1
|
Shirasawa K, Ariizumi T. Near-complete genome assembly of tomato ( Solanum lycopersicum) cultivar Micro-Tom. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:367-374. [PMID: 40083580 PMCID: PMC11897730 DOI: 10.5511/plantbiotechnology.24.0522a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 03/16/2025]
Abstract
We present a near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom, which has been recognized as a model cultivar for fruit research. The genome DNA of Micro-Tom, provided by the National BioResource Project (NBRP) Tomato of Japan, was sequenced to obtain 72 Gb of high-fidelity long reads. These reads were assembled into 140 contigs, spanning 832.8 Mb, with an N50 length of 39.6 Mb. The contigs were aligned against the tomato reference genome sequence SL4.0 to establish a chromosome-level assembly. The genome assembly of Micro-Tom contained 98.5% complete BUSCOs and a total of 31,429 genes. Comparative genome structure analysis revealed that Micro-Tom possesses a cluster of ribosomal DNA genes spanning a 15 Mb stretch at the short arm of chromosome 2. This region was not found in the genome assemblies of previously sequenced tomato cultivars, possibly because of the inability of previous technologies to sequence such repetitive DNA. In conclusion, the near-complete genome assembly of Micro-Tom reported in this study would advance the genomics and genetics research on tomato and facilitate the breeding of improved tomato cultivars.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tohru Ariizumi
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Cerruti P, Campobenedetto C, Montrucchio E, Agliassa C, Contartese V, Acquadro A, Bertea CM. Antioxidant activity and comparative RNA-seq analysis support mitigating effects of an algae-based biostimulant on drought stress in tomato plants. PHYSIOLOGIA PLANTARUM 2024; 176:e70007. [PMID: 39703136 DOI: 10.1111/ppl.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Drought is a significant global environmental stress. Biostimulants offer a sustainable solution to enhance crop tolerance and mitigate productivity losses. This study assessed the impact of foliar application of ERANTHIS®, a biostimulant derived from the algae Ascophyllum nodosum and Laminaria digitata and yeast extracts, on tomato plants under mild water stress. Evaluations were conducted at 5 and 24 hours after the third treatment. Under optimal water conditions, the biostimulant showed a priming effect, with an early increase of stress markers and a timing-specific modulation of ROS non enzymatic and enzymatic ROS scavenging activities. Under drought stress, the biostimulant later decreased stress markers, by aligning the majority of analyzed ROS scavengers closer to levels in well-irrigated plants. Transcriptome analysis using RNA-seq data revealed differentially expressed genes (DEGs) and multivariate data highlighted groups of co-regulated genes (k-means clustering). Genes involved in water channel activity, transcription regulator activity, and oxidoreductase activity were significantly modulated. Cluster analysis identified distinct gene clusters influenced by the biostimulant under optimal conditions, including early responses (cell wall modification, hormone signaling) and late responses (RNA modification, nutrient uptake process). Under water stress, early responses involved actin filament organization and MAPK signaling, while late responses were related to plasma membrane components and cell wall organization. This study, integrating biochemical and transcriptomic data, provides a comprehensive understanding of how a biostimulant primes plants under optimal conditions and mitigates water stress effects, offering valuable insights for sustainable agriculture.
Collapse
Affiliation(s)
- Paolo Cerruti
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Elisa Montrucchio
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | | | | | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
3
|
Nagasaki H, Shirasawa K, Hoshikawa K, Isobe S, Ezura H, Aoki K, Hirakawa H. Genomic variation across distribution of Micro-Tom, a model cultivar of tomato (Solanum lycopersicum). DNA Res 2024; 31:dsae016. [PMID: 38845356 PMCID: PMC11481021 DOI: 10.1093/dnares/dsae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 10/17/2024] Open
Abstract
Micro-Tom is a cultivar of tomato (Solanum lycopersicum), which is known as a major crop and model plant in Solanaceae. Micro-Tom has phenotypic traits such as dwarfism, and substantial EMS-mutagenized lines have been reported. After Micro-Tom was generated in Florida, USA, it was distributed to research institutes worldwide and used as a genetic resource. In Japan, the Micro-Tom lines have been genetically fixed; currently, three lines have been re-distributed from three institutes, but many phenotypes among the lines have been observed. We have determined the genome sequence de novo of the Micro-Tom KDRI line, one of the Micro-Tom lines distributed from Kazusa DNA Research Institute (KDRI) in Japan, and have built chromosome-scale pseudomolecules. Genotypes among six Micro-Tom lines, including three in Japan, one in the United States, one in France, and one in Brazil showed phenotypic alternation. Here, we unveiled the swift emergence of genetic diversity in both phenotypes and genotypes within the Micro-Tom genome sequence during its propagation. These findings offer valuable insights crucial for the management of bioresources.
Collapse
Affiliation(s)
- Hideki Nagasaki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ken Hoshikawa
- Tsukuba Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Sachiko Isobe
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideki Hirakawa
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
4
|
Todaka D, Quynh DTN, Tanaka M, Utsumi Y, Utsumi C, Ezoe A, Takahashi S, Ishida J, Kusano M, Kobayashi M, Saito K, Nagano AJ, Nakano Y, Mitsuda N, Fujiwara S, Seki M. Application of ethanol alleviates heat damage to leaf growth and yield in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1325365. [PMID: 38439987 PMCID: PMC10909983 DOI: 10.3389/fpls.2024.1325365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Chemical priming has emerged as a promising area in agricultural research. Our previous studies have demonstrated that pretreatment with a low concentration of ethanol enhances abiotic stress tolerance in Arabidopsis and cassava. Here, we show that ethanol treatment induces heat stress tolerance in tomato (Solanum lycopersicon L.) plants. Seedlings of the tomato cultivar 'Micro-Tom' were pretreated with ethanol solution and then subjected to heat stress. The survival rates of the ethanol-pretreated plants were significantly higher than those of the water-treated control plants. Similarly, the fruit numbers of the ethanol-pretreated plants were greater than those of the water-treated ones. Transcriptome analysis identified sets of genes that were differentially expressed in shoots and roots of seedlings and in mature green fruits of ethanol-pretreated plants compared with those in water-treated plants. Gene ontology analysis using these genes showed that stress-related gene ontology terms were found in the set of ethanol-induced genes. Metabolome analysis revealed that the contents of a wide range of metabolites differed between water- and ethanol-treated samples. They included sugars such as trehalose, sucrose, glucose, and fructose. From our results, we speculate that ethanol-induced heat stress tolerance in tomato is mainly the result of increased expression of stress-related genes encoding late embryogenesis abundant (LEA) proteins, reactive oxygen species (ROS) elimination enzymes, and activated gluconeogenesis. Our results will be useful for establishing ethanol-based chemical priming technology to reduce heat stress damage in crops, especially in Solanaceae.
