in vitro. Together, these results indicate that OsTZF7 positively regulates drought response in rice via ABA signaling and may be involved in mRNA turnover.
Collapse
Affiliation(s)
- Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, China
| | - Lingli Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liqing Liu
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Liang Chen,
| |
Collapse
|
17
|
Li T, Zhang H, Xu L, Chen X, Feng J, Wu W, Du Y. StMPK7 phosphorylates and stabilizes a potato RNA-binding protein StUBA2a/b to enhance plant defence responses. HORTICULTURE RESEARCH 2022; 9:uhac177. [PMID: 36324643 PMCID: PMC9614683 DOI: 10.1093/hr/uhac177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in regulating plant immunity. MAPKs usually transduce signals and regulate plant immunity by phosphorylating the downstream defence-related components. Our previous study indicates that StMPK7 positively regulates plant defence to Phytophthora pathogens via SA signalling pathway. However, the downstream component of StMPK7 remains unknown. In this study, we employed GFP-StMPK7 transgenic potato and performed immunoprecipitation-mass spectrometry (IP-MS) to identify the downstream component of StMPK7. We found that an RNA binding protein StUBA2a/b interacted with StMPK7, as revealed by luciferase complementation imaging (LCI) and coimmunoprecipitation (co-IP) assays. Transient expression of StUBA2a/b in Nicociana benthamiana enhanced plant resistance to Phytophthora pathogens, while silencing of UBA2a/b decreased the resistance, suggesting a positive regulator role of UBA2a/b in plant immunity. Similar to StMPK7, StUBA2a/b was also involved in SA signalling pathway and induced SGT1-dependent cell death as constitutively activated (CA)-StMPK7 did. Immune blotting indicated that StMPK7 phosphorylates StUBA2a/b at thr248 and thr408 (T248/408) sites and stabilizes StUBA2a/b. Silencing of MPK7 in N. benthamiana suppressed StUBA2a/b-induced cell death, while co-expression with StMPK7 enhanced the cell death. Besides, StUBA2a/bT248/408A mutant showed decreased ability to trigger cell death and elevate the expression of PR genes, indicating the phosphorylation by StMPK7 enhances the functions of StUBA2a/b. Moreover, CA-StMPK7-induced cell death was largely suppressed by silencing of NbUBA2a/b, genetically implying UBA2a/b acts as the downstream component of StMPK7. Collectively, our results reveal that StMPK7 phosphorylates and stabilizes its downstream substrate StUBA2a/b to enhance plant immunity via the SA signalling pathway.
Collapse
Affiliation(s)
| | | | - Liwen Xu
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Xiaokang Chen
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Jiashu Feng
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Weijun Wu
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | | |
Collapse
|
18
|
Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against Rhizoctonia solani. Pathogens 2021; 11:pathogens11010035. [PMID: 35055983 PMCID: PMC8780726 DOI: 10.3390/pathogens11010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different.
Collapse
|
19
|
Pi B, Pan J, Xiao M, Hu X, Zhang L, Chen M, Liu B, Ruan Y, Huang Y. Systematic analysis of CCCH zinc finger family in Brassica napus showed that BnRR-TZFs are involved in stress resistance. BMC PLANT BIOLOGY 2021; 21:555. [PMID: 34814855 PMCID: PMC8609832 DOI: 10.1186/s12870-021-03340-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/10/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND CCCH zinc finger family is one of the largest transcription factor families related to multiple biotic and abiotic stresses. Brassica napus L., an allotetraploid oilseed crop formed by natural hybridization between two diploid progenitors, Brassica rapa and Brassica oleracea. A systematic identification of rapeseed CCCH family genes is missing and their functional characterization is still in infancy. RESULTS In this study, 155 CCCH genes, 81 from its parent B. rapa and 74 from B. oleracea, were identified and divided into 15 subfamilies in B. napus. Organization and syntenic analysis explained the distribution and collinearity relationship of CCCH genes, the selection pressure and evolution of duplication gene pairs in B. napus genome. 44 diploid duplication gene pairs and 4 triple duplication gene groups were found in B. napus of CCCH family and the segmental duplication is attributed to most CCCH gene duplication events in B. napus. Nine types of CCCH motifs exist in B. napus CCCH family members, and motif C-X7/8-C-X5-C-X3-H is the most common and a new conserved CCH motif (C-X5-C-X3-H) has been identified. In addition, abundant stress-related cis-elements exist in promoters of 27 subfamily IX (RR-TZF) genes and their expression profiles indicated that RR-TZF genes could be involved in responses to hormone and abiotic stress. CONCLUSIONS The results provided a foundation to understand the basic characterization and genes evolution of CCCH gene family in B. napus, and provided potential targets for genetic engineering in Brassicaceae crops in pursuit of stress-tolerant traits.
Collapse
Affiliation(s)
- Boyi Pi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Jiao Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Mu Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Xinchang Hu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Min Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Boyu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Ying Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128, China.
