1
|
Shoman N, Solomonova E, Akimov A, Rylkova O. Toxic and protective mechanisms of cyanobacteria Synechococcus sp. in response to zinc oxide nanoparticles. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:565-576. [PMID: 39966285 DOI: 10.1007/s10646-025-02860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The rapid growth of zinc oxide nanoparticles (ZnO NPs) production leads to their accumulation in the environment. However, the impact of ZnO NPs on aquatic ecosystems has not been fully studied. The question of assessing the impact of this pollutant on microalgae and cyanobacteria as the primary-productive link of aquatic biocenoses remains relevant. In the presented study, changes in morphology, structural-functional and fluorescent indices of cyanobacterium Synechococcus sp. were established for concentrations of zinc oxide nanoparticles (ZnO NPs) ranging from 0.3-14 mg L-1. ZnO NPs have mechanical and cytotoxic effects on Synechococcus sp. cells. At high pollutant concentrations (8.4-14 mg L-1), pronounced deformation of Synechococcus sp. cell membranes was observed, which was caused by the mechanical effect of the pollutant on the cells and heteroaggregation of ZnO particles with cyanobacterial cells. At the same time, no effect of NPs on the cell morphometric indices was revealed. Physiological and biochemical parameters of single cell Synechococcus sp. and cells aggregated with NPs do not differ significantly at ZnO NPs concentrations of 1.4-14 mg L-1. At concentrations above 1.4 mg L-1, the production of reactive oxygen species in Synechococcus sp. significantly increased in both groups of cells. At the same time, deterioration of other physiological and biochemical parameters of cells was also observed. Growth inhibition, decrease of intracellular content of chlorophyll and phycoerythrin, dissociation of phycoerythrobilin in antenna complexes, decrease of metabolic activity of cells were observed. High sensitivity of the photosynthetic apparatus of Synechococcus sp. to ZnO NPs was shown. It was found that in Synechococcus sp. Unlike eukaryotic algae, the maximum efficiency of light quantum utilization and the minimum values of non-photochemical quenching of chlorophyll fluorescence are registered under light conditions corresponding to the growth conditions of cyanobacteria. The results of the presented study contribute to the understanding of the mechanisms of toxicity of dispersed ZnO NPs and effective assessment of their probable ecological risk and interaction with phototrophic microorganisms.
Collapse
Affiliation(s)
- Natalia Shoman
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nakhimov Avе., Sevastopol, Russian Federation.
| | - Ekaterina Solomonova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nakhimov Avе., Sevastopol, Russian Federation
| | - Arkady Akimov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nakhimov Avе., Sevastopol, Russian Federation
| | - Olga Rylkova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nakhimov Avе., Sevastopol, Russian Federation
| |
Collapse
|
2
|
Maurya N, Sharma A, Agrawal M, Sundaram S. Role of Novel Chlorella vulgaris SSAU8 in Improving the Soil Health Under Induced Drought Stress. Curr Microbiol 2025; 82:89. [PMID: 39821437 DOI: 10.1007/s00284-025-04067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm. Therefore, this study has utilized a novel alga, Chlorella vulgaris SSAU8 to observe the impact of low water potential induced by PEG-6000 (polyethylene glycol). The study has utilized the UV-Vis spectrophotometer to explore the nature of cyanobacteria by examining biomass and pigment concentrations. The assessment also includes the photosystem response, which was recorded by the Dual-modulation kinetic fluorometer FL3500/F (PSI, Brno, Czech Republic, version 3.7.0.1). The effect of PEG-6000-induced drought was seen to inhibit growth and biomass synthesis at > 30 g L-1 concentration. It was also observed that the microbe could easily shuffle its photosystem behavior to nullify the effect of high PEG-6000 concentration, which shows the potential of the microbe in the water-deficient area and can be an important aspect to enhance soil fertility. Non-photochemical quenching and heat dissipation play a crucial role in cyanobacteria tolerating drought conditions. So, overall, this study thoroughly explores the behavior of Chlorella vulgaris SSAU8 in artificial drought stress and paves a way to combat one of the major environmental issues of the current era.