Collapse
Affiliation(s)
- Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Do Thi Nhu Quynh
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Agricultural Genetics Institute, Hanoi, Vietnam
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Atsushi J. Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshimi Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| |
Collapse
|
5
|
Ciceoi R, Asanica A, Luchian V, Iordachescu M. Genomic Analysis of Romanian Lycium Genotypes: Exploring BODYGUARD Genes for Stress Resistance Breeding. Int J Mol Sci 2024; 25:2130. [PMID: 38396806 PMCID: PMC10889844 DOI: 10.3390/ijms25042130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Goji berries, long valued in Traditional Chinese Medicine and Asian cuisine for their wide range of medicinal benefits, are now considered a 'superfruit' and functional food worldwide. Because of growing demand, Europe and North America are increasing their goji berry production, using goji berry varieties that are not originally from these regions. European breeding programs are focusing on producing Lycium varieties adapted to local conditions and market demands. By 2023, seven varieties of goji berries were successfully registered in Romania, developed using germplasm that originated from sources outside the country. A broader project focused on goji berry breeding was initiated in 2014 at USAMV Bucharest. In the present research, five cultivated and three wild L. barbarum genotypes were compared to analyse genetic variation at the whole genome level. In addition, a case study presents the differences in the genomic coding sequences of BODYGUARD (BDG) 3 and 4 genes from chromosomes 4, 8, and 9, which are involved in cuticle-related resistance. All three BDG genes show distinctive differences between the cultivated and wild-type genotypes at the SNP level. In the BDG 4 gene located on chromosome 8, 69% of SNPs differentiate the wild from the cultivated genotypes, while in BDG 3 on chromosome 4, 64% of SNPs could tell the difference between the wild and cultivated goji berry. The research also uncovered significant SNP and InDel differences between cultivated and wild genotypes, in the entire genome, providing crucial insights for goji berry breeders to support the development of goji berry cultivation in Romania.
Collapse
Affiliation(s)
- Roxana Ciceoi
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania;
| | - Adrian Asanica
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania; (A.A.); (V.L.)
| | - Vasilica Luchian
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania; (A.A.); (V.L.)
| | - Mihaela Iordachescu
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania;
| |
Collapse
|
6
|
Bournonville C, Mori K, Deslous P, Decros G, Blomeier T, Mauxion JP, Jorly J, Gadin S, Cassan C, Maucourt M, Just D, Brès C, Rothan C, Ferrand C, Fernandez-Lochu L, Bataille L, Miura K, Beven L, Zurbriggen MD, Pétriacq P, Gibon Y, Baldet P. Blue light promotes ascorbate synthesis by deactivating the PAS/LOV photoreceptor that inhibits GDP-L-galactose phosphorylase. THE PLANT CELL 2023; 35:2615-2634. [PMID: 37052931 PMCID: PMC10291033 DOI: 10.1093/plcell/koad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.
Collapse
Affiliation(s)
- Céline Bournonville
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Kentaro Mori
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Paul Deslous
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Guillaume Decros
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Tim Blomeier
- Institute of Synthetic Biology—CEPLAS—Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Dusseldorf 40225, Germany
| | - Jean-Philippe Mauxion
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Joana Jorly
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Stéphanie Gadin
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Cédric Cassan
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Mickael Maucourt
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Daniel Just
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Cécile Brès
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Carine Ferrand
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Lucie Fernandez-Lochu
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Laure Bataille
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Kenji Miura
- Tsukuba Innovation Plant Research Center, University of Tsukuba, 1-1-1 Tennodai, 305-8577 Ibaraki, Tsukuba, Japan
| | - Laure Beven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Matias D Zurbriggen
- Institute of Synthetic Biology—CEPLAS—Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Dusseldorf 40225, Germany
| | - Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Pierre Baldet
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| |
Collapse
|
7
|
Zhang Y, He T, Tian W, Xia Y, He Y, Su M, He G. The Expression of the StNRAMP2 Gene Determined the Accumulation of Cadmium in Different Tissues of Potato. Int J Mol Sci 2023; 24:ijms24119322. [PMID: 37298282 DOI: 10.3390/ijms24119322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that threatens human health when enriched in crops. NRAMPs are a family of natural macrophage proteins reported to play a key role in Cd transport in plants. In order to explore the gene regulation mechanism of potato under Cd stress and the role of NRAMPs family in it, this study analyzed the gene expression differences of two different Cd accumulation levels in potato after 7 days of 50 mg/kg Cd stress and screened out the key genes that may play a major role in the differential accumulation of Cd in different varieties. Additionally, StNRAMP2 was selected for verification. Further verification showed that the StNRAMP2 gene plays an important role in the accumulation of Cd in potato. Interestingly, silencing StNRAMP2 increased Cd accumulation in tubers but significantly decreased Cd accumulation in other sites, suggesting a critical role of StNRAMP2 in Cd uptake and transport in potatoes. To further confirm this conclusion, we performed heterologous expression experiments in which overexpression of StNRAMP2 gene in tomato resulted in a threefold increase in Cd content, which further confirmed the important role of StNRAMP2 in the process of Cd accumulation compared with wild-type plants. In addition, we found that the addition of Cd to the soil increased the activity of the plant antioxidant enzyme system, and silencing StNRAMP2 partially reversed this effect. This suggests that the StNRAMP2 gene plays an important role in plant stress tolerance, and future studies could further explore the role of this gene in other environmental stresses. In conclusion, the results of this study improve the understanding of the mechanism of Cd accumulation in potato and provide experimental basis for remediation of Cd pollution.
Collapse
Affiliation(s)
- Yule Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Weijun Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yabei Xia
- Research and Development Center of Fine Chemical Industry, Guizhou University, Guiyang 550025, China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Minmin Su
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Cunha AFA, Rodrigues PHD, Anghinoni AC, de Paiva VJ, Pinheiro DGDS, Campos ML. Mechanical wounding impacts the growth versus defense balance in tomato (Solanum lycopersicum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111601. [PMID: 36690279 DOI: 10.1016/j.plantsci.2023.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Plants have evolved elaborate surveillance systems that allow them to perceive the attack by pests and pathogens and activate the appropriate defenses. Mechanical stimulation, such as mechanical wounding, represents one of the most reliable cues for the perception of potential herbivore aggressors. Here we demonstrate that mechanical wounding disturbs the growth versus defense balance in tomato, a physiological condition where growth reduction arises as a pleiotropic consequence of the activation of defense responses (or vice-versa). We observed that multiple lesions on tomato leaves impairs the formation of several growth-related traits, including shoot elongation, leaf expansion and time for flowering, while concomitantly activating the production of defense responses such as trichome formation and the upregulation of defense-related genes. We also provide genetic evidence that this wound-induced growth repression is possibly a consequence of tomato plants sensing the injuries via jasmonates (JAs), a class of plant hormones known to be master regulators of the plant growth versus defense balance. Besides providing a mechanistic explanation on how the growth and defense balance is shifted when plants are subjected to a specific type of mechanical stimulus, our results may offer a practical explanation for why tomato productivity is so negatively impacted by herbivore attack.