| |
Collapse
|
20
|
Kong L, Feng B, Yan Y, Zhang C, Kim JH, Xu L, Rack JGM, Wang Y, Jang JC, Ahel I, Shan L, He P. Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity. Mol Cell 2021; 81:4591-4604.e8. [PMID: 34592134 PMCID: PMC8684601 DOI: 10.1016/j.molcel.2021.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Baomin Feng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chao Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Lahong Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Han G, Qiao Z, Li Y, Wang C, Wang B. The Roles of CCCH Zinc-Finger Proteins in Plant Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:ijms22158327. [PMID: 34361093 PMCID: PMC8347928 DOI: 10.3390/ijms22158327] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Zinc-finger proteins, a superfamily of proteins with a typical structural domain that coordinates a zinc ion and binds nucleic acids, participate in the regulation of growth, development, and stress adaptation in plants. Most zinc fingers are C2H2-type or CCCC-type, named after the configuration of cysteine (C) and histidine (H); the less-common CCCH zinc-finger proteins are important in the regulation of plant stress responses. In this review, we introduce the domain structures, classification, and subcellular localization of CCCH zinc-finger proteins in plants and discuss their functions in transcriptional and post-transcriptional regulation via interactions with DNA, RNA, and other proteins. We describe the functions of CCCH zinc-finger proteins in plant development and tolerance to abiotic stresses such as salt, drought, flooding, cold temperatures and oxidative stress. Finally, we summarize the signal transduction pathways and regulatory networks of CCCH zinc-finger proteins in their responses to abiotic stress. CCCH zinc-finger proteins regulate the adaptation of plants to abiotic stress in various ways, but the specific molecular mechanisms need to be further explored, along with other mechanisms such as cytoplasm-to-nucleus shuttling and post-transcriptional regulation. Unraveling the molecular mechanisms by which CCCH zinc-finger proteins improve stress tolerance will facilitate the breeding and genetic engineering of crops with improved traits.
Collapse
Affiliation(s)
- Guoliang Han
- Correspondence: (G.H.); (B.W.); Tel./Fax: +86-531-8618-0197 (B.W.)
| | | | | | | | - Baoshan Wang
- Correspondence: (G.H.); (B.W.); Tel./Fax: +86-531-8618-0197 (B.W.)
| |
Collapse
|
22
|
Lu L, Wei W, Li QT, Bian XH, Lu X, Hu Y, Cheng T, Wang ZY, Jin M, Tao JJ, Yin CC, He SJ, Man WQ, Li W, Lai YC, Zhang WK, Chen SY, Zhang JS. A transcriptional regulatory module controls lipid accumulation in soybean. THE NEW PHYTOLOGIST 2021; 231:661-678. [PMID: 33864683 DOI: 10.1111/nph.17401] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max) is one of the most important oilseed crops. However, the regulatory mechanism that governs the process of oil accumulation in soybean remains poorly understood. In this study, GmZF392, a tandem CCCH zinc finger (TZF) protein which was identified in our previous RNA-seq analysis of seed-preferred transcription factors, was found to function as a positive regulator of lipid production. GmZF392 promotes seed oil accumulation in both transgenic Arabidopsis and stable transgenic soybean plants by binding to a bipartite cis-element, containing TG- and TA-rich sequences, in promoter regions, activating the expression of genes in the lipid biosynthesis pathway. GmZF392 physically interacts with GmZF351, our previously identified transcriptional regulator of lipid biosynthesis, to synergistically promote downstream gene expression. Both GmZF392 and GmZF351 are further upregulated by GmNFYA, another transcription factor involved in lipid biosynthesis, directly (in the former case) and indirectly (in the latter case). Promoter sequence diversity analysis showed that the GmZF392 promoter may have been selected at the origin of the Glycine genus and further mildly selected during domestication from wild soybeans to cultivated soybeans. Our study reveals a regulatory module containing three transcription factors in the lipid biosynthesis pathway, and manipulation of the module may improve oil production in soybean and other oilseed crops.
Collapse
Affiliation(s)
- Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou-Ya Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Kim J, Lee H, Lee HG, Seo PJ. Get closer and make hotspots: liquid-liquid phase separation in plants. EMBO Rep 2021; 22:e51656. [PMID: 33913240 DOI: 10.15252/embr.202051656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless compartments in a cell and allows the spatiotemporal organization of biochemical reactions by concentrating macromolecules locally. In plants, LLPS defines cellular reaction hotspots, and stimulus-responsive LLPS is tightly linked to a variety of cellular and biological functions triggered by exposure to various internal and external stimuli, such as stress responses, hormone signaling, and temperature sensing. Here, we provide an overview of the current understanding of physicochemical forces and molecular factors that drive LLPS in plant cells. We illustrate how the biochemical features of cellular condensates contribute to their biological functions. Additionally, we highlight major challenges for the comprehensive understanding of biological LLPS, especially in view of the dynamic and robust organization of biochemical reactions underlying plastic responses to environmental fluctuations in plants.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Cai J, Liu T, Li Y, Ow DW. A C-terminal fragment of Arabidopsis OXIDATIVE STRESS 2 can play a positive role in salt tolerance. Biochem Biophys Res Commun 2021; 556:23-30. [PMID: 33836344 DOI: 10.1016/j.bbrc.2021.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The zinc finger transcription factor OXIDATIVE STRESS 2 (OXS2) was previously reported to be involved in oxidative stress tolerance and stress escape. Here we report that an Arabidopsis oxs2-1 mutant is also more sensitive to salt stress. Conversely, the overproduction of a C-terminal fragment of OXS2, the 'AT3' fragment, can enhance salt tolerance in Arabidopsis by upregulating the transcription of at least six salt-induced genes: COR15A, COR47, RD29B, KIN1, ACS2 and ACS6. Mutant analysis showed that the AT3-mediated salt tolerance requires MPK3, MPK6 and 14-3-3Ω. AT3 was shown to interact with MPK3 in planta, with 14-3-3Ω as a likely linker protein. AT3 can be phosphorylated by MPK3 during salt stress, upon which it relocates from the cytoplasm to the nucleus. It appears that the phosphorylation-induced nuclear localization of OXS2 contributes a positive role to the salt stress response.