Collapse
Affiliation(s)
- Neetu Maurya
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Manshi Agrawal
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
3
|
Ryzhkov N, Colson N, Ahmed E, Pobedinskas P, Haenen K, Janssen PJ, Braun A. Fluorescence and electron transfer of Limnospira indica functionalized biophotoelectrodes. PHOTOSYNTHESIS RESEARCH 2024; 162:29-45. [PMID: 39168914 DOI: 10.1007/s11120-024-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation. We have integrated live cyanobacterial cultures into photovoltaic devices by embedding Limnospira indica PCC 8005 cyanobacteria in agar and PEDOT:PSS matrices on the surface of boron-doped diamond electrodes. We have subjected them to varying external polarizations while simultaneously measuring current response and photosynthetic performance. For the latter, we employed Pulse-Amplitude-Modulation (PAM) fluorometry as a non-invasive and real-time monitoring tool. Our study demonstrates an improved light utilization efficiency for L. indica PCC 8005 when immobilized in a conductive matrix, particularly so for low-intensity light. Simultaneously, the impact of electrical polarization as an environmental factor influencing the photosynthetic apparatus diminishes as matrix conductivity increases. This results in only a slight decrease in light utilization efficiency for the illuminated sample compared to the dark-adapted state.
Collapse
Affiliation(s)
- Nikolay Ryzhkov
- Empa. Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, 8600, Dübendorf, Switzerland.
| | - Nora Colson
- Empa. Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, 8600, Dübendorf, Switzerland
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590, Diepenbeek, Belgium
- IMOMEC, IMEC vzw, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Essraa Ahmed
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590, Diepenbeek, Belgium
- IMOMEC, IMEC vzw, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Paulius Pobedinskas
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590, Diepenbeek, Belgium
- IMOMEC, IMEC vzw, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Ken Haenen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590, Diepenbeek, Belgium
- IMOMEC, IMEC vzw, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Paul J Janssen
- Belgian Nuclear Research Centre, Institute for Nuclear Medical Applications, 2400, Mol, Belgium
| | - Artur Braun
- Empa. Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, 8600, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Singh AP, Gupta A, Singh PR, Jaiswal J, Sinha RP. Synergistic effects of salt and ultraviolet radiation on the rice-field cyanobacterium Nostochopsis lobatus HKAR-21. Photochem Photobiol Sci 2024; 23:285-302. [PMID: 38143251 DOI: 10.1007/s43630-023-00517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Environmental variation has a significant impact on how organisms, including cyanobacteria, respond physiologically and biochemically. Salinity and ultraviolet radiation (UVR)-induced variations in the photopigments of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21 and its photosynthetic performance was studied. We observed that excessive energy dissipation after UVR is mostly caused by Non-Photochemical Quenching (NPQ), whereas photochemical quenching is important for preventing photoinhibition. These findings suggest that ROS production may play an important role in the UVR-induced injury. To reduce ROS-induced oxidative stress, Nostochopsis lobatus HKAR-21 induces the effective antioxidant systems, which includes different antioxidant compounds like carotenoids and enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). The study indicates that Nostochopsis lobatus HKAR-21 exposed to photosynthetically active radiation + UV-A + UV-B (PAB) and PAB + NaCl (PABN) had significantly reduced photosynthetic efficiency. Furthermore, maximum ROS was detected in PAB exposed cyanobacterial cells. The induction of lipid peroxidation (LPO) has been investigated to evaluate the impact of UVR on the cyanobacterial membrane in addition to enzymatic defensive systems. The maximal LPO level was found in PABN treated cells. Based on the findings of this research, it was concluded that salinity and UVR had collegial effects on the major macromolecular components of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21.