Collapse
Affiliation(s)
- Ana Flavia Aparecida Cunha
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Pedro Henrique Duarte Rodrigues
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Ana Clara Anghinoni
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Vinicius Juliani de Paiva
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Daniel Gonçalves da Silva Pinheiro
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Lattarulo Campos
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| |
Collapse
|
9
|
Iovane M, Aronne G. High temperatures during microsporogenesis fatally shorten pollen lifespan. PLANT REPRODUCTION 2022; 35:9-17. [PMID: 34232397 PMCID: PMC8854315 DOI: 10.1007/s00497-021-00425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Many crop species are cultivated to produce seeds and/or fruits and therefore need reproductive success to occur. Previous studies proved that high temperature on mature pollen at anther dehiscence reduce viability and germinability therefore decreasing crop productivity. We hypothesized that high temperature might affect pollen functionality even if the heat treatment is exerted only during the microsporogenesis. Experimental data on Solanum lycopersicum 'Micro-Tom' confirmed our hypothesis. Microsporogenesis successfully occurred at both high (30 °C) and optimal (22 °C) temperature. After the anthesis, viability and germinability of the pollen developed at optimal temperature gradually decreased and the reduction was slightly higher when pollen was incubated at 30 °C. Conversely, temperature effect was eagerly enhanced in pollen developed at high temperature. In this case, a drastic reduction of viability and a drop-off to zero of germinability occurred not only when pollen was incubated at 30 °C but also at 22 °C. Further ontogenetic analyses disclosed that high temperature significantly speeded-up the microsporogenesis and the early microgametogenesis (from vacuolated stage to bi-cellular pollen); therefore, gametophytes result already senescent at flower anthesis. Our work contributes to unravel the effects of heat stress on pollen revealing that high temperature conditions during microsporogenesis prime a fatal shortening of the male gametophyte lifespan.
Collapse
Affiliation(s)
- Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Alaguero-Cordovilla A, Sánchez-García AB, Ibáñez S, Albacete A, Cano A, Acosta M, Pérez-Pérez JM. An auxin-mediated regulatory framework for wound-induced adventitious root formation in tomato shoot explants. PLANT, CELL & ENVIRONMENT 2021; 44:1642-1662. [PMID: 33464573 DOI: 10.1111/pce.14001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 05/24/2023]
Abstract
Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.
Collapse
Affiliation(s)
| | | | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Alfonso Albacete
- Present address: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Espinardo, Murcia, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
11
|
Deslous P, Bournonville C, Decros G, Okabe Y, Mauxion JP, Jorly J, Gadin S, Brès C, Mori K, Ferrand C, Prigent S, Ariizumi T, Ezura H, Hernould M, Rothan C, Pétriacq P, Gibon Y, Baldet P. Overproduction of ascorbic acid impairs pollen fertility in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3091-3107. [PMID: 33530105 DOI: 10.1093/jxb/erab040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Ascorbate is a major antioxidant buffer in plants. Several approaches have been used to increase the ascorbate content of fruits and vegetables. Here, we combined forward genetics with mapping-by-sequencing approaches using an ethyl methanesulfonate (EMS)-mutagenized Micro-Tom population to identify putative regulators underlying a high-ascorbate phenotype in tomato fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5, up to 5-fold wild-type level) had strongly impaired flower development and produced seedless fruit. Genetic characterization was performed by outcrossing P17C5 with cv. M82. We identified the mutation responsible for the ascorbate-enriched trait in a cis-acting upstream open reading frame (uORF) involved in the downstream regulation of GDP-l-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enriched trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5 × M82 plants, and the CRISPR-mutated line. These studies revealed that high ascorbate content is linked to impaired floral organ architecture, particularly anther and pollen development, leading to male sterility. RNA-seq analysis suggested that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.
Collapse
Affiliation(s)
- Paul Deslous
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Céline Bournonville
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Guillaume Decros
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Yoshihiro Okabe
- Gene Research Centre, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 205-8572, Japan
| | | | - Joana Jorly
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Stéphanie Gadin
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Cécile Brès
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Kentaro Mori
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Carine Ferrand
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Sylvain Prigent
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Tohru Ariizumi
- Gene Research Centre, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 205-8572, Japan
| | - Hiroshi Ezura
- Gene Research Centre, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 205-8572, Japan
| | - Michel Hernould
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Christophe Rothan
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Pierre Baldet
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| |
Collapse
|
12
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Jadczak P, Mhimdi M, Ibáñez S, Bres C, Just D, Rothan C, Pérez-Pérez JM. A quick protocol for the identification and characterization of early growth mutants in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110673. [PMID: 33218638 DOI: 10.1016/j.plantsci.2020.110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Root system architecture (RSA) manipulation may improve water and nutrient capture by plants under normal and extreme climate conditions. With the aim of initiating the genetic dissection of RSA in tomato, we established a defined ontology that allowed the curated annotation of the observed phenotypes on 12 traits at four consecutive growth stages. In addition, we established a quick approach for the molecular identification of the mutations associated with the trait-of-interest by using a whole-genome sequencing approach that does not require the building of an additional mapping population. As a proof-of-concept, we screened 4543 seedlings from 300 tomato M3 lines (Solanum lycopersicum L. cv. Micro-Tom) generated by chemical mutagenesis with ethyl methanesulfonate. We studied the growth and early development of both the root system (primary and lateral roots) and the aerial part of the seedlings as well as the wound-induced adventitious roots emerging from the hypocotyl. We identified 659 individuals (belonging to 203 M3 lines) whose early seedling and RSA phenotypes differed from those of their reference background. We confirmed the genetic segregation of the mutant phenotypes affecting primary root length, seedling viability and early RSA in 31 M4 families derived from 15 M3 lines selected in our screen. Finally, we identified a missense mutation in the SlCESA3 gene causing a seedling-lethal phenotype with short roots. Our results validated the experimental approach used for the identification of tomato mutants during early growth, which will allow the molecular identification of the genes involved.
Collapse
Affiliation(s)
| | | | - Paula Jadczak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Mariem Mhimdi
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Cécile Bres
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Christophe Rothan
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | | |
Collapse
|
13
|
Yano R, Hoshikawa K, Okabe Y, Wang N, Dung PT, Imriani PS, Shiba H, Ariizumi T, Ezura H. Multiplex exome sequencing reveals genome-wide frequency and distribution of mutations in the 'Micro-Tom' Targeting Induced Local Lesions in Genomes (TILLING) mutant library. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:223-231. [PMID: 31983876 PMCID: PMC6978505 DOI: 10.5511/plantbiotechnology.19.0830a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
While the 'Micro-Tom' TILLING mutant library is used for a wide range of purposes, including both basic research of gene function and breeding of commercial cultivars, genome-wide distribution and frequency of mutations have not yet been thoroughly elucidated on a population scale. In this study, we developed a 96-plex exome sequencing method to identify and analyze mutations within the TILLING mutants that were developed in the University of Tsukuba. First, an Illumina paired-end sequencing coupled with 96-plex exome capture resulted in the acquisition of an exome sequence dataset with an average read count of 5.6 million for the 95 mutants. Over 98% of the capture target region could be covered by the short reads with an averaged read depth of 12.8, which enabled us to identify single nucleotide polymorphisms and Indels in a genome-wide manner. By subtracting intra-cultivar DNA variations that are present between wild-type 'Micro-Tom' lines, we identified 241,391 mutation candidates in 95 mutant individuals. Of these, 64,319 and 6,480 mutations were expected to cause protein amino acid substitutions or premature stop codon, respectively. Based on the exome mutation dataset, a mutant line designated 'TOMJPW601' was found to carry a premature stop codon mutation (W261*) in a putative auxin influx carrier gene SlLAX1 (Solyc09G014380), consistent with our previous report of its curly leaf phenotype. Our results suggested that a population-scale mutation database developed by multiplexed exome sequencing could be used for in silico mutant screening, which in turn could contribute to both gene function research and breeding programs.