Collapse
Affiliation(s)
- Jiajia Cai
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Liu
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yongqing Li
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
25
|
Li CH, Fang QX, Zhang WJ, Li YH, Zhang JZ, Chen S, Yin ZG, Li WJ, Liu WD, Yi Z, Mu ZS, Du JD. Genome-wide identification of the CCCH gene family in rose (Rosa chinensis Jacq.) reveals its potential functions. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1901609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Cai-hua Li
- Economic Plant Research Laboratory, Institute of Economic Botany, Jilin Academy of Agricultural Science, Changchun, Jilin, PR China
| | - Qing-xi Fang
- Ornamental Plant Breeding Laboratory, Agricultural College, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Wen-Jing Zhang
- Agricultural Sector, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yu-huan Li
- Economic Plant Research Laboratory, Institute of Economic Botany, Jilin Academy of Agricultural Science, Changchun, Jilin, PR China
| | - Jin-zhu Zhang
- Ornamental Plant Breeding Laboratory, Agricultural College, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Shuai Chen
- Ornamental Plant Breeding Laboratory, Agricultural College, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Zhen-Gong Yin
- Edible Bean Research Laboratory, Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, PR China
| | - Wei-Jia Li
- Agricultural Sector, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen-da Liu
- Agricultural Sector, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zheng Yi
- Economic Plant Research Laboratory, Institute of Economic Botany, Jilin Academy of Agricultural Science, Changchun, Jilin, PR China
| | - Zhong-sheng Mu
- Economic Plant Research Laboratory, Institute of Economic Botany, Jilin Academy of Agricultural Science, Changchun, Jilin, PR China
| | - Ji-dao Du
- Agricultural Sector, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| |
Collapse
|
26
|
Kaur J, Kaur J, Dhillon GS, Kaur H, Singh J, Bala R, Srivastava P, Kaur S, Sharma A, Chhuneja P. Characterization and Mapping of Spot Blotch in Triticum durum-Aegilops speltoides Introgression Lines Using SNP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:650400. [PMID: 34122476 PMCID: PMC8193842 DOI: 10.3389/fpls.2021.650400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 05/17/2023]
Abstract
Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone in India. More recently, SB is extending gradually toward cooler, traditional wheat-growing North-Western part of the country which is a major contributor to the national cereal basket. Deployment of resistant cultivars is considered as the most economical and ecologically sound measure to avoid losses due to this disease. In the present study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv. PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for four consecutive years, 2016-2020. Phenotypic evaluation of these lines showed a continuous variation in disease severity indicating that the resistance to SB is certainly quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs using SNPs obtained by genotyping by sequencing. To identify QTLs stable across the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs) were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs, Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes found adjacent to the SNP markers linked to these QTLs were literature mined to identify possible candidate genes by studying their role in plant pathogenesis. Further, highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a potential diagnostic marker for SB resistance.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Harmandeep Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jasvir Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ritu Bala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Parveen Chhuneja,
| |
Collapse
|
27
|
Xu L, Liu T, Xiong X, Liu W, Yu Y, Cao J. Overexpression of Two CCCH-type Zinc-Finger Protein Genes Leads to Pollen Abortion in Brassica campestris ssp. chinensis. Genes (Basel) 2020; 11:E1287. [PMID: 33138166 PMCID: PMC7693475 DOI: 10.3390/genes11111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pollen grains produced by flowering plants are vital for sexual reproduction. Previous studies have shown that two CCCH-type zinc-finger protein genes in Brassica campestris, BcMF30a and BcMF30c, are involved in pollen development. Due to their possible functional redundancy, gain-of-function analysis is helpful to reveal their respective biological functions. Here, we found that the phenotypes of BcMF30a and BcMF30c overexpression transgenic plants driven by their native promoters were similar, suggesting their functional redundancy. The results showed that the vegetative growth was not affected in both transgenic plants, but male fertility was reduced. Further analysis found that the abortion of transgenic pollen was caused by the degradation of pollen contents from the late uninucleate microspore stage. Subcellular localization analysis demonstrated that BcMF30a and BcMF30c could localize in cytoplasmic foci. Combined with the studies of other CCCH-type genes, we speculated that the overexpression of these genes can induce the continuous assembly of abnormal cytoplasmic foci, thus resulting in defective plant growth and development, which, in this study, led to pollen abortion. Both the overexpression and knockout of BcMF30a and BcMF30c lead to abnormal pollen development, indicating that the appropriate expression levels of these two genes are critical for the maintenance of normal pollen development.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an 311300, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
28
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Seong SY, Shim JS, Bang SW, Kim JK. Overexpression of OsC3H10, a CCCH-Zinc Finger, Improves Drought Tolerance in Rice by Regulating Stress-Related Genes. PLANTS 2020; 9:plants9101298. [PMID: 33019599 PMCID: PMC7599559 DOI: 10.3390/plants9101298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
CCCH zinc finger proteins are members of the zinc finger protein family, and are known to participate in the regulation of development and stress responses via the posttranscriptional regulation of messenger RNA in animals and yeast. However, the molecular mechanism of CCCHZF-mediated drought tolerance is not well understood. We analyzed the functions of OsC3H10, a member of the rice CCCHZF family. OsC3H10 is predominantly expressed in seeds, and its expression levels rapidly declined during seed imbibition. The expression of OsC3H10 was induced by drought, high salinity and abscisic acid (ABA). Subcellular localization analysis revealed that OsC3H10 localized not only in the nucleus but also to the processing bodies and stress granules upon stress treatment. Root-specific overexpression of OsC3H10 was insufficient to induce drought tolerance, while the overexpression of OsC3H10 throughout the entire plant enhanced the drought tolerance of rice plants. Transcriptome analysis revealed that OsC3H10 overexpression elevated the expression levels of genes involved in stress responses, including LATE EMBRYOGENESIS ABUNDANT PROTEINs (LEAs), PATHOGENESIS RELATED GENEs (PRs) and GERMIN-LIKE PROTEINs (GLPs). Our results demonstrated that OsC3H10 is involved in the regulation of the drought tolerance pathway by modulating the expression of stress-related genes.