Collapse
Affiliation(s)
- Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prashant R Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jyoti Jaiswal
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- University Center for Research & Development (UCRD), Chandigarh University, Chandigarh, India.
| |
Collapse
|
5
|
Bhatt U, Sharma S, Kalaji HM, Strasser RJ, Chomontowski C, Soni V. Sunlight-induced repair of photosystem II in moss Semibarbula orientalis under submergence stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:777-791. [PMID: 37696295 DOI: 10.1071/fp23073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
Lower plants such as bryophytes often encounter submergence stress, even in low precipitation conditions. Our study aimed to understand the mechanism of submergence tolerance to withstand this frequent stress in moss (Semibarbula orientalis ) during the day and at night. These findings emphasise that light plays a crucial role in photoreactivation of PSII in S. orientalis , which indicates that light not only fuels photosynthesis but also aids in repairing the photosynthetic machinery in plants. Submergence negatively affects photosynthesis parameters such as specific and phenomenological fluxes, density of functional PSII reaction centres (RC/CS), photochemical and non-photochemical quenching (Kp and Kn), quantum yields (ϕP0 , ϕE0 , ϕD0 ), primary and secondary photochemistry, performance indices (PIcs and PIabs), etc. Excessive antenna size caused photoinhibition at the PSII acceptor side, reducing the plastoquinone pool through the formation of PSII triplets and reactive oxygen species (ROS). This ROS-induced protein and PSII damage triggered the initiation of the repair cycle in presence of sunlight, eventually leading to the resumption of PSII activity. However, ROS production was regulated by antioxidants like superoxide dismutase (SOD) and catalase (CAT) activity. The rapid recovery of RS/CS observed specifically under sunlight conditions emphasises the vital role of light in enabling the assembly of essential units, such as the D1 protein of PSII, during stress in S. orientalis . Overall, light is instrumental in restoring the photosynthetic potential in S. orientalis growing under submergence stress. Additionally, it was observed that plants subjected to submergence stress during daylight hours rapidly recover their photosynthetic performance. However, submergence stress during the night requires a comparatively longer period for the restoration of photosynthesis in the moss S. orientalis .
Collapse
Affiliation(s)
- Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Shubhangani Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Hazem M Kalaji
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Aleja Hrabska 3, Raszyn 05-090, Poland; and Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Jussy 1254, Switzerland
| | - Chrystian Chomontowski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| |
Collapse
|
6
|
Saad S, Hussien MH, Abou-ElWafa GS, Aldesuquy HS, Eltanahy E. Filter cake extract from the beet sugar industry as an economic growth medium for the production of Spirulina platensis as a microbial cell factory for protein. Microb Cell Fact 2023; 22:136. [PMID: 37488525 PMCID: PMC10367415 DOI: 10.1186/s12934-023-02146-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Beet filter cake (BFC) is a by-product of sugar beet processing, which is difficult to dispose of and involves severe environmental concerns. Spirulina platensis is a microalga with a high protein content essential for human and animal nutrition. The present study aimed to utilize the beet filter cake extract (BFCE) to produce Spirulina platensis commercially. However, the cultivation of S. platensis on BFCE to produce economically single-cell protein has not been reported previously. RESULTS The batch experiment revealed the maximum dry weight at Zarrouk's medium (0.4 g/L) followed by 0.34 g/L in the treatment of 75% BFCE. The highest protein content was 50% in Zarrouk's medium, followed by 46.5% in 25% BFCE. However, adding a higher concentration of 100% BFCE led to a protein content of 31.1%. In the adaption experiment, S platensis showed an increase in dry cell weight and protein content from 25 to 75% BFCE (0.69 g/L to 1.12 g/L and 47.0% to 52.54%, respectively) with an insignificant variation compared to Zarrouk's medium (p ≤ 0.05), indicating that S. platensis can be economically produced when cultivated on 75% BFCE The predicated parameters from response surface methodology were NaNO3 (2.5 g/L), NaHCO3 (0.67 g/L), BFCE (33%) and pH = 8, which resulted in biomass yield and protein content (0.56 g/L and 52.5%, respectively) closer to that achieved using the standard Zarrouk's medium (0.6 g/L and 55.11%). Moreover, the total essential amino acid content was slightly higher in the optimized medium (38.73%) than SZM (36.98%). CONCLUSIONS Therefore, BFCE supplemented medium could be used as a novel low-cost alternative growth medium for producing a single-cell protein with acceptable quantity and quality compared to the standard Zarrouk's medium.