Collapse
Affiliation(s)
- Ryoichi Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Advanced Analysis Center, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ning Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Pham Thi Dung
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Pulungan Sri Imriani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Shiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
14
|
Takei H, Shinozaki Y, Yano R, Kashojiya S, Hernould M, Chevalier C, Ezura H, Ariizumi T. Loss-of-Function of a Tomato Receptor-Like Kinase Impairs Male Fertility and Induces Parthenocarpic Fruit Set. FRONTIERS IN PLANT SCIENCE 2019; 10:403. [PMID: 31040856 PMCID: PMC6477066 DOI: 10.3389/fpls.2019.00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 05/12/2023]
Abstract
Parthenocarpy arises when an ovary develops into fruit without pollination/fertilization. The mechanisms involved in genetic parthenocarpy have attracted attention because of their potential application in plant breeding and also for their elucidation of the mechanisms involved in early fruit development. We have isolated and characterized a novel small parthenocarpic fruit and flower (spff) mutant in the tomato (Solanum lycopersicum) cultivar Micro-Tom. This plant showed both vegetative and reproductive phenotypes including dwarfism of floral organs, male sterility, delayed flowering, altered axillary shoot development, and parthenocarpic production of small fruits. Genome-wide single nucleotide polymorphism array analysis coupled with mapping-by-sequencing using next generation sequencing-based high-throughput approaches resulted in the identification of a candidate locus responsible for the spff mutant phenotype. Subsequent linkage analysis and RNA interference-based silencing indicated that these phenotypes were caused by a loss-of-function mutation of a single gene (Solyc04g077010), which encodes a receptor-like protein kinase that was expressed in vascular bundles in young buds. Cytological and transcriptomic analyses suggested that parthenocarpy in the spff mutant was associated with enlarged ovarian cells and with elevated expression of the gibberellin metabolism gene, GA20ox1. Taken together, our results suggest a role for Solyc04g077010 in male organ development and indicate that loss of this receptor-like protein kinase activity could result in parthenocarpy.
Collapse
Affiliation(s)
- Hitomi Takei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science (JSPS), Kôjimachi, Japan
| | - Yoshihito Shinozaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science (JSPS), Kôjimachi, Japan
| | - Ryoichi Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sachiko Kashojiya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Michel Hernould
- UMR1332 BFP, Institut National de la Recherche Agronomique (INRA), Villenave-d’Ornon, France
- UMR1332 BFP, University of Bordeaux, Bordeaux, France
| | - Christian Chevalier
- UMR1332 BFP, Institut National de la Recherche Agronomique (INRA), Villenave-d’Ornon, France
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tohru Ariizumi,
| |
Collapse
|
15
|
Damayanti F, Lombardo F, Masuda JI, Shinozaki Y, Ichino T, Hoshikawa K, Okabe Y, Wang N, Fukuda N, Ariizumi T, Ezura H. Functional Disruption of the Tomato Putative Ortholog of HAWAIIAN SKIRT Results in Facultative Parthenocarpy, Reduced Fertility and Leaf Morphological Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:1234. [PMID: 31681360 PMCID: PMC6801985 DOI: 10.3389/fpls.2019.01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 05/03/2023]
Abstract
A number of plant microRNAs have been demonstrated to regulate developmental processes by integrating internal and environmental cues. Recently, the Arabidopsis thaliana F-box protein HAWAIIAN SKIRT (HWS) gene has been described for its role in miRNA biogenesis. We have isolated in a forward genetic screen a tomato (Solanum lycopersicum) line mutated in the putative ortholog of HWS. We show that the tomato hws-1 mutant exhibits reduction in leaflet serration, leaflet fusion, some degree of floral organ fusion, and alteration in miRNA levels, similarly to the original A. thaliana hws-1 mutant. We also describe novel phenotypes for hws such as facultative parthenocarpy, reduction in fertility and flowering delay. In slhws-1, the parthenocarpy trait is influenced by temperature, with higher parthenocarpy rate in warmer environmental conditions. Conversely, slhws-1 is able to produce seeds when grown in cooler environment. We show that the reduction in seed production in the mutant is mainly due to a defective male function and that the levels of several miRNAs are increased, in accordance with previous HWS studies, accounting for the abnormal leaf and floral phenotypes as well as the altered flowering and fruit development processes. This is the first study of HWS in fleshy fruit plant, providing new insights in the function of this gene in fruit development.
Collapse
Affiliation(s)
- Farida Damayanti
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun-ichiro Masuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takuji Ichino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, Japan
| | - Ning Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Naoya Fukuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroshi Ezura,
| |
Collapse
|
16
|
Cardoso TCDS, Alves TC, Caneschi CM, Santana DDRG, Fernandes-Brum CN, Reis GLD, Daude MM, Ribeiro THC, Gómez MMD, Lima AA, Gomes LAA, Gomes MDS, Gandolfi PE, Amaral LRD, Chalfun-Júnior A, Maluf WR, de Souza Gomes M. New insights into tomato microRNAs. Sci Rep 2018; 8:16069. [PMID: 30375421 PMCID: PMC6207730 DOI: 10.1038/s41598-018-34202-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.
Collapse
Affiliation(s)
- Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Tamires Caixeta Alves
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Carolina Milagres Caneschi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Douglas Dos Reis Gomes Santana
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | | | - Gabriel Lasmar Dos Reis
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus Martins Daude
- Laboratory of Molecular Analysis, Federal University of Tocantins (UFT), Gurupi, 77402-970, Brazil
| | | | - Miguel Maurício Díaz Gómez
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - André Almeida Lima
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | | | - Marcos de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Peterson Elizandro Gandolfi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Antonio Chalfun-Júnior
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | - Wilson Roberto Maluf
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil.
| |
Collapse
|
17
|
Pulungan SI, Yano R, Okabe Y, Ichino T, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato. PLANT & CELL PHYSIOLOGY 2018. [PMID: 29528453 DOI: 10.1093/pcp/pcy052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.
Collapse
Affiliation(s)
- Sri Imriani Pulungan
- Graduate School Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Ryoichi Yano
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yoshihiro Okabe
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Takuji Ichino
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Tohru Ariizumi
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Hiroshi Ezura
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| |
Collapse
|
18
|
Liu TJ, Li YP, Zhou JJ, Hu CG, Zhang JZ. Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). PLANT MOLECULAR BIOLOGY 2018; 96:493-507. [PMID: 29480424 DOI: 10.1007/s11103-018-0712-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The comprehensive genetic variation of two citrus species were analyzed at genome and transcriptome level. A total of 1090 differentially expressed genes were found during fruit development by RNA-sequencing. Fruit size (fruit equatorial diameter) and weight (fresh weight) are the two most important components determining yield and consumer acceptability for many horticultural crops. However, little is known about the genetic control of these traits. Here, we performed whole-genome resequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). In total, 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertions/deletions (InDels) were identified in the two citrus species. Based on integrative analysis of genome and transcriptome of fruit, 640,801 SNPs and 20,733 InDels were identified. The features, genomic distribution, functional effect, and other characteristics of these genetic variations were explored. RNA-sequencing identified 1090 differentially expressed genes (DEGs) during fruit development of kumquat and Clementine mandarin. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. In addition, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reports were also identified. A global survey identified 24,237 specific alternative splicing events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing. These genome variation data provide a foundation for further exploration of citrus diversity and gene-phenotype relationships and for future research on molecular breeding to improve kumquat, Clementine mandarin and related species.
Collapse
Affiliation(s)
- Tian-Jia Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong-Ping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Arafa RA, Rakha MT, Soliman NEK, Moussa OM, Kamel SM, Shirasawa K. Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies. PLoS One 2017; 12:e0189951. [PMID: 29253902 PMCID: PMC5734779 DOI: 10.1371/journal.pone.0189951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/05/2017] [Indexed: 11/19/2022] Open
Abstract
Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits.