Collapse
Affiliation(s)
- So Yoon Seong
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
| | - Jae Sung Shim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
- Present address: School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Seung Woon Bang
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
- Correspondence:
| |
Collapse
|
30
|
Wang B, Fang R, Chen F, Han J, Liu YG, Chen L, Zhu Q. A novel CCCH-type zinc finger protein SAW1 activates OsGA20ox3 to regulate gibberellin homeostasis and anther development in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1594-1606. [PMID: 32149461 DOI: 10.1111/jipb.12924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Male sterility is a prerequisite for hybrid seed production. The phytohormone gibberellin (GA) is involved in regulating male reproductive development, but the mechanism underlying GA homeostasis in anther development remains less understood. Here, we report the isolation and characterization of a new positive regulator of GA homeostasis, swollen anther wall 1 (SAW1), for anther development in rice (Oryza sativa L.). Rice plants carrying the recessive mutant allele saw1 produces abnormal anthers with swollen anther wall and aborted pollen. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRIPSR-associated protein 9-mediated knockout of SAW1 in rice generated similar male sterile plants. SAW1 encodes a novel nucleus-localizing CCCH-tandem zinc finger protein, and this protein could directly bind to the promoter region of the GA synthesis gene OsGA20ox3 to induce its anther-specific expression. In the saw1 anther, the significantly decreased OsGA20ox3 expression resulted in lower bioactive GA content, which in turn caused the lower expression of the GA-inducible anther-regulator gene OsGAMYB. Thus, our results disclose the mechanism of the SAW1-GA20ox3-GAMYB pathway in controlling rice anther development, and provide a new target gene for the rapid generation of male sterile lines by genome editing for hybrid breeding.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiqiu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Dongyang Institute of Maize Research, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Faming Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Xu L, Xiong X, Liu W, Liu T, Yu Y, Cao J. BcMF30a and BcMF30c, Two Novel Non-Tandem CCCH Zinc-Finger Proteins, Function in Pollen Development and Pollen Germination in Brassica campestris ssp. chinensis. Int J Mol Sci 2020; 21:ijms21176428. [PMID: 32899329 PMCID: PMC7504113 DOI: 10.3390/ijms21176428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Chinese cabbage (Brassica campestris) is an economically important leaf vegetable crop worldwide. Mounting studies have shown that cysteine-cysteine-cysteine-histidine (CCCH) zinc-finger protein genes are involved in various plant growth and development processes. However, research on the involvement of these genes in male reproductive development is still in its infancy. Here, we identified 11 male fertility-related CCCH genes in Chinese cabbage. Among them, a pair of paralogs encoding novel non-tandem CCCH zinc-finger proteins, Brassica campestris Male Fertility 30a (BcMF30a) and BcMF30c, were further characterized. They were highly expressed in pollen during microgametogenesis and continued to express in germinated pollen. Further analyses demonstrated that both BcMF30a and BcMF30c may play a dual role as transcription factors and RNA-binding proteins in plant cells. Functional analysis showed that partial bcmf30a bcmf30c pollen grains were aborted due to the degradation of pollen inclusion at the microgametogenesis phase, and the germination rate of viable pollen was also greatly reduced, indicating that BcMF30a and BcMF30c are required for both pollen development and pollen germination. This research provided insights into the function of CCCH proteins in regulating male reproductive development and laid a theoretical basis for hybrid breeding of Chinese cabbage.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an 311300, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-131-8501-1958
| |
Collapse
|
32
|
Yu X, Li B, Jang GJ, Jiang S, Jiang D, Jang JC, Wu SH, Shan L, He P. Orchestration of Processing Body Dynamics and mRNA Decay in Arabidopsis Immunity. Cell Rep 2020; 28:2194-2205.e6. [PMID: 31433992 DOI: 10.1016/j.celrep.2019.07.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 06/02/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Proper transcriptome reprogramming is critical for hosts to launch an effective defense response upon pathogen attack. How immune-related genes are regulated at the posttranscriptional level remains elusive. We demonstrate here that P-bodies, the non-membranous cytoplasmic ribonucleoprotein foci related to 5'-to-3' mRNA decay, are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns (MAMPs). The DCP1-DCP2 mRNA decapping complex, a hallmark of P-bodies, positively regulates plant MAMP-triggered responses and immunity against pathogenic bacteria. MAMP-activated MAP kinases directly phosphorylate DCP1 at the serine237 residue, which further stimulates its interaction with XRN4, an exonuclease executing 5'-to-3' degradation of decapped mRNA. Consequently, MAMP treatment potentiates DCP1-dependent mRNA decay on a specific group of MAMP-downregulated genes. Thus, the conserved 5'-to-3' mRNA decay elicited by the MAMP-activated MAP kinase cascade is an integral part of plant immunity. This mechanism ensures a rapid posttranscriptional downregulation of certain immune-related genes that may otherwise negatively impact immunity.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shan Jiang
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Daohong Jiang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
33
|
Xu L, Liu T, Xiong X, Liu W, Yu Y, Cao J. AtC3H18L is a stop-codon read-through gene and encodes a novel non-tandem CCCH zinc-finger protein that can form cytoplasmic foci similar to mRNP granules. Biochem Biophys Res Commun 2020; 528:140-145. [PMID: 32451083 DOI: 10.1016/j.bbrc.2020.05.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
The membraneless messenger ribonucleoprotein (mRNP) granules, including processing bodies (PBs) and stress granules (SGs), are important cytoplasmic structures in eukaryotes that can participate in gene expression through mRNA regulation. It has been verified that mRNP granules are mainly composed of proteins and translation-repressed mRNAs. Here, we reported a stop-codon read-through gene, At3g52980, in plants for the first time. At3g52980 encodes a novel non-tandem CCCH zinc-finger (non-TZF) protein named AtC3H18-Like (AtC3H18L), which contains two putative RNA-binding domains. By using transient expression system, we showed that heat treatment can induce the aggregation of diffuse distributed AtC3H18L to form cytoplasmic foci, which were similar to PBs and SGs in morphology. Further analysis did find that AtC3H18L can co-localize with markers of PB and SG. The aggregation of AtC3H18L was closely related to the cytoskeleton, and AtC3H18L-foci were highly dynamic and can move frequently along cytoskeleton. Moreover, analysis in transgenic plants showed that AtC3H18L was specifically expressed in pollen and can form cytoplasmic foci without heat treatment. It will be fascinating in future studies to discover whether and how AtC3H18L affects pollen development by participating in the assembly of mRNP granules as a protein component, especially under heat stress.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, China.
