1
|
Wang M, He F, Zhang W, Du C, Wang L, Sui J, Li F. SYNTAXIN OF PLANTS132 Regulates Root Meristem Activity and Stem Cell Niche Maintenance via RGF-PLT Pathways. Int J Mol Sci 2025; 26:2123. [PMID: 40076746 PMCID: PMC11900091 DOI: 10.3390/ijms26052123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Root growth and development are contingent upon continuous cell division and differentiation in root tips. In this study, we found that the knockdown of the syntaxin gene SYNTAXIN OF PLANTS132 (SYP132) in Arabidopsis thaliana resulted in a significant reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. The SYP132 knockdown mutant exhibits a compromised SCN characterized by an increased number of quiescent center (QC) cells, abnormal columella stem cells (CSCs), reduced meristem size, and subsequent inhibition of root growth. In syp132, vesicle transport of PIN proteins is disrupted, leading to altered auxin distribution and decreased expression of the auxin-response transcription factors PLETHORA 1 (PLT1) and PLETHORA 2 (PLT2). Furthermore, the transcription level of the precursor of root meristem growth factor 1 (RGF1) is also modified in syp132. The reduction in PLT2 transcription and protein levels along with defects in the root SCN are partially rescued by the application of synthesized RGF1. This finding suggests that both the auxin-PLT and RGF-PLT pathways are interconnected through SYP132-mediated vesicle transport. Collectively, our findings indicate that SYP132 regulates the PLT pathway to maintain the root stem cell niche (SCN) in an RGF1-dependent manner.
Collapse
Affiliation(s)
- Mingjing Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Wei Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| |
Collapse
|
2
|
Lin Z, Zhu P, Gao L, Chen X, Li M, Wang Y, He J, Miao Y, Miao R. Recent Advances in Understanding the Regulatory Mechanism of Plasma Membrane H+-ATPase through the Brassinosteroid Signaling Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1515-1529. [PMID: 38372617 DOI: 10.1093/pcp/pcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The polyhydroxylated steroid phytohormone brassinosteroid (BR) controls many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase and summarize recent progress towards understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pan Zhu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanyi Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijing Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhe Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Takáč T, Kuběnová L, Šamajová O, Dvořák P, Řehák J, Haberland J, Bundschuh ST, Pechan T, Tomančák P, Ovečka M, Šamaj J. Actin cytoskeleton and plasma membrane aquaporins are involved in different drought response of Arabidopsis rhd2 and der1 root hair mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109137. [PMID: 39357201 DOI: 10.1016/j.plaphy.2024.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Actin cytoskeleton and reactive oxygen species are principal determinants of root hair polarity and tip growth. Loss of function in RESPIRATORY BURST OXIDASE HOMOLOG C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2), an NADPH oxidase emitting superoxide to the apoplast, and in ACTIN 2, a vegetative actin isovariant, in rhd2-1 and der1-3 mutants, respectively, lead to similar defects in root hair formation and elongation Since early endosome-mediated polar localization of AtRBOHC/RHD2 depends on actin cytoskeleton, comparing the proteome-wide consequences of both mutations might be of eminent interest. Therefore, we employed a differential proteomic analysis of Arabidopsis rhd2-1 and der1-3 mutants. Both mutants exhibited substantial alterations in abundances of stress-related proteins. Notably, plasma membrane (PM)-localized PIP aquaporins showed contrasting abundance patterns in the mutants compared to wild-types. Drought-responsive proteins were mostly downregulated in rhd2-1 but upregulated in der1-3. Proteomic data suggest that opposite to der1-3, altered vesicular transport in rhd2-1 mutant likely contributes to the deregulation of PM-localized proteins, including PIPs. Moreover, lattice light sheet microscopy revealed reduced actin dynamics in rhd2-1 roots, a finding contrasting with previous reports on der1-3 mutant. Phenotypic experiments demonstrated a drought stress susceptibility in rhd2-1 and resistance in der1-3. Thus, mutations in AtRBOHC/RHD2 and ACTIN2 cause similar root hair defects, but they differently affect the actin cytoskeleton and vesicular transport. Reduced actin dynamics in rhd2-1 mutant is accompanied by alteration of vesicular transport proteins abundance, likely leading to altered protein delivery to PM, including aquaporins, thereby significantly affecting drought stress responses.
Collapse
Affiliation(s)
- Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Haberland
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | | | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Cermesoni C, Grefen C, Ricardi MM. Where R-SNAREs like to roam - the vesicle-associated membrane proteins VAMP721 & VAMP722 in trafficking hotspots. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102571. [PMID: 38896926 DOI: 10.1016/j.pbi.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Martiniano M Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany.
| |
Collapse
|
5
|
Phookaew P, Ma Y, Suzuki T, Stolze SC, Harzen A, Sano R, Nakagami H, Demura T, Ohtani M. Active protein ubiquitination regulates xylem vessel functionality. THE PLANT CELL 2024; 36:3298-3317. [PMID: 39092875 PMCID: PMC11371170 DOI: 10.1093/plcell/koae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Xylem vessels function in the long-distance conduction of water in land plants. The NAC transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). We previously isolated suppressor of ectopic xylem vessel cell differentiation induced by VND7 (seiv) mutants. Here, we report that the responsible genes for seiv3, seiv4, seiv6, and seiv9 are protein ubiquitination-related genes encoding PLANT U-BOX46 (PUB46), an uncharacterized F-BOX protein (FBX), PUB36, and UBIQUITIN-SPECIFIC PROTEASE1 (UBP1), respectively. We also found decreased expression of genes downstream of VND7 and abnormal xylem transport activity in the seiv mutants. Upon VND7 induction, ubiquitination levels from 492 and 180 protein groups were upregulated and downregulated, respectively. VND7 induction resulted in the ubiquitination of proteins for cell wall biosynthesis and protein transport, whereas such active protein ubiquitination did not occur in the seiv mutants. We detected the ubiquitination of three lysine residues in VND7: K94, K105, and K260. Substituting K94 with arginine significantly decreased the transactivation activity of VND7, suggesting that the ubiquitination of K94 is crucial for regulating VND7 activity. Our findings highlight the crucial roles of target protein ubiquitination in regulating xylem vessel activity.
Collapse
Affiliation(s)
- Pawittra Phookaew
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ya Ma
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Takaomi Suzuki
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Ryosuke Sano
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Taku Demura
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Arballo LR, Brusslan JA. Arabidopsis apoplast TET8 positively correlates to leaf senescence, and tet3tet8 double mutants are delayed in leaf senescence. PLANT DIRECT 2024; 8:e70006. [PMID: 39323734 PMCID: PMC11422175 DOI: 10.1002/pld3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting that EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older wild-type (WT) rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3. Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after 6 weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that apoplast-localized TET8 in combination with TET3 positively regulates age-related leaf senescence in soil-grown Arabidopsis plants.