Collapse
Affiliation(s)
- Ramadan A. Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mohamed T. Rakha
- Department of Horticulture, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Nour Elden K. Soliman
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Olfat M. Moussa
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Said M. Kamel
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Kenta Shirasawa
- Department of Frontier Science, Kazusa DNA Research Institute, Chiba, Japan
| |
Collapse
|
20
|
Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, Gagie T, Puglisi SJ, Boucher C. Succinct colored de Bruijn graphs. Bioinformatics 2017; 33:3181-3187. [PMID: 28200001 PMCID: PMC5872255 DOI: 10.1093/bioinformatics/btx067] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION In 2012, Iqbal et al. introduced the colored de Bruijn graph, a variant of the classic de Bruijn graph, which is aimed at 'detecting and genotyping simple and complex genetic variants in an individual or population'. Because they are intended to be applied to massive population level data, it is essential that the graphs be represented efficiently. Unfortunately, current succinct de Bruijn graph representations are not directly applicable to the colored de Bruijn graph, which requires additional information to be succinctly encoded as well as support for non-standard traversal operations. RESULTS Our data structure dramatically reduces the amount of memory required to store and use the colored de Bruijn graph, with some penalty to runtime, allowing it to be applied in much larger and more ambitious sequence projects than was previously possible. AVAILABILITY AND IMPLEMENTATION https://github.com/cosmo-team/cosmo/tree/VARI. CONTACT martin.muggli@colostate.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martin D Muggli
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Alexander Bowe
- Department of Informatics, National Institute of Informatics, Chiyoda-ku, Tokyo, Japan
| | | | | | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Raymond
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Travis Gagie
- School of Computer Science and Telecommunications, Diego Portales University and CEBIB, Santiago, Chile
| | - Simon J Puglisi
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Christina Boucher
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Salhi A, Negrão S, Essack M, Morton MJL, Bougouffa S, Razali R, Radovanovic A, Marchand B, Kulmanov M, Hoehndorf R, Tester M, Bajic VB. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Sci Rep 2017; 7:5968. [PMID: 28729549 PMCID: PMC5519719 DOI: 10.1038/s41598-017-05448-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/25/2017] [Indexed: 12/29/2022] Open
Abstract
Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Mitchell J L Morton
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Rozaimi Razali
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | | | - Maxat Kulmanov
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia.
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
22
|
Terracciano I, Cantarella C, Fasano C, Cardi T, Mennella G, D'Agostino N. Liquid-phase sequence capture and targeted re-sequencing revealed novel polymorphisms in tomato genes belonging to the MEP carotenoid pathway. Sci Rep 2017; 7:5616. [PMID: 28717173 PMCID: PMC5514110 DOI: 10.1038/s41598-017-06120-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) plants are characterized by having a variety of fruit colours that reflect the composition and accumulation of diverse carotenoids in the berries. Carotenoids are extensively studied for their health-promoting effects and this explains the great attention these pigments received by breeders and researchers worldwide. In this work we applied Agilent's SureSelect liquid-phase sequence capture and Illumina targeted re-sequencing of 34 tomato genes belonging to the methylerythritol phosphate (MEP) carotenoid pathway on a panel of 48 genotypes which differ for carotenoid content calculated as the sum of β-carotene, cis- and trans-lycopene. We targeted 230 kb of genomic regions including all exons and regulatory regions and observed ~40% of on-target capture. We found ample genetic variation among all the genotypes under study and generated an extensive catalog of SNPs/InDels located in both genic and regulatory regions. SNPs/InDels were also classified based on genomic location and putative biological effect. With our work we contributed to the identification of allelic variations possibly underpinning a key agronomic trait in tomato. Results from this study can be exploited for the promotion of novel studies on tomato bio-fortification as well as of breeding programs related to carotenoid accumulation in fruits.
Collapse
Affiliation(s)
- Irma Terracciano
- CREA-OF, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098, Pontecagnano Faiano (SA), Italy
| | - Concita Cantarella
- CREA-OF, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098, Pontecagnano Faiano (SA), Italy
| | - Carlo Fasano
- CREA-OF, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098, Pontecagnano Faiano (SA), Italy
| | - Teodoro Cardi
- CREA-OF, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098, Pontecagnano Faiano (SA), Italy
| | - Giuseppe Mennella
- CREA-OF, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098, Pontecagnano Faiano (SA), Italy
| | - Nunzio D'Agostino
- CREA-OF, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098, Pontecagnano Faiano (SA), Italy.
| |
Collapse
|
23
|
Tian Y, Feng F, Zhang B, Li M, Wang F, Gu L, Chen A, Li Z, Shan W, Wang X, Chen X, Zhang Z. Transcriptome analysis reveals metabolic alteration due to consecutive monoculture and abiotic stress stimuli in Rehamannia glutinosa Libosch. PLANT CELL REPORTS 2017; 36:859-875. [PMID: 28275853 DOI: 10.1007/s00299-017-2115-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
We deeply investigated the mechanism underlying metabolic regulation in response to consecutive monoculture (replanting disease) and different abiotic stresses that unfolded the response mechanism to consecutive monoculture problem through RNA-seq analysis. The consecutive monoculture problem (CMP) resulted of complex environmental stresses mediated by multiple factors. Previous studies have noted that multiple stress factors in consecutive monoculture soils or plants severely limited the interpretation of the critical molecular mechanism, and made a predict that the specifically responding factor was autotoxic allelochemicals. To identify the specifically responding genes, we compared transcriptome changes in roots of Rehamannia glutinosa Libosch using consecutive monoculture, salt, drought, and ferulic acid as stress factors. Comparing with normal growth, 2502, 2672, 2485, and 1956 genes were differentially expressed in R. glutinosa under consecutive monoculture practice, salt, drought, and ferulic acid stress, respectively. In addition, 510 genes were specifically expressed under consecutive monoculture, which were not present under the other stress conditions. Integrating the biological and enrichment analyses of the differentially expressed genes, the result demonstrated that the plants could alter enzyme genes expression to reconstruct the complicated metabolic pathways, which used to tolerate the CMP and abiotic stresses. Furthermore, most of the affected pathway genes were closely related to secondary metabolic processes, and the influence of consecutive monoculture practice on the transcriptome genes expression profile was very similar to the profile under salt stress and then to the profile under drought stress. The outlined schematic diagram unfolded the putative signal regulation mechanism in response to the CMP. Genes that differentially up- or down-regulated under consecutive monoculture practice may play important roles in the CMP or replanting disease in R. glutinosa.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fajie Feng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bao Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingjie Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengqing Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Li Gu
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aiguo Chen
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanjie Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenbo Shan
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoran Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinjian Chen
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhongyi Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
24
|
Mochizuki T, Tanizawa Y, Fujisawa T, Ohta T, Nikoh N, Shimizu T, Toyoda A, Fujiyama A, Kurata N, Nagasaki H, Kaminuma E, Nakamura Y. DNApod: DNA polymorphism annotation database from next-generation sequence read archives. PLoS One 2017; 12:e0172269. [PMID: 28234924 PMCID: PMC5325239 DOI: 10.1371/journal.pone.0172269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 01/18/2023] Open
Abstract
With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information.