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Wang D, Xu H, Huang J, Kong Y, AbuQamar S, Yu D, Liu S, Zhou G, Chai G. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway. PLANT, CELL & ENVIRONMENT 2020; 43:1792-1806. [PMID: 32279333 DOI: 10.1111/pce.13771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Necrotrophic pathogens such as Botrytis cinerea cause significant crop yield losses. Plant CCCH proteins play important roles in pathogen resistance responses. However, the CCCH-mediated defense mechanisms against necrotrophic pathogens are unclear. Here, we report that the Arabidopsis CCCH protein C3H14 positively regulates basal defense against B. cinerea mainly by WRKY33 signaling. Simultaneous mutation of C3H14 and its paralog C3H15 resulted in enhanced susceptibility to B. cinerea, while C3H14 or C3H15 overexpression lines exhibited reduced susceptibility. A large number of differentially expressed genes (DEGs) were present in the c3h14c3h15 double mutant and C3H14 overexpression plants compared with wild-type plants at 24 hr post infection. These DEGs covered over one third of B. cinerea-responsive WRKY33 targets, including genes involved in jasmonic acid (JA)/ethylene (ET) signaling, and camalexin biosynthesis. Genetic analysis indicated that C3H14 mainly depended on WRKY33 to modulate defense against B. cinerea. Moreover, C3H14 activated the WRKY33-ORA59 and -PAD3 cascades to correspondingly control JA/ET- and camalexin-mediated defense responses. However, C3H14 was essential for B. cinerea-induced production of 12-oxo-phytodienoic acid and it also directly mediated ORA59-dependent JA/ET signaling after infection. Therefore, C3H14 may act as a novel transcriptional regulator of the WRKY33-mediated defense pathway.
Collapse
Affiliation(s)
- Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Hua Xu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Trempel F, Eschen-Lippold L, Bauer N, Ranf S, Westphal L, Scheel D, Lee J. A mutation in Asparagine-Linked Glycosylation 12 (ALG12) leads to receptor misglycosylation and attenuated responses to multiple microbial elicitors. FEBS Lett 2020; 594:2440-2451. [PMID: 32484235 DOI: 10.1002/1873-3468.13850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023]
Abstract
Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana 'changed calcium elevation 1' (cce1) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole-genome resequencing revealed a mutation in asparagine-linked glycosylation 12 that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α-1,6 linkage to the dolichol-PP-oligosaccharide N-glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N-glycosylation is required for proper functioning of client proteins.
Collapse
Affiliation(s)
| | | | - Nicole Bauer
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Stefanie Ranf
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Lore Westphal
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
36
|
Amari K, Niehl A. Nucleic acid-mediated PAMP-triggered immunity in plants. Curr Opin Virol 2020; 42:32-39. [DOI: 10.1016/j.coviro.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
|
37
|
Maron L. Believe your GFP: cytoplasmic RNA granules play a role in plant defence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1021-1022. [PMID: 32202018 DOI: 10.1111/tpj.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
38
|
Tabassum N, Eschen-Lippold L, Athmer B, Baruah M, Brode M, Maldonado-Bonilla LD, Hoehenwarter W, Hause G, Scheel D, Lee J. Phosphorylation-dependent control of an RNA granule-localized protein that fine-tunes defence gene expression at a post-transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1023-1039. [PMID: 31628867 DOI: 10.1111/tpj.14573] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 05/12/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are key signalling modules of plant defence responses to pathogen-associated molecular patterns [PAMPs; e.g. the bacterial peptide flagellin (flg22)]. Tandem zinc finger protein 9 (TZF9) is a RNA-binding protein that is phosphorylated by two PAMP-responsive MAPKs, MPK3 and MPK6. We mapped the major phosphosites in TZF9 and showed their importance for controlling in vitro RNA-binding activity, in vivo flg22-induced rapid disappearance of TZF9-labelled processing body-like structures and TZF9 protein turnover. Microarray analysis showed a strong discordance between transcriptome (total mRNA) and translatome (polysome-associated mRNA) in the tzf9 mutant, with more mRNAs associated with ribosomes in the absence of TZF9. This suggests that TZF9 may sequester and inhibit the translation of subsets of mRNAs. Fittingly, TZF9 physically interacts with poly(A)-binding protein 2 (PAB2), a hallmark constituent of stress granules - sites for stress-induced translational stalling/arrest. TZF9 even promotes the assembly of stress granules in the absence of stress. Hence, MAPKs may control defence gene expression post-transcriptionally through release from translation arrest within TZF9-PAB2-containing RNA granules or by perturbing the function of PAB2 in translation control (e.g. in the mRNA closed-loop model of translation).