Collapse
Affiliation(s)
- Sara Saad
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mervat Hosny Hussien
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | | | - Eladl Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Ritter SPA, Brand LA, Vincent SL, Rosana ARR, Lewis AC, Whitford DS, Owttrim GW. Multiple Light-Dark Signals Regulate Expression of the DEAD-Box RNA Helicase CrhR in Synechocystis PCC 6803. Cells 2022; 11:3397. [PMID: 36359793 PMCID: PMC9655292 DOI: 10.3390/cells11213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Since oxygenic photosynthesis evolved in the common ancestor of cyanobacteria during the Archean, a range of sensing and response strategies evolved to allow efficient acclimation to the fluctuating light conditions experienced in the diverse environments they inhabit. However, how these regulatory mechanisms are assimilated at the molecular level to coordinate individual gene expression is still being elucidated. Here, we demonstrate that integration of a series of three distinct light signals generate an unexpectedly complex network regulating expression of the sole DEAD-box RNA helicase, CrhR, encoded in Synechocystis sp. PCC 6803. The mechanisms function at the transcriptional, translational and post-translation levels, fine-tuning CrhR abundance to permit rapid acclimation to fluctuating light and temperature regimes. CrhR abundance is enhanced 15-fold by low temperature stress. We initially confirmed that the primary mechanism controlling crhR transcript accumulation at 20 °C requires a light quantity-driven reduction of the redox poise in the vicinity of the plastoquinone pool. Once transcribed, a specific light quality cue, a red light signal, was required for crhR translation, far-red reversal of which indicates a phytochrome-mediated mechanism. Examination of CrhR repression at 30 °C revealed that a redox- and light quality-independent light signal was required to initiate CrhR degradation. The crucial role of light was further revealed by the observation that dark conditions superseded the light signals required to initiate each of these regulatory processes. The findings reveal an unexpected complexity of light-dark sensing and signaling that regulate expression of an individual gene in cyanobacteria, an integrated mechanism of environmental perception not previously reported.
Collapse
Affiliation(s)
- Sean P. A. Ritter
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Logan A. Brand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelby L. Vincent
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Allison C. Lewis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Denise S. Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
8
|
Estimating Biomass and Vitality of Microalgae for Monitoring Cultures: A Roadmap for Reliable Measurements. Cells 2022; 11:cells11152455. [PMID: 35954299 PMCID: PMC9368473 DOI: 10.3390/cells11152455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Estimating algal biomass is a prerequisite for monitoring growth of microalgae. Especially for large-scale production sites, the measurements must be robust, reliable, fast and easy to obtain. We compare the relevant parameters, discuss potential hurdles and provide recommendations to tackle these issues. The focus is on optical density and in vivo autofluorescence of chlorophyll, which have proven to be ideal candidates for monitoring purposes. Beyond biomass, cell vitality is also crucial for maintaining cultures. While maximizing biomass yield is often the primary consideration, some applications require adverse growth conditions for the synthesis of high-quality compounds. The non-invasive technique of pulse-amplified modulated (PAM) fluorescence measurements provides an ideal tool and is increasingly being employed due to ever more affordable devices. We compared three devices and studied the robustness of the dark fluorescence yield of photosystem II (Fv/Fm) at various cell densities. Although the so-called inner filter effects influence the fluorescence signal, the resulting Fv/Fm remain stable and robust over a wide range of cell densities due to mutual effects.
Collapse
|
9
|
Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nat Commun 2022; 13:1690. [PMID: 35354803 PMCID: PMC8967839 DOI: 10.1038/s41467-022-29211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.
Collapse
|
10
|
Ogawa T, Sonoike K. Screening of mutants using chlorophyll fluorescence. JOURNAL OF PLANT RESEARCH 2021; 134:653-664. [PMID: 33686578 DOI: 10.1007/s10265-021-01276-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Chlorophyll fluorescence has been widely used for the estimation of photosynthesis or its regulatory mechanisms. Chlorophyll fluorescence measurements are the methods with non-destructive nature and do not require contact between plant materials and fluorometers. Furthermore, the measuring process is very rapid. These characteristics of chlorophyll fluorescence measurements make them a suitable tool to screen mutants of photosynthesis-related genes. Furthermore, it has been shown that genes with a wide range of functions can be also analyzed by chlorophyll fluorescence through metabolic interactions. In this short review, we would like to first introduce the basic principle of the chlorophyll fluorescence measurements, and then explore the advantages and limitation of various screening methods. The emphasis is on the possibility of chlorophyll fluorescence measurements to screen mutants defective in metabolisms other than photosynthesis.