Collapse
Affiliation(s)
- Takako Mochizuki
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasuhiro Tanizawa
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takatomo Fujisawa
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tazro Ohta
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba, Chiba, Japan
| | - Tokurou Shimizu
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, NARO, Shimizu, Shizuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hideki Nagasaki
- Genome Informatics Group, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Eli Kaminuma
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail:
| | - Yasukazu Nakamura
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
25
|
Whole-Genome Characteristics and Polymorphic Analysis of Vietnamese Rice Landraces as a Comprehensive Information Resource for Marker-Assisted Selection. Int J Genomics 2017; 2017:9272363. [PMID: 28265566 PMCID: PMC5318636 DOI: 10.1155/2017/9272363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Next generation sequencing technologies have provided numerous opportunities for application in the study of whole plant genomes. In this study, we present the sequencing and bioinformatic analyses of five typical rice landraces including three indica and two japonica with potential blast resistance. A total of 688.4 million 100 bp paired-end reads have yielded approximately 30-fold coverage to compare with the Nipponbare reference genome. Among them, a small number of reads were mapped to both chromosomes and organellar genomes. Over two million and eight hundred thousand single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) in indica and japonica lines have been determined, which potentially have significant impacts on multiple transcripts of genes. SNP deserts, contiguous SNP-low regions, were found on chromosomes 1, 4, and 5 of all genomes of rice examined. Based on the distribution of SNPs per 100 kilobase pairs, the phylogenetic relationships among the landraces have been constructed. This is the first step towards revealing several salient features of rice genomes in Vietnam and providing significant information resources to further marker-assisted selection (MAS) in rice breeding programs.
Collapse
|
26
|
Kudo T, Kobayashi M, Terashima S, Katayama M, Ozaki S, Kanno M, Saito M, Yokoyama K, Ohyanagi H, Aoki K, Kubo Y, Yano K. TOMATOMICS: A Web Database for Integrated Omics Information in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:e8. [PMID: 28111364 PMCID: PMC5444566 DOI: 10.1093/pcp/pcw207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 05/23/2023]
Abstract
Solanum lycopersicum (tomato) is an important agronomic crop and a major model fruit-producing plant. To facilitate basic and applied research, comprehensive experimental resources and omics information on tomato are available following their development. Mutant lines and cDNA clones from a dwarf cultivar, Micro-Tom, are two of these genetic resources. Large-scale sequencing data for ESTs and full-length cDNAs from Micro-Tom continue to be gathered. In conjunction with information on the reference genome sequence of another cultivar, Heinz 1706, the Micro-Tom experimental resources have facilitated comprehensive functional analyses. To enhance the efficiency of acquiring omics information for tomato biology, we have integrated the information on the Micro-Tom experimental resources and the Heinz 1706 genome sequence. We have also inferred gene structure by comparison of sequences between the genome of Heinz 1706 and the transcriptome, which are comprised of Micro-Tom full-length cDNAs and Heinz 1706 RNA-seq data stored in the KaFTom and Sequence Read Archive databases. In order to provide large-scale omics information with streamlined connectivity we have developed and maintain a web database TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics/). In TOMATOMICS, access to the information on the cDNA clone resources, full-length mRNA sequences, gene structures, expression profiles and functional annotations of genes is available through search functions and the genome browser, which has an intuitive graphical interface.
Collapse
Affiliation(s)
- Toru Kudo
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masaaki Kobayashi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shin Terashima
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Minami Katayama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Soichi Ozaki
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Maasa Kanno
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Misa Saito
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koji Yokoyama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hajime Ohyanagi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
27
|
Hao S, Ariizumi T, Ezura H. SEXUAL STERILITY is Essential for Both Male and Female Gametogenesis in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:22-34. [PMID: 28082517 DOI: 10.1093/pcp/pcw214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 05/12/2023]
Abstract
Gametogenesis is a key step in the production of ovules or pollen in higher plants. The molecular aspects of gametogenesis are well characterized in the model plant Arabidopsis; however, little information is known in tomato, which is a model plant for fleshy fruit development. In this study, we characterized a tomato (Solanum lycopersicum L.) γ-ray mutant, sexual sterility (Slses), that exhibited both male and female sterility. Morphological analysis revealed that the Slses mutant forms incomplete ovules and wilted anthers devoid of pollen grains at the anthesis stage. Genetic and next-generation sequencing analyses revealed that the Slses mutant carried a 13 bp deletion within the first exon of a homolog of SPOROCYTELESS/NOZZLE (SPL/NZZ), which plays an important role in gametogenesis in Arabidopsis. Complementation analysis in which the complete SlSES genomic region was introduced into the Slses mutant fully restored normal phenotypes, demonstrating that Solyc07g063670 is responsible for the Slses mutation. SlSES probably act as a transcriptional repressor because of an EAR motif at the C-terminal region. Gene expression levels of WUSCHEL (SlWUS) and INNER NO OUTER (SlINO), both of which are required for ovule development, were dramatically reduced in the early stages of pistil development in the Slses mutant, suggesting a positive regulatory role for SlSES in the transcription of gametogenesis genes and differences in the regulation of INO (SlINO) and integument development by SPL/NZZ (SLSES) between Arabidopsis and tomato. Taken together, our results indicate that SlSES is a novel tomato gametogenesis gene essential for both male and female gametogenesis.
Collapse
Affiliation(s)
- Shuhei Hao
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Garcia V, Bres C, Just D, Fernandez L, Tai FWJ, Mauxion JP, Le Paslier MC, Bérard A, Brunel D, Aoki K, Alseekh S, Fernie AR, Fraser PD, Rothan C. Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 2016; 11:2401-2418. [PMID: 27809315 DOI: 10.1038/nprot.2016.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.
Collapse
Affiliation(s)
- Virginie Garcia
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Cécile Bres
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Daniel Just
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Lucie Fernandez
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Fabienne Wong Jun Tai
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Marie-Christine Le Paslier
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Aurélie Bérard
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Dominique Brunel
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Christophe Rothan
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
29
|
Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance. PLoS One 2016; 11:e0164469. [PMID: 27764118 PMCID: PMC5072683 DOI: 10.1371/journal.pone.0164469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Cucumber is an economically important vegetable crop worldwide. Powdery mildew (PM) is one of the most severe diseases that can affect cucumber crops. There have been several research efforts to isolate PM resistance genes for breeding PM-resistant cucumber. In the present study, we used a chromosome segment substitution line, SSL508-28, which carried PM resistance genes from the donor parent, JIN5-508, through twelve generations of backcrossing with a PM-susceptible inbred line, D8. We performed whole-genome resequencing of SSL508-28 and D8 to identify single nucleotide polymorphisms (SNPs), and insertions and deletions (indels). When compared against the reference genome of the inbred cucumber line 9930, a total of 468,616 SNPs and 67,259 indels were identified in SSL508-28, and 537,352 SNPs and 91,698 indels were identified in D8. Of these, 3,014 non-synonymous SNPs and 226 frameshift indels in SSL508-28, and 3,104 non-synonymous SNPs and 251 frameshift indels in D8, were identified. Bioinformatics analysis of these variations revealed a total of 15,682 SNPs and 6,262 indels between SSL508-28 and D8, among which 120 non-synonymous SNPs and 30 frameshift indels in 94 genes were detected between SSL508-28 and D8. Finally, out of these 94 genes, five resistance genes with nucleotide-binding sites and leucine-rich repeat domains were selected for qRT-PCR analysis. This revealed an upregulation of two transcripts, Csa2M435460.1 and Csa5M579560.1, in SSL508-28. Furthermore, the results of qRT-PCR analysis of these two genes in ten PM resistant and ten PM susceptible cucumber lines showed that when exposed to PM, Csa2M435460.1 and Csa5M579560.1 exhibited a higher expression level of resistant lines than susceptible lines. This indicates that Csa2M435460.1 and Csa5M579560.1 are candidate genes for PM resistance in cucumber. In addition, the non-synonymous SNPs in Csa2M435460.1 and Csa5M579560.1, identified in SSL508-28 and D8, might be the key to high PM-resistance in SSL508-28.