Collapse
Affiliation(s)
- Naheed Tabassum
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | | | - Benedikt Athmer
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | - Manaswita Baruah
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | - Martina Brode
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | | | | | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle/Saale, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| |
Collapse
|
39
|
Tian X, Zhang L, Feng S, Zhao Z, Wang X, Gao H. Transcriptome Analysis of Apple Leaves in Response to Powdery Mildew ( Podosphaera leucotricha) Infection. Int J Mol Sci 2019; 20:E2326. [PMID: 31083412 PMCID: PMC6539105 DOI: 10.3390/ijms20092326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/20/2022] Open
Abstract
Apple (Malus × domestica Borkh.) is one of the most important cultivated tree fruit crops worldwide. However, sustainable apple production is threatened by powdery mildew (PM) disease, which is caused by the obligate biotrophic fungus Podosphaera leucotricha. To gain insight into the molecular basis of the PM infection and disease progression, RNA-based transcriptional profiling (RNA-seq) was used to identify differentially expressed genes (DEGs) in apples following inoculation with P. leucotricha. Four RNA-seq libraries were constructed comprising a total of 214 Gb of high-quality sequence. 1177 DEGs (661 upregulated and 629 downregulated) have been identified according to the criteria of a ratio of infection/control fold change > 2, and a false discovery rate (FDR) < 0.001. The majority of DEGs (815) were detected 12 h after inoculation, suggesting that this is an important time point in the response of the PM infection. Gene annotation analysis revealed that DEGs were predominately associated with biological processes, phenylpropanoid biosynthesis, hormone signal transduction and plant-pathogen interactions. Genes activated by infection corresponded to transcription factors (e.g., AP2/ERF, MYB, WRKY and NAC) and synthesis of defense-related metabolites, including pathogenesis-related genes, glucosidase and dehydrin. Overall, the information obtained in this study enriches the resources available for research into the molecular-genetic mechanisms of the apple/powdery mildew interactions, and provides a theoretical basis for the development of new apple varieties with resistance to PM.
Collapse
Affiliation(s)
- Xiaomin Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Shuaishuai Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
40
|
Noman A, Aqeel M, Khalid N, Islam W, Sanaullah T, Anwar M, Khan S, Ye W, Lou Y. Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microb Pathog 2019; 132:141-149. [PMID: 31051192 DOI: 10.1016/j.micpath.2019.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022]
Abstract
The plants resist/tolerate unfavorable conditions in their natural habitats by using different but aligned and integrated defense mechanisms. Such defense responses include not only morphological and physiological adaptations but also the genomic and transcriptomic reconfiguration. Microbial attack on plants activates multiple pro-survival pathways such as transcriptional reprogramming, hypersensitive response (HR), antioxidant defense system and metabolic remodeling. Up-regulation of these processes during biotic stress conditions directly relates with plant survival. Over the years, hundreds of plant transcription factors (TFs) belonging to diverse families have been identified. Zinc finger protein (ZFP) TFs have crucial role in phytohormone response, plant growth and development, stress tolerance, transcriptional regulation, RNA binding and protein-protein interactions. Recent research progress has revealed regulatory and biological functions of ZFPs in incrementing plant resistance to pathogens. Integration of transcriptional activity with metabolic modulations has miniaturized plant innate immunity. However, the precise roles of different zinc finger TFs in plant immunity to pathogens have not been thoroughly analyzed. This review consolidates the pivotal functioning of zinc finger TFs and proposes the integrative understanding as foundation for the plant growth and development including the stress responses.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China; Department of Botany, Government College University, Faisalabad, Pakistan; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahaud Din Zakria University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Science and Oceanology, Shenzhen University, Shenzhen, PR China
| | - Shahbaz Khan
- College of Agriculture, Shangxi Agricultural University, Jinzhong, PR China
| | - Wenfeng Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yonggen Lou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
41
|
Westphal L, Strehmel N, Eschen-Lippold L, Bauer N, Westermann B, Rosahl S, Scheel D, Lee J. pH effects on plant calcium fluxes: lessons from acidification-mediated calcium elevation induced by the γ-glutamyl-leucine dipeptide identified from Phytophthora infestans. Sci Rep 2019; 9:4733. [PMID: 30894659 PMCID: PMC6426842 DOI: 10.1038/s41598-019-41276-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Cytosolic Ca2+ ([Ca2+]cyt) elevation is an early signaling response upon exposure to pathogen-derived molecules (so-called microbe-associated molecular patterns, MAMPs) and has been successfully used as a quantitative read-out in genetic screens to identify MAMP receptors or their associated components. Here, we isolated and identified by mass spectrometry the dipeptide γ-Glu-Leu as a component of a Phytophthora infestans mycelium extract that induces [Ca2+]cyt elevation. Treatment of Arabidopsis seedlings with synthetic γ-Glu-Leu revealed stimulatory effects on defense signaling, including a weak enhancement of the expression of some MAMP-inducible genes or affecting the refractory period to a second MAMP elicitation. However, γ-Glu-Leu is not a classical MAMP since pH adjustment abolished these activities and importantly, the observed effects of γ-Glu-Leu could be recapitulated by mimicking extracellular acidification. Thus, although γ-Glu-Leu can act as a direct agonist of calcium sensing receptors in animal systems, the Ca2+-mobilizing activity in plants reported here is due to acidification. Low pH also shapes the Ca2+ signature of well-studied MAMPs (e.g. flg22) or excitatory amino acids such as glutamate. Overall, this work serves as a cautionary reminder that in defense signaling studies where Ca2+ flux measurements are concerned, it is important to monitor and consider the effects of pH.
Collapse
Affiliation(s)
- Lore Westphal
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Nicole Bauer
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Bernhard Westermann
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
- Department of Bioorganic Chemistry, IPB, Halle (Saale), Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
| |
Collapse
|
42
|
Dóczi R, Bögre L. The Quest for MAP Kinase Substrates: Gaining Momentum. TRENDS IN PLANT SCIENCE 2018; 23:918-932. [PMID: 30143312 DOI: 10.1016/j.tplants.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are versatile signaling mechanisms in all eukaryotes. Their signaling outputs are defined by the protein substrates phosphorylated by MAPKs. An expanding list of substrates has been identified by high-throughput screens and targeted approaches in plants. The majority of these are phosphorylated by MPK3/6, and a few by MPK4, which are the best-characterized plant MAPKs, participating in the regulation of numerous biological processes. The identified substrates clearly represent the functional diversity of MAPKs: they are associated with pathogen defense, abiotic stress responses, ethylene signaling, and various developmental functions. Understanding their outputs is integral to unraveling the complex regulatory mechanisms of MAPK cascades. We review here methodological approaches and provide an overview of known MAPK substrates.