Collapse
Affiliation(s)
- Jayde A. Zimmerman
- Southern California Coastal Water Research ProjectCosta MesaCaliforniaUSA
| | | | | | - Luis R. Arballo
- California State University, Long BeachLong BeachCaliforniaUSA
| | - Judy A. Brusslan
- Department of Biological SciencesCalifornia State University, Long BeachLong BeachCaliforniaUSA
| |
Collapse
|
7
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a dual role for HOPS in regulating guard cell vacuole fusion. IN SILICO PLANTS 2024; 6:diae015. [PMID: 39611053 PMCID: PMC11599693 DOI: 10.1093/insilicoplants/diae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 11/30/2024]
Abstract
Guard cell movements depend, in part, on the remodelling of vacuoles from a highly fragmented state to a fused morphology during stomata opening. Indeed, full opening of plant stomata requires vacuole fusion to occur. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. In plants, recruitment of HOPS subunits to the tonoplast has been shown to require the presence of the phosphoinositide phosphatidylinositol 3-phosphate. However, chemically depleting this lipid induces vacuole fusion. To resolve this counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we defined a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by using simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening-as induced by two distinct chemical treatments-we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signalling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - D T Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
8
|
Nielsen ME. Vesicle trafficking pathways in defence-related cell wall modifications: papillae and encasements. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3700-3712. [PMID: 38606692 DOI: 10.1093/jxb/erae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- University of Copenhagen, Faculty of Science, CPSC, Department of Plant and Environmental Sciences, 1871 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Zeng BZ, Zhou XT, Gou HM, Che LL, Lu SX, Yang JB, Cheng YJ, Liang GP, Mao J. Molecular Evolution of SNAREs in Vitis vinifera and Expression Analysis under Phytohormones and Abiotic Stress. Int J Mol Sci 2024; 25:5984. [PMID: 38892171 PMCID: PMC11173047 DOI: 10.3390/ijms25115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a key role in mediating a variety of plant biological processes. Currently, the function of the SNARE gene family in phytohormonal and abiotic stress treatments in grapevine is currently unknown, making it worthwhile to characterize and analyze the function and expression of this family in grapevine. In the present study, 52 VvSNARE genes were identified and predominantly distributed on 18 chromosomes. Secondary structures showed that the VvSNARE genes family irregular random coils and α-helices. The promoter regions of the VvSNARE genes were enriched for light-, abiotic-stress-, and hormone-responsive elements. Intraspecific collinearity analysis identified 10 pairs collinear genes within the VvSNARE family and unveiled a greater number of collinear genes between grapevine and apple, as well as Arabidopsis thaliana, but less associations with Oryza sativa. Quantitative real-time PCR (qRT-PCR) analyses showed that the VvSNARE genes have response to treatments with ABA, NaCl, PEG, and 4 °C. Notably, VvSNARE2, VvSNARE14, VvSNARE15, and VvSNARE17 showed up-regulation in response to ABA treatment. VvSNARE2, VvSNARE15, VvSNARE18, VvSNARE19, VvSNARE20, VvSNARE24, VvSNARE25, and VvSNARE29 exhibited significant up-regulation when exposed to NaCl treatment. The PEG treatment led to significant down-regulation of VvSNARE1, VvSNARE8, VvSNARE23, VvSNARE25, VvSNARE26, VvSNARE31, and VvSNARE49 gene expression. The expression levels of VvSNARE37, VvSNARE44, and VvSNARE46 were significantly enhanced after exposure to 4 °C treatment. Furthermore, subcellular localization assays certified that VvSNARE37, VvSNARE44, and VvSNARE46 were specifically localized at the cell membrane. Overall, this study showed the critical role of the VvSNARE genes family in the abiotic stress response of grapevines, thereby providing novel candidate genes such as VvSNARE37, VvSNARE44, and VvSNARE46 for further exploration in grapevine stress tolerance research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.-z.Z.); (X.-t.Z.); (H.-m.G.); (L.-l.C.); (S.-x.L.); (J.-b.Y.); (Y.-j.C.); (G.-p.L.)
| |
Collapse
|
10
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Brusslan JA. Arabidopsis Apoplast TET8 Positively Correlates to Leaf Senescence and tet3tet8 Double Mutants are Delayed in Leaf Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593620. [PMID: 38798530 PMCID: PMC11118556 DOI: 10.1101/2024.05.10.593620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older WT rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3 . Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after six weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that PEN1-associated EVs and TET8-associated EVs may have opposite effects on soil-grown plants undergoing age-related leaf senescence.
Collapse
|
11
|
Rzepecka N, Ito Y, Yura K, Ito E, Uemura T. Identification of a novel Golgi-localized putative glycosyltransferase protein in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:35-44. [PMID: 39464868 PMCID: PMC11500582 DOI: 10.5511/plantbiotechnology.23.1214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 10/29/2024]
Abstract
SNAREs play an important role in the process of membrane trafficking. In the present research, we investigated subcellular localization of an uncharacterized Arabidopsis thaliana protein reported to interact with a trans-Golgi network-localized Qa-SNARE, SYNTAXIN OF PLANTS 43. Based on the similarity of its amino acid sequence to metazoan fucosyltransferases, we have named this novel protein AtGTLP (Arabidopsis thaliana GlycosylTransferase-Like Protein) and predicted that it should be a member of yet uncharacterized family of Arabidopsis fucosyltransferases, as it shows no significant sequence similarity to fucosyltransferases previously identified in Arabidopsis. AtGTLP is a membrane-anchored protein, which exhibits a type II-like topology, with a single transmembrane helix and a globular domain in the C-terminal part of its amino acid sequence. Colocalization data we collected suggest that AtGTLP should localize mainly to Golgi apparatus, especially to certain zones of trans-Golgi. As single atgtlp-/- mutants showed no obvious difference in phenotype (primary root length and fresh mass), AtGTLP and proteins related to AtGTLP with high similarity in amino acid sequences may have redundant functions.
Collapse
Affiliation(s)
- Natalia Rzepecka
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Emi Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
12
|
Liu X, Zhu D, Zhao F, Gao Y, Li J, Li Y. VAMP726 and VAMP725 regulate vesicle secretion and pollen tube growth in Arabidopsis. PLANT CELL REPORTS 2023; 42:1951-1965. [PMID: 37805949 DOI: 10.1007/s00299-023-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex. Secretory vesicle fusion with the plasma membrane of the pollen tube tip is a key step in pollen tube growth. Membrane fusion was mediated by SNAREs. However, little is known about the composition and function of the SNARE complex during pollen tube tip growth. In this study, we constructed a double mutant vamp725 vamp726 via CRISPR‒Cas9. Fluorescence labeling combined with microscopic observation, luciferase complementation imaging, co-immunoprecipitation and GST pull-down were applied in the study. We show that double mutation of the R-SNAREs VAMP726 and VAMP725 significantly inhibits pollen tube growth in Arabidopsis and slows vesicle exocytosis at the apex of the pollen tube. GFP-VAMP726 and VAMP725-GFP localize mainly to secretory vesicles and the plasma membrane at the apex of the pollen tube. In addition, fluorescence recovery after photobleaching (FRAP) experiments showed that mCherry-VAMP726 colocalizes with Qa-SNARE SYP131 in the central region of the pollen tube apical plasma membrane. Furthermore, we found that VAMP726 and VAMP725 can interact with the SYP131. Based on these results, we suggest that VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex, and vesicle secretion may mainly occur at the central region of the pollen tube apical plasma membrane.