Collapse
Affiliation(s)
- Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
11
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
12
|
Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life (Basel) 2020; 11:life11010010. [PMID: 33374408 PMCID: PMC7823553 DOI: 10.3390/life11010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022] Open
Abstract
In a few years, space telescopes will investigate our Galaxy to detect evidence of life, mainly by observing rocky planets. In the last decade, the observation of exoplanet atmospheres and the theoretical works on biosignature gasses have experienced a considerable acceleration. The most attractive feature of the realm of exoplanets is that 40% of M dwarfs host super-Earths with a minimum mass between 1 and 30 Earth masses, orbital periods shorter than 50 days, and radii between those of the Earth and Neptune (1–3.8 R⊕). Moreover, the recent finding of cyanobacteria able to use far-red (FR) light for oxygenic photosynthesis due to the synthesis of chlorophylls d and f, extending in vivo light absorption up to 750 nm, suggests the possibility of exotic photosynthesis in planets around M dwarfs. Using innovative laboratory instrumentation, we exposed different cyanobacteria to an M dwarf star simulated irradiation, comparing their responses to those under solar and FR simulated lights. As expected, in FR light, only the cyanobacteria able to synthesize chlorophyll d and f could grow. Surprisingly, all strains, both able or unable to use FR light, grew and photosynthesized under the M dwarf generated spectrum in a similar way to the solar light and much more efficiently than under the FR one. Our findings highlight the importance of simulating both the visible and FR light components of an M dwarf spectrum to correctly evaluate the photosynthetic performances of oxygenic organisms exposed under such an exotic light condition.
Collapse
|
13
|
Wessendorf RL, Lu Y. Introducing an Arabidopsis thaliana Thylakoid Thiol/Disulfide-Modulating Protein Into Synechocystis Increases the Efficiency of Photosystem II Photochemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:1284. [PMID: 31681379 PMCID: PMC6805722 DOI: 10.3389/fpls.2019.01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Photosynthetic species are subjected to a variety of environmental stresses, including suboptimal irradiance. In oxygenic photosynthetic organisms, a major effect of high light exposure is damage to the Photosystem II (PSII) reaction-center protein D1. This process even happens under low or moderate light. To cope with photodamage to D1, photosynthetic organisms evolved an intricate PSII repair and reassembly cycle, which requires the participation of different auxiliary proteins, including thiol/disulfide-modulating proteins. Most of these auxiliary proteins exist ubiquitously in oxygenic photosynthetic organisms. Due to differences in mobility and environmental conditions, land plants are subject to more extensive high light stress than algae and cyanobacteria. Therefore, land plants evolved additional thiol/disulfide-modulating proteins, such as Low Quantum Yield of PSII 1 (LQY1), to aid in the repair and reassembly cycle of PSII. In this study, we introduced an Arabidopsis thaliana homolog of LQY1 (AtLQY1) into the cyanobacterium Synechocystis sp. PCC6803 and performed a series of biochemical and physiological assays on AtLQY1-expressing Synechocystis. At a moderate growth light intensity (50 µmol photons m-2 s-1), AtLQY1-expressing Synechocystis was found to have significantly higher F v /F m , and lower nonphotochemical quenching and reactive oxygen species levels than the empty-vector control, which is opposite from the loss-of-function Atlqy1 mutant phenotype. Light response curve analysis of PSII operating efficiency and electron transport rate showed that AtLQY1-expressing Synechocystis also outperform the empty-vector control under higher light intensities. The increases in F v /F m , PSII operating efficiency, and PSII electron transport rate in AtLQY1-expressing Synechocystis under such growth conditions most likely come from an increased amount of PSII, because the level of D1 protein was found to be higher in AtLQY1-expressing Synechocystis. These results suggest that introducing AtLQY1 is beneficial to Synechocystis.