Collapse
Affiliation(s)
- Róbert Dóczi
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik utca 2, H-2462 Martonvásár, Hungary.
| | - László Bögre
- School of Biological Sciences and Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
43
|
Noman A, Liu Z, Yang S, Shen L, Hussain A, Ashraf MF, Khan MI, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog 2018; 118:336-346. [PMID: 29614367 DOI: 10.1016/j.micpath.2018.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
Extensive transcriptional reprogramming after pathogen attack determines immunity to these invaders and plant development. Zinc finger (ZNF) transcription factors regulate important processes in plants such as development, vegetative activities and plant immunity. Despite their immense significance, majority of ZNF transcription factors (TF) involved in pepper immunity and resistance to heat stress have not been focused much. Herein, we identified and functionally characterized CaZNF830 in pepper defense against Ralstonia solanacearum inoculation (RSI) and tolerance to high temperature and high humidity (HTHH). Transient expression analysis of CaZNF830-GFP fusion protein in tobacco leaves revealed its localization to the nucleus. Transcription of CaZNF830 is induced in pepper plants upon RSI or HTHH. Consistent with this, fluorometric GUS enzymatic assay driven by pCaZNF830 presented significantly enhanced activity under RSI and HTHH in comparison with the control plants. The silencing of CaZNF830 by virus induced gene silencing (VIGS) significantly compromised pepper immunity against RSI with enhanced growth of Ralstonia solanacearum in pepper plants. Silencing of CaZNF830 also impaired tolerance to HTHH coupled with decreased expression levels of immunity and thermo-tolerance associated marker genes including CaHIR1, CaNPR1, CaPR1, CaABR1 and CaHSP24. By contrast, the transient over-expression of CaZNF830 in pepper leaves by infiltration of GV3101 cells containing 35S::CaZNF830-HA induced HR mimic cell death, H2O2 accumulation and activated the transcriptions of the tested defense-relative or thermo-tolerance associated marker genes. RT-PCR and immune-blotting assay confirmed the stable expression of HA-tagged CaZNF830 mRNA and protein in pepper. All these results suggest that CaZNF830 acts as a positive regulator of plant immunity against RSI or tolerance to HTHH, it is induced by RSI or HTHH and consequently activate pepper immunity against RSI or tolerance to HTHH by directly or indirectly transcriptional modulation of many defense-linked genes.
Collapse
Affiliation(s)
- Ali Noman
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Furqan Ashraf
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Ifnan Khan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
44
|
Seok HY, Nguyen LV, Park HY, Tarte VN, Ha J, Lee SY, Moon YH. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem Biophys Res Commun 2018; 498:954-959. [PMID: 29548822 DOI: 10.1016/j.bbrc.2018.03.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
Abstract
Functional studies of CCCH-type zinc finger proteins in abiotic stress responses have largely focused on tandem CCCH-type zinc finger (TZF) genes, whereas the study of functional roles of non-TZF genes in abiotic stress responses has largely been neglected. Here, we investigated the functional roles of AtC3H17, a non-TZF gene of Arabidopsis, in salt stress responses. AtC3H17 expression significantly increased under NaCl, mannitol, and ABA treatments. AtC3H17-overexpressing transgenic plants (OXs) were more tolerant under NaCl and MV treatment conditions than the wild type (WT). atc3h17 mutants were more sensitive under NaCl and MV treatment conditions compared with the WT. The transcription of the salt stress-responsive genes in ABA-dependent pathway, such as RAB18, COR15A, and RD22, was significantly higher in AtC3H17 OXs than in WT both under NaCl-free condition and after NaCl treatment. Our results demonstrate that AtC3H17 functions as a positive regulator in salt stress response, via the up-regulation of ABA-dependent salt stress-response pathway.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Linh Vu Nguyen
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee-Yeon Park
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Vaishali N Tarte
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jimin Ha
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Sun-Young Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Yong-Hwan Moon
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
45
|
Regulation of Long Noncoding RNAs Responsive to Phytoplasma Infection in Paulownia tomentosa. Int J Genomics 2018; 2018:3174352. [PMID: 29675420 PMCID: PMC5841072 DOI: 10.1155/2018/3174352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Paulownia witches' broom caused by phytoplasma infection affects the production of Paulownia trees worldwide. Emerging evidence showed that long noncoding RNAs (lncRNA) play a protagonist role in regulating the expression of genes in plants. So far, the identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to Paulownia tomentosa that free of phytoplasma infection are yet to be characterized. Here, whole-genome identification of lncRNAs, based on strand-specific RNA sequencing, from four Paulownia tomentosa samples, was performed and identified 3689 lncRNAs. These lncRNAs showed low conservation among plant species and some of them were miRNA precursors. Further analysis revealed that the 112 identified lncRNAs were related to phytoplasma infection. We predicted the target genes of these phytoplasma-responsive lncRNAs, and our analysis showed that 51 of the predicted target genes were alternatively spliced. Moreover, we found the expression of the lncRNAs plays vital roles in regulating the genes involved in the reactive oxygen species induced hypersensitive response and effector-triggered immunity in phytoplasma-infected Paulownia. This study indicated that diverse sets of lncRNAs were responsive to Paulownia witches' broom, and the results will provide a starting point to understand the functions and regulatory mechanisms of Paulownia lncRNAs in the future.