Collapse
Affiliation(s)
- Xinyan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dandan Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuli Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yadan Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianji Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a plant-specific dual role for HOPS in regulating guard cell vacuole fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565947. [PMID: 37986942 PMCID: PMC10659295 DOI: 10.1101/2023.11.07.565947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Stomata are the pores on a leaf surface that regulate gas exchange. Each stoma consists of two guard cells whose movements regulate pore opening and thereby control CO2 fixation and water loss. Guard cell movements depend in part on the remodeling of vacuoles, which have been observed to change from a highly fragmented state to a fused morphology during stomata opening. This change in morphology requires a membrane fusion mechanism that responds rapidly to environmental signals, allowing plants to respond to diurnal and stress cues. With guard cell vacuoles being both large and responsive to external signals, stomata represent a unique system in which to delineate mechanisms of membrane fusion. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. To resolve a counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we derived a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by applying simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening - as induced by two distinct chemical treatments - we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signaling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - DT Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
14
|
Yuen ELH, Shepherd S, Bozkurt TO. Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:325-350. [PMID: 37186899 DOI: 10.1146/annurev-phyto-021622-123232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| |
Collapse
|
15
|
Schaefer K, Cairo Baza A, Huang T, Cioffi T, Elliott A, Shaw SL. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells. PLANT PHYSIOLOGY 2023; 192:2687-2702. [PMID: 37096683 DOI: 10.1093/plphys/kiad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Light, temperature, water, and nutrient availability influence how plants grow to maximize access to resources. Axial growth, the linear extension of tissues by coordinated axial cell expansion, plays a central role in these adaptive morphological responses. Using Arabidopsis (Arabidopsis thaliana) hypocotyl cells to explore axial growth control mechanisms, we investigated WAVE-DAMPENED2-LIKE4 (WDL4), an auxin-induced, microtubule-associated protein and member of the larger WDL gene family shown to modulate hypocotyl growth under changing environmental conditions. Loss-of-function wdl4 seedlings exhibited a hyper-elongation phenotype under light conditions, continuing to elongate when wild-type Col-0 hypocotyls arrested and reaching 150% to 200% of wild-type length before shoot emergence. wdl4 seedling hypocotyls showed dramatic hyper-elongation (500%) in response to temperature elevation, indicating an important role in morphological adaptation to environmental cues. WDL4 was associated with microtubules under both light and dark growth conditions, and no evidence was found for altered microtubule array patterning in loss-of-function wdl4 mutants under various conditions. Examination of hormone responses showed altered sensitivity to ethylene and evidence for changes in the spatial distribution of an auxin-dependent transcriptional reporter. Our data provide evidence that WDL4 regulates hypocotyl cell elongation without substantial changes to microtubule array patterning, suggesting an unconventional role in axial growth control.
Collapse
Affiliation(s)
- Kristina Schaefer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Tina Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Timothy Cioffi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Zhang H, Zhou J, Kou X, Liu Y, Zhao X, Qin G, Wang M, Qian G, Li W, Huang Y, Wang X, Zhao Z, Li S, Wu X, Jiang L, Feng X, Zhu JK, Li L. Syntaxin of plants71 plays essential roles in plant development and stress response via regulating pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1198353. [PMID: 37342145 PMCID: PMC10277689 DOI: 10.3389/fpls.2023.1198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.
Collapse
Affiliation(s)
- Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jingwen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guochen Qin
- Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wen Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoting Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoqian Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Park M, Mayer U, Richter S, Jürgens G. NSF/αSNAP2-mediated cis-SNARE complex disassembly precedes vesicle fusion in Arabidopsis cytokinesis. NATURE PLANTS 2023; 9:889-897. [PMID: 37264150 DOI: 10.1038/s41477-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Eukaryotic membrane fusion requires trans-SNARE complexes bridging the gap between adjacent membranes1. Fusion between a transport vesicle and its target membrane transforms the trans- into a cis-SNARE complex. The latter interacts with the hexameric AAA+-ATPase N-ethylmaleimide-sensitive factor (NSF) and its co-factor alpha-soluble NSF attachment protein (αSNAP), forming a 20S complex2,3. ATPase activity disassembles the SNAP receptor (SNARE) complex into Qa-SNARE, which folds back onto itself, and its partners4,5. The fusion of identical membranes has a different sequence of events6. The fusion partners each have cis-SNARE complexes to be broken up by NSF and αSNAP. The Qa-SNARE monomers are then stabilized by interaction with Sec1/Munc18-type regulators (SM proteins) to form trans-SNARE complexes, as shown for the yeast vacuole7. Membrane fusion in Arabidopsis cytokinesis is formally akin to vacuolar fusion8. Membrane vesicles fuse with one another to form the partitioning membrane known as the cell plate. Cis-SNARE complexes of cytokinesis-specific Qa-SNARE KNOLLE and its SNARE partners are assembled at the endoplasmic reticulum and delivered by traffic via the Golgi/trans-Golgi network to the cell division plane9. The SM protein KEULE is required for the formation of trans-SNARE complexes between adjacent membrane vesicles10. Here we identify NSF and its adaptor αSNAP2 as necessary for the disassembly of KNOLLE cis-SNARE complexes, which is a prerequisite for KNOLLE-KEULE interaction in cytokinesis. In addition, we show that NSF is required for other trafficking pathways and interacts with the respective Q-SNAREs. The SNARE complex disassembly machinery is conserved in plants and plays a unique essential role in cytokinesis.
Collapse
Affiliation(s)
- Misoon Park
- ZMBP, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Ulrike Mayer
- ZMBP, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Sandra Richter
- ZMBP, Microscopy, University of Tübingen, Tübingen, Germany
| | - Gerd Jürgens
- ZMBP, Developmental Genetics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Lu C, Peng Z, Liu Y, Li G, Wan S. Genome-Wide Analysis of the SNARE Family in Cultivated Peanut ( Arachis hypogaea L.) Reveals That Some Members Are Involved in Stress Responses. Int J Mol Sci 2023; 24:ijms24087103. [PMID: 37108265 PMCID: PMC10139436 DOI: 10.3390/ijms24087103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The superfamily of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediates membrane fusion during vesicular transport between endosomes and the plasma membrane in eukaryotic cells, playing a vital role in plant development and responses to biotic and abiotic stresses. Peanut (Arachis hypogaea L.) is a major oilseed crop worldwide that produces pods below ground, which is rare in flowering plants. To date, however, there has been no systematic study of SNARE family proteins in peanut. In this study, we identified 129 putative SNARE genes from cultivated peanut (A. hypogaea) and 127 from wild peanut (63 from Arachis duranensis, 64 from Arachis ipaensis). We sorted the encoded proteins into five subgroups (Qa-, Qb-, Qc-, Qb+c- and R-SNARE) based on their phylogenetic relationships with Arabidopsis SNAREs. The genes were unevenly distributed on all 20 chromosomes, exhibiting a high rate of homolog retention from their two ancestors. We identified cis-acting elements associated with development, biotic and abiotic stresses in the promoters of peanut SNARE genes. Transcriptomic data showed that expression of SNARE genes is tissue-specific and stress inducible. We hypothesize that AhVTI13b plays an important role in the storage of lipid proteins, while AhSYP122a, AhSNAP33a and AhVAMP721a might play an important role in development and stress responses. Furthermore, we showed that three AhSNARE genes (AhSYP122a, AhSNAP33a and AhVAMP721) enhance cold and NaCl tolerance in yeast (Saccharomyces cerevisiae), especially AhSNAP33a. This systematic study provides valuable information about the functional characteristics of AhSNARE genes in the development and regulation of abiotic stress responses in peanut.
Collapse
Affiliation(s)
- Chaoxia Lu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhenying Peng
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yiyang Liu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guowei Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
19
|
Lu Y, Zhang Y, Lian N, Li X. Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. Int J Mol Sci 2023; 24:ijms24076059. [PMID: 37047032 PMCID: PMC10094514 DOI: 10.3390/ijms24076059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The plasma membrane (PM), which is composed of a lipid layer implanted with proteins, has diverse functions in plant responses to environmental triggers. The heterogenous dynamics of lipids and proteins in the plasma membrane play important roles in regulating cellular activities with an intricate pathway that orchestrates reception, signal transduction and appropriate response in the plant immune system. In the process of the plasma membrane participating in defense responses, the cytoskeletal elements have important functions in a variety of ways, including regulation of protein and lipid dynamics as well as vesicle trafficking. In this review, we summarized how the plasma membrane contributed to plant immunity and focused on the dynamic process of cytoskeleton regulation of endocytosis and exocytosis and propose future research directions.