Collapse
Affiliation(s)
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
14
|
Calzadilla PI, Zhan J, Sétif P, Lemaire C, Solymosi D, Battchikova N, Wang Q, Kirilovsky D. The Cytochrome b 6 f Complex Is Not Involved in Cyanobacterial State Transitions. THE PLANT CELL 2019; 31:911-931. [PMID: 30852554 PMCID: PMC6501608 DOI: 10.1105/tpc.18.00916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 05/03/2023]
Abstract
Photosynthetic organisms must sense and respond to fluctuating environmental conditions in order to perform efficient photosynthesis and to avoid the formation of dangerous reactive oxygen species. The excitation energy arriving at each photosystem permanently changes due to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like plants and algae, have developed a mechanism, named "state transitions," that balances photosystem activities. Here, we characterize the role of the cytochrome b 6 f complex and phosphorylation reactions in cyanobacterial state transitions using Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 as model organisms. First, large photosystem II (PSII) fluorescence quenching was observed in State II, a result that does not appear to be related to energy transfer from PSII to PSI (spillover). This membrane-associated process was inhibited by betaine, Suc, and high concentrations of phosphate. Then, using different chemicals affecting the plastoquinone pool redox state and cytochrome b 6 f activity, we demonstrate that this complex is not involved in state transitions in S. elongatus or Synechocystis PCC6803. Finally, by constructing and characterizing 21 protein kinase and phosphatase mutants and using chemical inhibitors, we demonstrate that phosphorylation reactions are not essential for cyanobacterial state transitions. Thus, signal transduction is completely different in cyanobacterial and plant (green alga) state transitions.
Collapse
Affiliation(s)
- Pablo I Calzadilla
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Jiao Zhan
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Claire Lemaire
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Daniel Solymosi
- Molecular Plant Biology Lab, Biochemistry Department, Faculty of Science and Engineering, University of Turku, Turku, FI-20014, Finland
| | - Natalia Battchikova
- Molecular Plant Biology Lab, Biochemistry Department, Faculty of Science and Engineering, University of Turku, Turku, FI-20014, Finland
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| |
Collapse
|
15
|
Shimakawa G, Miyake C. Oxidation of P700 Ensures Robust Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1617. [PMID: 30459798 PMCID: PMC6232666 DOI: 10.3389/fpls.2018.01617] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
In the light, photosynthetic cells can potentially suffer from oxidative damage derived from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs, including cyanobacteria, algae, and plants, manage their photosynthetic systems successfully. In the present article, we review previous research on how these photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in an oxidized state in response to excess light, under high light and low CO2 conditions, to tune the light utilization and dissipate the excess photo-excitation energy in PSI. Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized are diverse among a variety of photoautotrophs, which are evolutionarily optimized for their ecological niche.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
16
|
Zhao J, Gao F, Fan DY, Chow WS, Ma W. NDH-1 Is Important for Photosystem I Function of Synechocystis sp. Strain PCC 6803 under Environmental Stress Conditions. FRONTIERS IN PLANT SCIENCE 2018; 8:2183. [PMID: 29387069 PMCID: PMC5776120 DOI: 10.3389/fpls.2017.02183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/12/2017] [Indexed: 05/24/2023]
Abstract
Cyanobacterial NDH-1 interacts with photosystem I (PSI) to form an NDH-1-PSI supercomplex. Here, we observed that absence of NDH-1 had little, if any, effect on the functional fractions of PSI under growth conditions, but significantly reduced the functional fractions of PSI when cells of Synechocystis sp. strain PCC 6803 were moved to conditions of multiple stresses. The significant reduction in NDH-1-dependent functional fraction of PSI was initiated after PSII activity was impaired. This finding is consistent with our observation that the functional fraction of PSI under growth conditions was rapidly and significantly decreased with increasing concentrations of DCMU, which rapidly and significantly suppressed PSII activity by blocking the transfer of electrons from QA to QB in the PSII reaction center. Furthermore, absence of NDH-1 resulted in the PSI limitation at the functionality of PSI itself but not its donor-side and acceptor-side under conditions of multiple stresses. This was supported by the result of a significant destabilization of the PSI complex in the absence of NDH-1 but the presence of multiple stresses. Based on the above results, we propose that NDH-1 is important for PSI function of Synechocystis sp. strain PCC 6803 mainly via maintaining stabilization of PSI under conditions of environmental stresses.