Collapse
|
46
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
47
|
Lou Y, Zhou HS, Han Y, Zeng QY, Zhu J, Yang ZN. Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:378-391. [PMID: 28940573 DOI: 10.1111/nph.14790] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Tapetum development and pollen production are regulated by a complex transcriptional network that consists of a group of tapetum-specific Arabidopsis transcription factors (TFs). Among these TFs, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1) encodes an R2R3 MYB factor, and ABORTED MICROSPORE (AMS) encodes a basic helix-loop-helix (bHLH) factor. However, knowledge regarding the regulatory role of TDF1 in anther development remains limited. Here, we discovered that TDF1 directly regulates AMS via an AACCT cis-element. We found the precocious AMS transcript and absence of AMS protein in ams-/- gpTDF1:AMS-FLAG lines, suggesting the timing of the TDF1-regulated AMS expression is a prerequisite for AMS functioning. We found that TDF1 interacts with AMS. Additionally, the TDF1-AMS complex additively promotes the expression of AMS-regulated genes, suggesting that TDF1 and AMS regulate the downstream genes through a feed-forward loop. EPXB5, encoding a beta-expansin family protein, is another direct target of TDF1, and it is highly expressed in the tapetum and pollen grains. The TDF1-AMS complex acts in concert to activate EXPB5 expression through a feed-forward loop. The identification of the regulatory pathway between TDF1 and AMS provides an interlocked feed-forward loop circuit that precisely regulates the transcriptional cascades that support anther development.
Collapse
Affiliation(s)
- Yue Lou
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Hai-Sheng Zhou
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yu Han
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Qiu-Ye Zeng
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
48
|
Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs. FRONTIERS IN PLANT SCIENCE 2018; 9:469. [PMID: 29696029 PMCID: PMC5905223 DOI: 10.3389/fpls.2018.00469] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/26/2018] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved protein kinases in eukaryotes that establish signaling modules where MAPK kinase kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in turn activate MAPKs. In plants, they are involved in the signaling of multiple environmental stresses and developmental programs. MAPKs phosphorylate their substrates and this post-translational modification (PTM) contributes to the regulation of proteins. PTMs may indeed modify the activity, subcellular localization, stability or trans-interactions of modified proteins. Plant MAPKs usually localize to the cytosol and/or nucleus, and in some instances they may also translocate from the cytosol to the nucleus. Upon the detection of environmental changes at the cell surface, MAPKs participate in the signal transduction to the nucleus, allowing an adequate transcriptional reprogramming. The identification of plant MAPK substrates largely contributed to a better understanding of the underlying signaling mechanisms. In this review, we highlight the nuclear signaling of plant MAPKs. We discuss the activation, regulation and activity of plant MAPKs, as well as their nuclear re-localization. We also describe and discuss known nuclear substrates of plant MAPKs in the context of biotic stress, abiotic stress and development and consider future research directions in the field of plant MAPKs.
Collapse
Affiliation(s)
- Jean Bigeard
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Heribert Hirt
| |
Collapse
|
49
|
Palm-Forster MAT, Eschen-Lippold L, Uhrig J, Scheel D, Lee J. A novel family of proline/serine-rich proteins, which are phospho-targets of stress-related mitogen-activated protein kinases, differentially regulates growth and pathogen defense in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2017; 95:123-140. [PMID: 28755319 PMCID: PMC5594048 DOI: 10.1007/s11103-017-0641-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 05/18/2023]
Abstract
The molecular actions of mitogen-activated protein kinases (MAPKs) are ultimately accomplished by the substrate proteins where phosphorylation affects their molecular properties and function(s), but knowledge regarding plant MAPK substrates is currently still fragmentary. Here, we uncovered a previously uncharacterized protein family consisting of three proline/serine-rich proteins (PRPs) that are substrates of stress-related MAPKs. We demonstrated the importance of a MAPK docking domain necessary for protein-protein interaction with MAPKs and consequently also for phosphorylation. The main phosphorylated site was mapped to a residue conserved between all three proteins, which when mutated to a non-phosphorylatable form, differentially affected their protein stability. Together with their distinct gene expression patterns, this differential accumulation of the three proteins upon phosphorylation probably contributes to their distinct function(s). Transgenic over-expression of PRP, the founding member, led to plants with enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Older plants of the over-expressing lines have curly leaves and were generally smaller in stature. This growth phenotype was lost in plants expressing the phosphosite variant, suggesting a phosphorylation-dependent effect. Thus, this novel family of PRPs may be involved in MAPK regulation of plant development and / or pathogen resistance responses. As datamining associates PRP expression profiles with hypoxia or oxidative stress and PRP-overexpressing plants have elevated levels of reactive oxygen species, PRP may connect MAPK and oxidative stress signaling.
Collapse
Affiliation(s)
| | | | - Joachim Uhrig
- Department of Plant Molecular Biology and Physiology, Georg August University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/saale, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/saale, Germany.
| |
Collapse
|
50
|
Yu X, Feng B, He P, Shan L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:109-137. [PMID: 28525309 PMCID: PMC6240913 DOI: 10.1146/annurev-phyto-080516-035649] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) are detected as nonself by host pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). Microbial invasions often trigger the production of host-derived endogenous signals referred to as danger- or damage-associated molecular patterns (DAMPs), which are also perceived by PRRs to modulate PTI responses. Collectively, PTI contributes to host defense against infections by a broad range of pathogens. Remarkable progress has been made toward demonstrating the cellular and physiological responses upon pattern recognition, elucidating the molecular, biochemical, and genetic mechanisms of PRR activation, and dissecting the complex signaling networks that orchestrate PTI responses. In this review, we present an update on the current understanding of how plants recognize and respond to nonself patterns, a process from which the seemingly chaotic responses form into a harmonic defense.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| | - Baomin Feng
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|