Collapse
Affiliation(s)
- Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Zhang L, Liang X, Takáč T, Komis G, Li X, Zhang Y, Ovečka M, Chen Y, Šamaj J. Spatial proteomics of vesicular trafficking: coupling mass spectrometry and imaging approaches in membrane biology. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:250-269. [PMID: 36204821 PMCID: PMC9884029 DOI: 10.1111/pbi.13929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- College of Life ScienceHenan Normal UniversityXinxiangChina
| | - Xinlin Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| | - George Komis
- Department of Cell Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| | - Xiaojuan Li
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuan Zhang
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| | - Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| |
Collapse
|
21
|
Karnik R, Blatt MR. Analyzing Protein-Protein Interactions Using the Split-Ubiquitin System. Methods Mol Biol 2023; 2690:23-36. [PMID: 37450134 DOI: 10.1007/978-1-0716-3327-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The split-ubiquitin technology was developed over 20 years ago as an alternative to Gal4-based, yeast-two-hybrid methods to identify interacting protein partners. With the introduction of mating-based methods for split-ubiquitin screens, the approach has gained broad popularity because of its exceptionally high transformation efficiency, utility in working with full-length membrane proteins, and positive selection with little interference from spurious interactions. Recent advances now extend these split-ubiquitin methods to the analysis of interactions between otherwise soluble proteins and tripartite protein interactions.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
22
|
Hassan SH, Sferra G, Simiele M, Scippa GS, Morabito D, Trupiano D. Root and shoot biology of Arabidopsis halleri dissected by WGCNA: an insight into the organ pivotal pathways and genes of an hyperaccumulator. Funct Integr Genomics 2022; 22:1159-1172. [PMID: 36094581 DOI: 10.1007/s10142-022-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Arabidopsis halleri is a hyperaccumulating pseudo-metallophyte and an emerging model to explore molecular basis of metal tolerance and hyperaccumulation. In this regard, understanding of interacting genes can be a crucial aspect as these interactions regulate several biological functions at molecular level in response to multiple signals. In this current study, we applied a weighted gene co-expression network analysis (WGCNA) on root and shoot RNA-seq data of A. halleri to predict the related scale-free organ specific co-expression networks, for the first time. A total of 19,653 genes of root and 18,081 genes of shoot were grouped into 14 modules and subjected to GO and KEGG enrichment analysis. "Photosynthesis" and "photosynthesis-antenna proteins" were identified as the most enriched and common pathway to both root and shoot. Whereas "glucosinolate biosynthesis," "autophagy," and "SNARE interactions in vesicular transport" were specific to root, and "circadian rhythm" was found to be enriched only in shoot. Later, hub and bottleneck genes were identified in each module by using cytoHubba plugin based on Cytoscape and scoring the relevance of each gene to the topology of the network. The modules with the most significant differential expression pattern across control and treatment (Cd-Zn treatment) were selected and their hub and bottleneck genes were screened to validate their possible involvement in heavy metal stress. Moreover, we combined the analysis of co-expression modules together with protein-protein interactions (PPIs), confirming some genes as potential candidates in plant heavy metal stress and as biomarkers. The results from this analysis shed the light on the pivotal functions to the hyperaccumulative trait of A. halleri, giving perspective to new paths for future research on this species.
Collapse
Affiliation(s)
- Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | - Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy.
| | - Melissa Simiele
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | | | - Domenico Morabito
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC-EA1207), Université d'Orléans, 45067, Orléans CEDEX 2, France
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| |
Collapse
|
23
|
Wang M, Danz K, Ly V, Rojas-Pierce M. Microgravity enhances the phenotype of Arabidopsis zigzag-1 and reduces the Wortmannin-induced vacuole fusion in root cells. NPJ Microgravity 2022; 8:38. [PMID: 36064795 PMCID: PMC9445043 DOI: 10.1038/s41526-022-00226-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
The spaceflight environment of the International Space Station poses a multitude of stresses on plant growth including reduced gravity. Plants exposed to microgravity and other conditions on the ISS display root skewing, changes in gene expression and protein abundance that may result in changes in cell wall composition, antioxidant accumulation and modification of growth anisotropy. Systematic studies that address the effects of microgravity on cellular organelles are lacking but altered numbers and sizes of vacuoles have been detected in previous flights. The prominent size of plant vacuoles makes them ideal models to study organelle dynamics in space. Here, we used Arabidopsiszigzag-1 (zig-1) as a sensitized genotype to study the effect of microgravity on plant vacuole fusion. Wortmannin was used to induce vacuole fusion in seedlings and a formaldehyde-based fixation protocol was developed to visualize plant vacuole morphology after sample return, using confocal microscopy. Our results indicate that microgravity enhances the zig-1 phenotype by reducing hypocotyl growth and vacuole fusion in some cells. This study demonstrates the feasibility of chemical inhibitor treatments for plant cell biology experiments in space.
Collapse
Affiliation(s)
- Mengying Wang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Katherine Danz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vanessa Ly
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
24
|
Ishikawa K, Konno R, Hirano S, Fujii Y, Fujiwara M, Fukao Y, Kodama Y. The endoplasmic reticulum membrane-bending protein RETICULON facilitates chloroplast relocation movement in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:205-216. [PMID: 35476214 DOI: 10.1111/tpj.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Plant cells alter the intracellular positions of chloroplasts to ensure efficient photosynthesis, a process controlled by the blue light receptor phototropin. Chloroplasts migrate toward weak light (accumulation response) and move away from excess light (avoidance response). Chloroplasts are encircled by the endoplasmic reticulum (ER), which forms a complex network throughout the cytoplasm. To ensure rapid chloroplast relocation, the ER must alter its structure in conjunction with chloroplast relocation movement, but little is known about the underlying mechanism. Here, we searched for interactors of phototropin in the liverwort Marchantia polymorpha and identified a RETICULON (RTN) family protein; RTN proteins play central roles in ER tubule formation and ER network maintenance by stabilizing the curvature of ER membranes in eukaryotic cells. Marchantia polymorpha RTN1 (MpRTN1) is localized to ER tubules and the rims of ER sheets, which is consistent with the localization of RTNs in other plants and heterotrophs. The Mprtn1 mutant showed an increased ER tubule diameter, pointing to a role for MpRTN1 in ER membrane constriction. Furthermore, Mprtn1 showed a delayed chloroplast avoidance response but a normal chloroplast accumulation response. The live cell imaging of ER dynamics revealed that ER restructuring was impaired in Mprtn1 during the chloroplast avoidance response. These results suggest that during the chloroplast avoidance response, MpRTN1 restructures the ER network and facilitates chloroplast movement via an interaction with phototropin. Our findings provide evidence that plant cells respond to fluctuating environmental conditions by controlling the movements of multiple organelles in a synchronized manner.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Ryota Konno
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Satoyuki Hirano
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Masayuki Fujiwara
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- YANMAR HOLDINGS Co. Ltd., Osaka, Japan
| | - Yoichiro Fukao
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
25
|
Melkonian K, Stolze SC, Harzen A, Nakagami H. miniTurbo-based interactomics of two plasma membrane-localized SNARE proteins in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 235:786-800. [PMID: 35396742 DOI: 10.1111/nph.18151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.
Collapse
Affiliation(s)
- Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne Harzen
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
26
|
Baena G, Xia L, Waghmare S, Karnik R. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. PLANT PHYSIOLOGY 2022; 189:1639-1661. [PMID: 35348763 PMCID: PMC9237740 DOI: 10.1093/plphys/kiac149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 05/15/2023]
Abstract
The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
27
|
Dünser K, Schöller M, Rößling AK, Löfke C, Xiao N, Pařízková B, Melnik S, Rodriguez-Franco M, Stöger E, Novák O, Kleine-Vehn J. Endocytic trafficking promotes vacuolar enlargements for fast cell expansion rates in plants. eLife 2022; 11:75945. [PMID: 35686734 PMCID: PMC9187339 DOI: 10.7554/elife.75945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The vacuole has a space-filling function, allowing a particularly rapid plant cell expansion with very little increase in cytosolic content (Löfke et al., 2015; Scheuring et al., 2016; Dünser et al., 2019). Despite its importance for cell size determination in plants, very little is known about the mechanisms that define vacuolar size. Here, we show that the cellular and vacuolar size expansions are coordinated. By developing a pharmacological tool, we enabled the investigation of membrane delivery to the vacuole during cellular expansion. Our data reveal that endocytic membrane sorting from the plasma membrane to the vacuole is enhanced in the course of rapid root cell expansion. While this ‘compromise’ mechanism may theoretically at first decelerate cell surface enlargements, it fuels vacuolar expansion and, thereby, ensures the coordinated augmentation of vacuolar occupancy in dynamically expanding plant cells.