Collapse
|
30
|
Zhang JZ, Liu SR, Hu CG. Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research. DNA Res 2016; 23:403-14. [PMID: 27106267 PMCID: PMC4991830 DOI: 10.1093/dnares/dsw017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
To increase our understanding of the genes involved in flowering in citrus, we performed genome resequencing of an early flowering trifoliate orange mutant (Poncirus trifoliata L. Raf.) and its wild type. At the genome level, 3,932,628 single nucleotide polymorphisms (SNPs), 1,293,383 insertion/deletion polymorphisms (InDels), and 52,135 structural variations were identified between the mutant and its wild type based on the citrus reference genome. Based on integrative analysis of resequencing and transcriptome analysis, 233,998 SNPs and 75,836 InDels were also identified between the mutant and its wild type at the transcriptional level. Also, 272 citrus homologous flowering-time transcripts containing genetic variation were also identified. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes annotation revealed that the transcripts containing the mutant- and the wild-type-specific InDel were involved in diverse biological processes and molecular function. Among these transcripts, there were 131 transcripts that were expressed differently in the two genotypes. When 268 selected InDels were tested on 32 genotypes of the three genera of Rutaceae for the genetic diversity assessment, these InDel-based markers showed high transferability. This work provides important information that will allow a better understanding of the citrus genome and that will be helpful for dissecting the genetic basis of important traits in citrus.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Rui Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Shikata M, Hoshikawa K, Ariizumi T, Fukuda N, Yamazaki Y, Ezura H. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. PLANT & CELL PHYSIOLOGY 2016; 57:e11. [PMID: 26719120 DOI: 10.1093/pcp/pcv194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 05/19/2023]
Abstract
TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs.
Collapse
Affiliation(s)
- Masahito Shikata
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Ken Hoshikawa
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Tohru Ariizumi
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Naoya Fukuda
- Agricultural and Forestry Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Hiroshi Ezura
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
32
|
Kobayashi M, Ohyanagi H, Yano K. Databases for Solanaceae and Cucurbitaceae Research. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2016. [DOI: 10.1007/978-3-662-48535-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Rothan C, Just D, Fernandez L, Atienza I, Ballias P, Lemaire-Chamley M. Culture of the Tomato Micro-Tom Cultivar in Greenhouse. Methods Mol Biol 2016; 1363:57-64. [PMID: 26577781 DOI: 10.1007/978-1-4939-3115-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France. .,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Lucie Fernandez
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Isabelle Atienza
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Patricia Ballias
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| |
Collapse
|
34
|
Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:51-60. [PMID: 25689669 PMCID: PMC5023996 DOI: 10.1111/pbi.12348] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 05/20/2023]
Abstract
Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches.
Collapse
Affiliation(s)
| | | | - Tsukasa Nunome
- NARO Institute of Vegetable and Tea Sciences, Tsu, Japan
| | | | | |
Collapse
|
35
|
Rothan C, Bres C, Garcia V, Just D. Tomato Resources for Functional Genomics. COMPENDIUM OF PLANT GENOMES 2016. [DOI: 10.1007/978-3-662-53389-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Abstract
The Tomato Genome Sequencing Project represented a landmark venture in the history of sequencing projects where both Sanger's and next-generation sequencing (NGS) technologies were employed, and a highly accurate and one of the best assembled plant genomes along with a draft of the wild relative, Solanum pimpinellifolium, were released in 2012. However, the functional potential of the major portion of this newly generated resource is still undefined. The very first challenge before scientists working on tomato functional biology is to exploit this high-quality reference sequence for tapping of the wealth of genetic variants for improving agronomic traits in cultivated tomatoes. The sequence data generated recently by 150 Tomato Genome Consortium would further uncover the natural alleles present in different tomato genotypes. Therefore, we found it relevant to have a fresh outlook on tomato functional genomics in the context of application of NGS technologies in its post-genome sequencing phase. Herein, we provide an overview how NGS technologies vis-a-vis available reference sequence have assisted each other for their mutual improvement and how their combined use could further facilitate the development of other 'omics' tools, required to propel the Solanaceae research. Additionally, we highlight the challenges associated with the application of these cutting-edge technologies.
Collapse
|
37
|
Ruggieri V, Sacco A, Calafiore R, Frusciante L, Barone A. Dissecting a QTL into Candidate Genes Highlighted the Key Role of Pectinesterases in Regulating the Ascorbic Acid Content in Tomato Fruit. THE PLANT GENOME 2015; 8:eplantgenome2014.08.0038. [PMID: 33228315 DOI: 10.3835/plantgenome2014.08.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/20/2014] [Indexed: 06/11/2023]
Abstract
Tomato (Solanum lycopersicum) is a crucial component of the human diet because of its high nutritional value and the antioxidant content of its fruit. As a member of the Solanaceae family, it is considered a model species for genomic studies in this family, especially since its genome has been completely sequenced. Among genomic resources available, Solanum pennellii introgression lines represent a valuable tool to mine the genetic diversity present in wild species. One introgression line, IL12-4, was previously selected for high ascorbic acid (AsA) content, and a transcriptomic analysis indicated the involvement of genes controlling pectin degradation in AsA accumulation. In this study the integration of data from different "omics" platforms has been exploited to identify candidate genes that increase AsA belonging to the wild region 12-4. Thirty-two genes potentially involved in pathways controlling AsA levels were analyzed with bioinformatic tools. Two hundred-fifty nonsynonymous polymorphisms were detected in their coding regions, and 11.6% revealed deleterious effects on predicted protein function. To reduce the number of genes that had to be functionally validated, introgression sublines of the region 12-4 were selected using species-specific polymorphic markers between the two Solanum species. Four sublines were obtained and we demonstrated that a subregion of around 1 Mbp includes 12 candidate genes potentially involved in AsA accumulation. Among these, only five exhibited structural deleterious variants, and one of the 12 was differentially expressed between the two Solanum species. We have highlighted the role of three polymorphic pectinesterases and inhibitors of pectinesterases that merit further investigation.