Collapse
Affiliation(s)
- Kai Dünser
- Molecular Plant Physiology (MoPP), Faculty of Biology, University of Freiburg, Freiburg, Germany.,Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.,Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Maria Schöller
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ann-Kathrin Rößling
- Molecular Plant Physiology (MoPP), Faculty of Biology, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Christian Löfke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nannan Xiao
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Barbora Pařízková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Jürgen Kleine-Vehn
- Molecular Plant Physiology (MoPP), Faculty of Biology, University of Freiburg, Freiburg, Germany.,Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.,Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Ito E, Uemura T. RAB GTPases and SNAREs at the trans-Golgi network in plants. JOURNAL OF PLANT RESEARCH 2022; 135:389-403. [PMID: 35488138 PMCID: PMC9188535 DOI: 10.1007/s10265-022-01392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 05/07/2023]
Abstract
Membrane traffic is a fundamental cellular system to exchange proteins and membrane lipids among single membrane-bound organelles or between an organelle and the plasma membrane in order to keep integrity of the endomembrane system. RAB GTPases and SNARE proteins, the key regulators of membrane traffic, are conserved broadly among eukaryotic species. However, genome-wide analyses showed that organization of RABs and SNAREs that regulate the post-Golgi transport pathways is greatly diversified in plants compared to other model eukaryotes. Furthermore, some organelles acquired unique properties in plant lineages. Like in other eukaryotic systems, the trans-Golgi network of plants coordinates secretion and vacuolar transport; however, uniquely in plants, it also acts as a platform for endocytic transport and recycling. In this review, we focus on RAB GTPases and SNAREs that function at the TGN, and summarize how these regulators perform to control different transport pathways at the plant TGN. We also highlight the current knowledge of RABs and SNAREs' role in regulation of plant development and plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Emi Ito
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| |
Collapse
|
29
|
Hasegawa Y, Huarancca Reyes T, Uemura T, Baral A, Fujimaki A, Luo Y, Morita Y, Saeki Y, Maekawa S, Yasuda S, Mukuta K, Fukao Y, Tanaka K, Nakano A, Takagi J, Bhalerao RP, Yamaguchi J, Sato T. The TGN/EE SNARE protein SYP61 and the ubiquitin ligase ATL31 cooperatively regulate plant responses to carbon/nitrogen conditions in Arabidopsis. THE PLANT CELL 2022; 34:1354-1374. [PMID: 35089338 PMCID: PMC8972251 DOI: 10.1093/plcell/koac014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/30/2021] [Indexed: 05/23/2023]
Abstract
Ubiquitination is a post-translational modification involving the reversible attachment of the small protein ubiquitin to a target protein. Ubiquitination is involved in numerous cellular processes, including the membrane trafficking of cargo proteins. However, the ubiquitination of the trafficking machinery components and their involvement in environmental responses are not well understood. Here, we report that the Arabidopsis thaliana trans-Golgi network/early endosome localized SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein SYP61 interacts with the transmembrane ubiquitin ligase ATL31, a key regulator of resistance to disrupted carbon (C)/nitrogen/(N)-nutrient conditions. SYP61 is a key component of membrane trafficking in Arabidopsis. The subcellular localization of ATL31 was disrupted in knockdown mutants of SYP61, and the insensitivity of ATL31-overexpressing plants to high C/low N-stress was repressed in these mutants, suggesting that SYP61 and ATL31 cooperatively function in plant responses to nutrient stress. SYP61 is ubiquitinated in plants, and its ubiquitination level is upregulated under low C/high N-nutrient conditions. These findings provide important insights into the ubiquitin signaling and membrane trafficking machinery in plants.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Thais Huarancca Reyes
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Anirban Baral
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden
| | - Akari Fujimaki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yongming Luo
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yoshie Morita
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shugo Maekawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Shigetaka Yasuda
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Koki Mukuta
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Junpei Takagi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| |
Collapse
|
30
|
Pang L, Ma Z, Zhang X, Huang Y, Li R, Miao Y, Li R. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. MOLECULAR PLANT 2022; 15:398-418. [PMID: 34798312 DOI: 10.1016/j.molp.2021.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/22/2023]
Abstract
Delivery of proteins to the plasma membrane occurs via secretion, which requires tethering, docking, priming, and fusion of vesicles. In yeast and mammalian cells, an evolutionarily conserved RAB GTPase activation cascade functions together with the exocyst and SNARE proteins to coordinate vesicle transport with fusion at the plasma membrane. However, it is unclear whether this is the case in plants. In this study, we show that the small GTPase RABA2a recruits and interacts with the VAMP721/722-SYP121-SNAP33 SNARE ternary complex for membrane fusion. Through immunoprecipitation coupled with mass spectrometry analysis followed by the validatation with a series of biochemical assays, we identified the SNARE proteins VAMP721 and SYP121 as the interactors and downstream effectors of RABA2a. Further expreiments showed that RABA2a interacts with all members of the SNARE complex in its GTP-bound form and modulates the assembly of the VAMP721/722-SYP121-SNAP33 SNARE ternary complex. Intriguingly, we did not observe the interaction of the exocyst subunits with either RABA2a or theSNARE proteins in several different experiments. Neither RABA2a inactivation affects the subcellular localization or assembly of the exocystnor the exocyst subunit mutant exo84b shows the disrupted RABA2a-SNARE association or SNARE assembly, suggesting that the RABA2a-SNARE- and exocyst-mediated secretory pathways are largely independent. Consistently, our live imaging experiments reveal that the two sets of proteins follow non-overlapping trafficking routes, and genetic and cell biologyanalyses indicate that the two pathways select different cargos. Finally, we demonstrate that the plant-specific RABA2a-SNARE pathway is essential for the maintenance of potassium homeostasis in Arabisopsis seedlings. Collectively, our findings imply that higher plants might have generated different endomembrane sorting pathways during evolution and may enable the highly conserved endomembrane proteins to participate in plant-specific trafficking mechanisms for adaptation to the changing environment.
Collapse
Affiliation(s)
- Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanzhi Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruili Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
31
|
Genome-Wide Identification and Expression Analysis of SNARE Genes in Brassica napus. PLANTS 2022; 11:plants11050711. [PMID: 35270180 PMCID: PMC8912762 DOI: 10.3390/plants11050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are central components that drive membrane fusion events during exocytosis and endocytosis and play important roles in different biological processes of plants. In this study, we identified 237 genes encoding SNARE family proteins in B. napus in silico at the whole-genome level. Phylogenetic analysis showed that BnaSNAREs could be classified into five groups (Q (a-, b-, c-, bc-) and R) like other plant SNAREs and clustered into twenty-five subclades. The gene structure and protein domain of each subclade were found to be highly conserved. In many subclades, BnaSNAREs are significantly expanded compared with the orthologous genes in Arabidopsis thaliana. BnaSNARE genes are expressed differentially in the leaves and roots of B. napus. RNA-seq data and RT-qPCR proved that some of the BnaSNAREs are involved in the plant response to S. sclerotiorum infection as well as treatments with toxin oxalic acid (OA) (a virulence factor often secreted by S. sclerotiorum) or abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), which individually promote resistance to S. sclerotiorum. Moreover, the interacted proteins of BnaSNAREs contain some defense response-related proteins, which increases the evidence that BnaSNAREs are involved in plant immunity. We also found the co-expression of BnaSYP121/2s, BnaSNAPs, and BnaVAMP722/3s in B. napus due to S. sclerotiorum infection as well as the probable interaction among them.
Collapse
|
32
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
33
|
Zhang M, Chen Z, Yuan F, Wang B, Chen M. Integrative transcriptome and proteome analyses provide deep insights into the molecular mechanism of salt tolerance in Limonium bicolor. PLANT MOLECULAR BIOLOGY 2022; 108:127-143. [PMID: 34950990 DOI: 10.1007/s11103-021-01230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 05/21/2023]
Abstract
Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
34
|
Gigli-Bisceglia N, Testerink C. Fighting salt or enemies: shared perception and signaling strategies. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102120. [PMID: 34856479 DOI: 10.1016/j.pbi.2021.102120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants react to a myriad of biotic and abiotic environmental signals through specific cellular mechanisms required for survival under stress. Although pathogen perception has been widely studied and characterized, salt stress perception and signaling remain largely elusive. Recent observations, obtained in the model plant Arabidopsis thaliana, show that perception of specific features of pathogens also allows plants to mount salt stress resilience pathways, highlighting the possibility that salt sensing and pathogen perception mechanisms partially overlap. We discuss these overlapping strategies and examine the emerging role of A. thaliana cell wall and plasma membrane components in activating both salt- and pathogen-induced responses, as part of exquisite mechanisms underlying perception of damage and danger. This knowledge helps understanding the complexity of plant responses to pathogens and salinity, leading to new hypotheses that could explain why plants evolved similar strategies to respond to these, at first sight, very different types of stimuli.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands.
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands.
| |
Collapse
|
35
|
Gaggar P, Kumar M, Mukhopadhyay K. Genome-Scale Identification, in Silico Characterization and Interaction Study Between Wheat SNARE and NPSN Gene Families Involved in Vesicular Transport. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2492-2501. [PMID: 32191897 DOI: 10.1109/tcbb.2020.2981896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wheat is an important cereal crop grown worldwide but it's yield is severely affected by various biotic and abiotic stresses. SNAREs are key regulators of vesicle trafficking and are present in abundance in higher plant species suggesting their prominence in growth and development. Novel Plant SNAREs (NPSN) are found exclusively in plants. Hence, a comprehensive analysis of these two gene families in wheat genome was accomplished in this study. We report here 27 SNAREs and eight NPSN genes. These genes and their respective proteins were investigated for gene structure, physiochemical properties, domain and motif architecture, phylogeny, chromosomal localization and possible interactions. Phylogenetic and motif analysis confirmed SNARE domain in all the proteins. Functional annotation revealed participation in biological process like vesicle fusion, exocytosis, protein targeting to vacuole and SNAP receptor activity. At subcellular level, SNAREs were localized in multiple organelles whereas NPSN proteins were localized in cytoplasm where they regulate vesicle fusion. The 3-D structures built with Modeller proved the presence of SNARE motifs in the identified proteins. Possible protein-protein interactions between SNARE and NPSN proteins were determined and docking was performed. The results augmented our understanding about molecular function, evolutionary relation, location inside the cell and their interactions.
Collapse
|
36
|
Deng J, Wang X, Liu Z, Mao T. The microtubule-associated protein WDL4 modulates auxin distribution to promote apical hook opening in Arabidopsis. THE PLANT CELL 2021; 33:1927-1944. [PMID: 33730147 PMCID: PMC8290285 DOI: 10.1093/plcell/koab080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 05/08/2023]
Abstract
The unique apical hook in dicotyledonous plants protects the shoot apical meristem and cotyledons when seedlings emerge through the soil. Its formation involves differential cell growth under the coordinated control of plant hormones, especially ethylene and auxin. Microtubules are essential players in plant cell growth that are regulated by multiple microtubule-associated proteins (MAPs). However, the role and underlying mechanisms of MAP-microtubule modules in differential cell growth are poorly understood. In this study, we found that the previously uncharacterized Arabidopsis MAP WAVE-DAMPENED2-LIKE4 (WDL4) protein plays a positive role in apical hook opening. WDL4 exhibits a temporal expression pattern during hook development in dark-grown seedlings that is directly regulated by ethylene signaling. WDL4 mutants showed a delayed hook opening phenotype while overexpression of WDL4 resulted in enhanced hook opening. In particular, wdl4-1 mutants exhibited stronger auxin accumulation in the concave side of the apical hook. Furthermore, the regulation of the auxin maxima and trafficking of the auxin efflux carriers PIN-FORMED1 (PIN1) and PIN7 in the hook region is critical for WDL4-mediated hook opening. Together, our study demonstrates that WDL4 positively regulates apical hook opening by modulating auxin distribution, thus unraveling a mechanism for MAP-mediated differential plant cell growth.
Collapse
Affiliation(s)
- Jia Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
37
|
ShNPSN11, a vesicle-transport-related gene, confers disease resistance in tomato to Oidium neolycopersici. Biochem J 2021; 477:3851-3866. [PMID: 32955082 DOI: 10.1042/bcj20190776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Tomato powdery mildew, caused by Oidium neolycopersici, is a fungal disease that results in severe yield loss in infected plants. Herein, we describe the function of a class of proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which play a role in vesicle transport during defense signaling. To date, there have been no reports describing the function of tomato SNAREs during resistance signaling to powdery mildew. Using a combination of classical plant pathology-, genetics-, and cell biology-based approaches, we evaluate the role of ShNPSN11 in resistance to the powdery mildew pathogen O. neolycopersici. Quantitative RT-PCR analysis of tomato SNAREs revealed that ShNPSN11 mRNA accumulation in disease-resistant varieties was significantly increased following pathogen, compared with susceptible varieties, suggesting a role during induced defense signaling. Using in planta subcellular localization, we demonstrate that ShNPSN11 was primarily localized at the plasma membrane, consistent with the localization of SNARE proteins and their role in defense signaling and trafficking. Silencing of ShNPSN11 resulted in increased susceptibility to O. neolycopersici, with pathogen-induced levels of H2O2 and cell death elicitation in ShNPSN11-silenced lines showing a marked reduction. Transient expression of ShNPSN11 did not result in the induction of a hypersensitive cell death response or suppress cell death induced by BAX. Taken together, these data demonstrate that ShNPSNl11 plays an important role in defense activation and host resistance to O. neolycopersici in tomato LA1777.
Collapse
|
38
|
Ruan H, Li J, Wang T, Ren H. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Front Cell Dev Biol 2021; 8:615447. [PMID: 33553150 PMCID: PMC7859277 DOI: 10.3389/fcell.2020.615447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pollen germination and pollen tube growth are important biological events in the sexual reproduction of higher plants, during which a large number of vesicle trafficking and membrane fusion events occur. When secretory vesicles are transported via the F-actin network in proximity to the apex of the pollen tube, the secretory vesicles are tethered and fused to the plasma membrane by tethering factors and SNARE proteins, respectively. The coupling and uncoupling between the vesicle membrane and plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling molecules, including small G proteins, calcium, and PIP2. In this review, we focus on the current knowledge regarding secretory vesicle delivery, tethering, and fusion during pollen germination and tube growth and summarize the progress in research on how regulators and signaling molecules participate in the above processes.