Collapse
Affiliation(s)
- Valentino Ruggieri
- Dep. of Agricultural Sciences, Univ. of Naples Federico II, Via Università 100, 80055, Portici, (NA), Italy
| | - Adriana Sacco
- Dep. of Agricultural Sciences, Univ. of Naples Federico II, Via Università 100, 80055, Portici, (NA), Italy
| | - Roberta Calafiore
- Dep. of Agricultural Sciences, Univ. of Naples Federico II, Via Università 100, 80055, Portici, (NA), Italy
| | - Luigi Frusciante
- Dep. of Agricultural Sciences, Univ. of Naples Federico II, Via Università 100, 80055, Portici, (NA), Italy
| | - Amalia Barone
- Dep. of Agricultural Sciences, Univ. of Naples Federico II, Via Università 100, 80055, Portici, (NA), Italy
| |
Collapse
|
38
|
Yadav CB, Bhareti P, Muthamilarasan M, Mukherjee M, Khan Y, Rathi P, Prasad M. Genome-wide SNP identification and characterization in two soybean cultivars with contrasting Mungbean Yellow Mosaic India Virus disease resistance traits. PLoS One 2015; 10:e0123897. [PMID: 25875830 PMCID: PMC4395324 DOI: 10.1371/journal.pone.0123897] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
Mungbean yellow mosaic India virus (MYMIV) is a bipartite Geminivirus, which causes severe yield loss in soybean (Glycine max). Considering this, the present study was conducted to develop large-scale genome-wide single nucleotide polymorphism (SNP) markers and identify potential markers linked with known disease resistance loci for their effective use in genomics-assisted breeding to impart durable MYMIV tolerance. The whole-genome re-sequencing of MYMIV resistant cultivar 'UPSM-534' and susceptible Indian cultivar 'JS-335' was performed to identify high-quality SNPs and InDels (insertion and deletions). Approximately 234 and 255 million of 100-bp paired-end reads were generated from UPSM-534 and JS-335, respectively, which provided ~98% coverage of reference soybean genome. A total of 3083987 SNPs (1559556 in UPSM-534 and 1524431 in JS-335) and 562858 InDels (281958 in UPSM-534 and 280900 in JS-335) were identified. Of these, 1514 SNPs were found to be present in 564 candidate disease resistance genes. Among these, 829 non-synonymous and 671 synonymous SNPs were detected in 266 and 286 defence-related genes, respectively. Noteworthy, a non-synonymous SNP (in chromosome 18, named 18-1861613) at the 149th base-pair of LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN KINASE gene responsible for a G/C transversion [proline (CCC) to alanine(GCC)] was identified and validated in a set of 12 soybean cultivars. Taken together, the present study generated a large-scale genomic resource such as, SNPs and InDels at a genome-wide scale that will facilitate the dissection of various complex traits through construction of high-density linkage maps and fine mapping. In the present scenario, these markers can be effectively used to design high-density SNP arrays for their large-scale validation and high-throughput genotyping in diverse natural and mapping populations, which could accelerate genomics-assisted MYMIV disease resistance breeding in soybean.
Collapse
Affiliation(s)
| | - Priyanka Bhareti
- Department of Genetics and Plant Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | | | - Yusuf Khan
- National Institute of Plant Genome Research, New Delhi, India
| | - Pushpendra Rathi
- Department of Genetics and Plant Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
39
|
Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). JOURNAL OF PLANT PHYSIOLOGY 2015; 177:11-19. [PMID: 25659332 DOI: 10.1016/j.jplph.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Collapse
Affiliation(s)
- Mateus Henrique Vicente
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Ariadne Felicio Lopo de Sá
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), R. Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
40
|
Resequencing at ≥40-Fold Depth of the Parental Genomes of a Solanum lycopersicum × S. pimpinellifolium Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function. G3-GENES GENOMES GENETICS 2015; 5:971-81. [PMID: 25809074 PMCID: PMC4426381 DOI: 10.1534/g3.114.016121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A recombinant in-bred line population derived from a cross between Solanum lycopersicum var. cerasiforme (E9) and S. pimpinellifolium (L5) has been used extensively to discover quantitative trait loci (QTL), including those that act via rootstock genotype, however, high-resolution single-nucleotide polymorphism genotyping data for this population are not yet publically available. Next-generation resequencing of parental lines allows the vast majority of polymorphisms to be characterized and used to progress from QTL to causative gene. We sequenced E9 and L5 genomes to 40- and 44-fold depth, respectively, and reads were mapped to the reference Heinz 1706 genome. In L5 there were three clear regions on chromosome 1, chromosome 4, and chromosome 8 with increased rates of polymorphism. Two other regions were highly polymorphic when we compared Heinz 1706 with both E9 and L5 on chromosome 1 and chromosome 10, suggesting that the reference sequence contains a divergent introgression in these locations. We also identified a region on chromosome 4 consistent with an introgression from S. pimpinellifolium into Heinz 1706. A large dataset of polymorphisms for the use in fine-mapping QTL in a specific tomato recombinant in-bred line population was created, including a high density of InDels validated as simple size-based polymerase chain reaction markers. By careful filtering and interpreting the SnpEff prediction tool, we have created a list of genes that are predicted to have highly perturbed protein functions in the E9 and L5 parental lines.
Collapse
|
41
|
Ohyanagi H, Takano T, Terashima S, Kobayashi M, Kanno M, Morimoto K, Kanegae H, Sasaki Y, Saito M, Asano S, Ozaki S, Kudo T, Yokoyama K, Aya K, Suwabe K, Suzuki G, Aoki K, Kubo Y, Watanabe M, Matsuoka M, Yano K. Plant Omics Data Center: an integrated web repository for interspecies gene expression networks with NLP-based curation. PLANT & CELL PHYSIOLOGY 2015; 56:e9. [PMID: 25505034 PMCID: PMC4301748 DOI: 10.1093/pcp/pcu188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/24/2014] [Indexed: 05/20/2023]
Abstract
Comprehensive integration of large-scale omics resources such as genomes, transcriptomes and metabolomes will provide deeper insights into broader aspects of molecular biology. For better understanding of plant biology, we aim to construct a next-generation sequencing (NGS)-derived gene expression network (GEN) repository for a broad range of plant species. So far we have incorporated information about 745 high-quality mRNA sequencing (mRNA-Seq) samples from eight plant species (Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis vinifera, Solanum tuberosum, Medicago truncatula and Glycine max) from the public short read archive, digitally profiled the entire set of gene expression profiles, and drawn GENs by using correspondence analysis (CA) to take advantage of gene expression similarities. In order to understand the evolutionary significance of the GENs from multiple species, they were linked according to the orthology of each node (gene) among species. In addition to other gene expression information, functional annotation of the genes will facilitate biological comprehension. Currently we are improving the given gene annotations with natural language processing (NLP) techniques and manual curation. Here we introduce the current status of our analyses and the web database, PODC (Plant Omics Data Center; http://bioinf.mind.meiji.ac.jp/podc/), now open to the public, providing GENs, functional annotations and additional comprehensive omics resources.
Collapse
Affiliation(s)
- Hajime Ohyanagi
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan Tsukuba Division, Mitsubishi Space Software Co., Ltd., Tsukuba, 305-0032 Japan Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan These authors contributed equally to this work
| | - Tomoyuki Takano
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan These authors contributed equally to this work
| | - Shin Terashima
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan These authors contributed equally to this work
| | - Masaaki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan
| | - Maasa Kanno
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Kyoko Morimoto
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Hiromi Kanegae
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Yohei Sasaki
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan
| | - Misa Saito
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Satomi Asano
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan
| | - Soichi Ozaki
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan
| | - Toru Kudo
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan
| | - Koji Yokoyama
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan CREST, JST, Saitama, 332-0012 Japan
| |
Collapse
|
42
|
Nadakuduti SS, Holdsworth WL, Klein CL, Barry CS. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1022-33. [PMID: 24689783 DOI: 10.1111/tpj.12529] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 05/19/2023]
Abstract
The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs.
Collapse
|