Collapse
Affiliation(s)
- Huaqiang Ruan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Jiang Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| |
Collapse
|
39
|
Laloux T, Matyjaszczyk I, Beaudelot S, Hachez C, Chaumont F. Interaction Between the SNARE SYP121 and the Plasma Membrane Aquaporin PIP2;7 Involves Different Protein Domains. FRONTIERS IN PLANT SCIENCE 2021; 11:631643. [PMID: 33537055 PMCID: PMC7847993 DOI: 10.3389/fpls.2020.631643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are channels facilitating the passive diffusion of water and small solutes. Arabidopsis PIP2;7 trafficking occurs through physical interaction with SNARE proteins including the syntaxin SYP121, a plasma membrane Qa-SNARE involved in membrane fusion. To better understand the interaction mechanism, we aimed at identifying the interaction motifs in SYP121 and PIP2;7 using ratiometric bimolecular fluorescence complementation assays in Nicotiana benthamiana. SYP121 consists of four regions, N, H, Q, and C, and sequential deletions revealed that the C region, containing the transmembrane domain, as well as the H and Q regions, containing the Habc and Qa-SNARE functional domains, interact with PIP2;7. Neither the linker between the Habc and the Qa-SNARE domains nor the H or Q regions alone could fully restore the interaction with PIP2;7, suggesting that the interacting motif depends on the conformation taken by the HQ region. When investigating the interacting motif(s) in PIP2;7, we observed that deletion of the cytosolic N- and/or C- terminus led to a significant decrease in the interaction with SYP121. Shorter deletions revealed that at the N-terminal amino acid residues 18-26 were involved in the interaction. Domain swapping experiments between PIP2;7 and PIP2;6, a PIP isoform that does not interact with SYP121, showed that PIP2;7 N-terminal part up to the loop C was required to restore the full interaction signal, suggesting that, as it is the case for SYP121, the interaction motif(s) in PIP2;7 depend on the protein conformation. Finally, we also showed that PIP2;7 physically interacted with other Arabidopsis SYP1s and SYP121 orthologs.
Collapse
|
40
|
Guan L, Yang S, Li S, Liu Y, Liu Y, Yang Y, Qin G, Wang H, Wu T, Wang Z, Feng X, Wu Y, Zhu JK, Li X, Li L. AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. FRONTIERS IN PLANT SCIENCE 2021; 12:635732. [PMID: 34149743 PMCID: PMC8211912 DOI: 10.3389/fpls.2021.635732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
The plant cytoskeleton forms a stereoscopic network that regulates cell morphogenesis. The cytoskeleton also provides tracks for trafficking of vesicles to the target membrane. Fusion of vesicles with the target membrane is promoted by SNARE proteins, etc. The vesicle-SNARE, Sec22, regulates membrane trafficking between the ER and Golgi in yeast and mammals. Arabidopsis AtSEC22 might also regulate early secretion and is essential for gametophyte development. However, the role of AtSEC22 in plant development is unclear. To clarify the role of AtSEC22 in the regulation of plant development, we isolated an AtSEC22 knock-down mutant, atsec22-4, and found that cell morphogenesis and development were seriously disturbed. atsec22-4 exhibited shorter primary roots (PRs), dwarf plants, and partial abortion. More interestingly, the atsec22-4 mutant had less trichomes with altered morphology, irregular stomata, and pavement cells, suggesting that cell morphogenesis was perturbed. Further analyses revealed that in atsec22-4, vesicle trafficking was blocked, resulting in the trapping of proteins in the ER and collapse of structures of the ER and Golgi apparatus. Furthermore, AtSEC22 defects resulted in impaired organization and stability of the cytoskeleton in atsec22-4. Our findings revealed essential roles of AtSEC22 in membrane trafficking and cytoskeleton dynamics during plant development.
Collapse
Affiliation(s)
- Li Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Wang
- School of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Lixin Li,
| |
Collapse
|
41
|
Gu X, Brennan A, Wei W, Guo G, Lindsey K. Vesicle Transport in Plants: A Revised Phylogeny of SNARE Proteins. Evol Bioinform Online 2020; 16:1176934320956575. [PMID: 33116351 PMCID: PMC7573729 DOI: 10.1177/1176934320956575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Communication systems within and between plant cells involve the transfer of ions and molecules between compartments, and are essential for development and responses to biotic and abiotic stresses. This in turn requires the regulated movement and fusion of membrane systems with their associated cargo. Recent advances in genomics has provided new resources with which to investigate the evolutionary relationships between membrane proteins across plant species. Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are known to play important roles in vesicle trafficking across plant, animal and microbial species. Using recent public expression and transcriptomic data from 9 representative green plants, we investigated the evolution of the SNARE classes and linked protein changes to functional specialization (expression patterns). We identified an additional 3 putative SNARE genes in the model plant Arabidopsis. We found that all SNARE classes have expanded in number to a greater or lesser degree alongside the evolution of multicellularity, and that within-species expansions are also common. These gene expansions appear to be associated with the accumulation of amino acid changes and with sub-functionalization of SNARE family members to different tissues. These results provide an insight into SNARE protein evolution and functional specialization. The work provides a platform for hypothesis-building and future research into the precise functions of these proteins in plant development and responses to the environment.
Collapse
Affiliation(s)
- Xiaoyan Gu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Biosciences, Durham University, Durham, UK
| | - Adrian Brennan
- Department of Biosciences, Durham University, Durham, UK
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, UK
| | - Guangqin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
42
|
MARTINIÈRE A, MOREAU P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never‐ending story. J Microsc 2020; 280:140-157. [DOI: 10.1111/jmi.12952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- A. MARTINIÈRE
- Univ Montpellier, CNRS, INRAE, Montpellier SupAgro BPMP Montpellier France
| | - P. MOREAU
- UMR 5200 Membrane Biogenesis Laboratory CNRS and University of Bordeaux, INRAE Bordeaux Villenave d'Ornon France
| |
Collapse
|
43
|
Wun CL, Quan Y, Zhuang X. Recent Advances in Membrane Shaping for Plant Autophagosome Biogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:565. [PMID: 32547570 PMCID: PMC7270194 DOI: 10.3389/fpls.2020.00565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is an intracellular degradation process, which is highly conserved in eukaryotes. During this process, unwanted cytosolic constituents are sequestered and delivered into the vacuole/lysosome by a double-membrane organelle known as an autophagosome. The autophagosome initiates from a membrane sac named the phagophore, and after phagophore expansion and closure, the outer membrane fuses with the vacuole/lysosome to release the autophagic body into the vacuole. Membrane sources derived from the endomembrane system (e.g., Endoplasmic Reticulum, Golgi and endosome) have been implicated to contribute to autophagosome in different steps (initiation, expansion or maturation). Therefore, coordination between the autophagy-related (ATG) proteins and membrane tethers from the endomembrane system is required during autophagosome biogenesis. In this review, we will update recent findings with a focus on comparing the selected core ATG complexes and the endomembrane tethering machineries for shaping the autophagosome membrane in yeast, mammal, and plant systems.
Collapse
|
44
|
Kwon H, Cho DJ, Lee H, Nam MH, Kwon C, Yun HS. CCOAOMT1, a candidate cargo secreted via VAMP721/722 secretory vesicles in Arabidopsis. Biochem Biophys Res Commun 2020; 524:977-982. [PMID: 32059845 DOI: 10.1016/j.bbrc.2020.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
We previously found that VAMP721/722 SNARE proteins guide secretory vesicles to pathogen-attacking sites during immune responses in Arabidopsis, which suggests that these vesicles should deliver immune molecules. However, the lethality of vamp721 vamp722 double null mutant makes it difficult to understand the nature of cargo transported via VAMP721/722 vesicles. Since VAMP721/722-depleted (VAMP721+/-VAMP722-/- and VAMP721-/-VAMP722+/-) plants show compromised resistance to extracellular pathogens, we assume that an immune protein secreted through the VAMP721/722-engaged exocytosis would be remained more in VAMP721/722-depleted plants than WT. By comparing intracellular proteins between WT and VAMP721/722-depleted plants, we found caffeoyl-CoA O-methyltransferase 1 (CCOAOMT1) involved in the lignin biosynthesis was more abundantly detected in both VAMP721/722-depleted lines than WT. Plants are well-known to deposit secondary cell walls as physical barriers at pathogen-attempting sites. Therefore, extracellular detection of CCOAOMT1 and impaired resistance to Pseudomonas syringae DC3000 in ccoaomt1 plants suggest that plants secrete cell wall-modifying enzymes at least including CCOAOMT1 to reinforce the secondary cell walls for immunity.
Collapse
Affiliation(s)
- Hyeokjin Kwon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Da Jeong Cho
- Department of Molecular Biology, Dankook University, Cheonan, 31116, South Korea
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, South Korea
| | - Myung Hee Nam
- Environmental Risk and Welfare Research Team, Korea Basic Science Institute (KBSI), Seoul, 02855, South Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, South Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
45
|
Mutte SK, Weijers D. Deep Evolutionary History of the Phox and Bem1 (PB1) Domain Across Eukaryotes. Sci Rep 2020; 10:3797. [PMID: 32123237 PMCID: PMC7051960 DOI: 10.1038/s41598-020-60733-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/14/2020] [Indexed: 01/01/2023] Open
Abstract
Protein oligomerization is a fundamental process to build complex functional modules. Domains that facilitate the oligomerization process are diverse and widespread in nature across all kingdoms of life. One such domain is the Phox and Bem1 (PB1) domain, which is functionally well-studied in the animal kingdom. However, beyond animals, neither the origin nor the evolutionary patterns of PB1-containing proteins are understood. While PB1 domain proteins have been found in other kingdoms including plants, it is unclear how these relate to animal PB1 proteins. To address this question, we utilized large transcriptome datasets along with the proteomes of a broad range of species. We discovered eight PB1 domain-containing protein families in plants, along with four each in Protozoa and Fungi and three families in Chromista. Studying the deep evolutionary history of PB1 domains throughout eukaryotes revealed the presence of at least two, but likely three, ancestral PB1 copies in the Last Eukaryotic Common Ancestor (LECA). These three ancestral copies gave rise to multiple orthologues later in evolution. Analyzing the sequence and secondary structure properties of plant PB1 domains from all the eight families showed their common ubiquitin β-grasp fold, despite poor sequence identity. Tertiary structural models of these plant PB1 families, combined with Random Forest based classification, indicated family-specific differences attributed to the length of PB1 domain and the proportion of β-sheets. Thus, this study not only identifies novel PB1 families, but also provides an evolutionary basis to understand their diverse functional interactions.
Collapse
Affiliation(s)
- Sumanth Kumar Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
| |
Collapse
|
46
|
Zhang L, Liu Y, Zhu XF, Jung JH, Sun Q, Li TY, Chen LJ, Duan YX, Xuan YH. SYP22 and VAMP727 regulate BRI1 plasma membrane targeting to control plant growth in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:1059-1065. [PMID: 30802967 DOI: 10.1111/nph.15759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 05/15/2023]
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yang Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jin Hee Jung
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Jie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Xi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
47
|
Kozeko LY. The Role of HSP90 Chaperones in Stability and Plasticity of Ontogenesis of Plants under Normal and Stressful Conditions (Arabidopsis thaliana). CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719020063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Huang S, Jiang L, Zhuang X. Possible Roles of Membrane Trafficking Components for Lipid Droplet Dynamics in Higher Plants and Green Algae. FRONTIERS IN PLANT SCIENCE 2019; 10:207. [PMID: 30858860 PMCID: PMC6397863 DOI: 10.3389/fpls.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
Lipid droplets are ubiquitous dynamic organelles that contain neutral lipids surrounded by a phospholipid monolayer. They can store and supply lipids for energy metabolism and membrane synthesis. In addition, protein transport and lipid exchange often occur between LDs and various organelles to control lipid homeostasis in response to multiple stress responses and cellular signaling. In recent years, multiple membrane trafficking proteins have been identified through LD proteomics and genetic analyses. These membrane trafficking machineries are emerging as critical regulators to function in different LD-organelle interactions, e.g., for LD dynamics, biogenesis and turnover. In this review, we will summarize recent advances in regard to LD-related membrane trafficking proteins and discuss future investigations in higher plants and green algae.
Collapse
Affiliation(s)
- Shuxian Huang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Xiaohong Zhuang,
| |
Collapse
|
49
|
Shot-Gun Proteomic Analysis on Roots of Arabidopsis pldα1 Mutants Suggesting the Involvement of PLDα1 in Mitochondrial Protein Import, Vesicular Trafficking and Glucosinolate Biosynthesis. Int J Mol Sci 2018; 20:ijms20010082. [PMID: 30587782 PMCID: PMC6337374 DOI: 10.3390/ijms20010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses. Here, we present a shot-gun differential proteomic analysis on roots of two Arabidopsis pldα1 mutants compared to the wild type. Interestingly, PLDα1 deficiency leads to altered abundances of proteins involved in diverse processes related to membrane transport including endocytosis and endoplasmic reticulum-Golgi transport. PLDα1 may be involved in the stability of attachment sites of endoplasmic reticulum to the plasma membrane as suggested by increased abundance of synaptotagmin 1, which was validated by immunoblotting and whole-mount immunolabelling analyses. Moreover, we noticed a robust abundance alterations of proteins involved in mitochondrial import and electron transport chain. Notably, the abundances of numerous proteins implicated in glucosinolate biosynthesis were also affected in pldα1 mutants. Our results suggest a broader biological involvement of PLDα1 than anticipated thus far, especially in the processes such as endomembrane transport, mitochondrial protein import and protein quality control, as well as glucosinolate biosynthesis.
Collapse
|
50
|
Sakamoto T, Tsujimoto-Inui Y, Sotta N, Hirakawa T, Matsunaga TM, Fukao Y, Matsunaga S, Fujiwara T. Proteasomal degradation of BRAHMA promotes Boron tolerance in Arabidopsis. Nat Commun 2018; 9:5285. [PMID: 30538237 PMCID: PMC6290004 DOI: 10.1038/s41467-018-07393-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/05/2018] [Indexed: 12/02/2022] Open
Abstract
High levels of boron (B) induce DNA double-strand breaks (DSBs) in eukaryotes, including plants. Here we show a molecular pathway of high B-induced DSBs by characterizing Arabidopsis thaliana hypersensitive to excess boron mutants. Molecular analysis of the mutants revealed that degradation of a SWItch/Sucrose Non-Fermentable subunit, BRAHMA (BRM), by a 26S proteasome (26SP) with specific subunits is a key process for ameliorating high-B-induced DSBs. We also found that high-B treatment induces histone hyperacetylation, which increases susceptibility to DSBs. BRM binds to acetylated histone residues and opens chromatin. Accordingly, we propose that the 26SP limits chromatin opening by BRM in conjunction with histone hyperacetylation to maintain chromatin stability and avoid DSB formation under high-B conditions. Interestingly, a positive correlation between the extent of histone acetylation and DSB formation is evident in human cultured cells, suggesting that the mechanism of DSB induction is also valid in animals. Boron is essential for plant survival but high levels can impair growth and cause DNA damage. Here the authors show that Arabidopsis can ameliorate Boron toxicity via proteasomal degradation of BRAHMA to minimize open chromatin and reduce the likelihood of DNA double strand breaks.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Yayoi Tsujimoto-Inui
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Naoyuki Sotta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Hirakawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoko M Matsunaga
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yoichiro Fukao
- Plant Global Education Project, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan.,Department of Bioinformatics, Ritsumeikan University, 1-1-1, Nodihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|