Collapse
Affiliation(s)
- Jiaohong Zhao
- Department of Biology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Fudan Gao
- Department of Biology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Da-Yong Fan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Weimin Ma
- Department of Biology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
17
|
Ogawa T, Sonoike K. Evaluation of the Condition of Respiration and Photosynthesis by Measuring Chlorophyll Fluorescence in Cyanobacteria. Bio Protoc 2018; 8:e2834. [DOI: 10.21769/bioprotoc.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/02/2022] Open
|
18
|
Ogawa T, Misumi M, Sonoike K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. PHOTOSYNTHESIS RESEARCH 2017; 133:63-73. [PMID: 28283890 DOI: 10.1007/s11120-017-0367-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v/F m, some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.
Collapse
Affiliation(s)
- Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masahiro Misumi
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan.
| |
Collapse
|
19
|
Characterization of the influence of chlororespiration on the regulation of photosynthesis in the glaucophyte Cyanophora paradoxa. Sci Rep 2017; 7:46100. [PMID: 28387347 PMCID: PMC5384210 DOI: 10.1038/srep46100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/10/2017] [Indexed: 01/19/2023] Open
Abstract
Glaucophytes are primary symbiotic algae with unique plastids called cyanelles, whose structure is most similar to ancestral cyanobacteria among plastids in photosynthetic organisms. Here we compare the regulation of photosynthesis in glaucophyte with that in cyanobacteria in the aim of elucidating the changes caused by the symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways. Chlorophyll fluorescence measurements of the glaucophyte Cyanophora paradoxa NIES-547 indicated that plastoquinone (PQ) pool in photosynthetic electron transfer was reduced in the dark by chlororespiration. The levels of nonphotochemical quenching of chlorophyll fluorescence was high in the dark but decreased under low light, and increased again under high light. This type of concave light dependence was quite similar to that observed in cyanobacteria. Moreover, the addition of ionophore hardly affected nonphotochemical quenching, suggesting state transition as a main component of the regulatory system in C. paradoxa. These results suggest that cyanelles of C. paradoxa retain many of the characteristics observed in their ancestral cyanobacteria. From the viewpoint of metabolic interactions, C. paradoxa is the primary symbiotic algae most similar to cyanobacteria than other lineages of photosynthetic organisms.
Collapse
|
20
|
Schuurmans RM, Matthijs JCP, Hellingwerf KJ. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2017; 132:69-82. [PMID: 28108865 PMCID: PMC5357262 DOI: 10.1007/s11120-016-0329-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/16/2016] [Indexed: 05/03/2023]
Abstract
Phototrophic microorganisms like cyanobacteria show growth curves in batch culture that differ from the corresponding growth curves of chemotrophic bacteria. Instead of the usual three phases, i.e., lag-, log-, and stationary phase, phototrophs display four distinct phases. The extra growth phase is a phase of linear, light-limited growth that follows the exponential phase and is often ignored as being different. Results of this study demonstrate marked growth phase-dependent alterations in the photophysiology of the cyanobacterium Synechocystis sp. PCC 6803 between cells harvested from the exponential and the linear growth phase. Notable differences are a gradual shift in the energy transfer of the light-harvesting phycobilisomes to the photosystems and a distinct change in the redox state of the plastoquinone pool. These differences will likely affect the result of physiological studies and the efficiency of product formation of Synechocystis in biotechnological applications. Our study also demonstrates that the length of the period of exponential growth can be extended by a gradually stronger incident light intensity that matches the increase of the cell density of the culture.
Collapse
Affiliation(s)
- R M Schuurmans
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J C P Matthijs
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - K J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Ohbayashi R, Yamamoto JY, Watanabe S, Kanesaki Y, Chibazakura T, Miyagishima SY, Yoshikawa H. Variety of DNA Replication Activity Among Cyanobacteria Correlates with Distinct Respiration Activity in the Dark. PLANT & CELL PHYSIOLOGY 2017; 58:279-286. [PMID: 27837093 DOI: 10.1093/pcp/pcw186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Cyanobacteria exhibit light-dependent cell growth since most of their cellular energy is obtained by photosynthesis. In Synechococcus elongatus PCC 7942, one of the model cyanobacteria, DNA replication depends on photosynthetic electron transport. However, the critical signal for the regulatory mechanism of DNA replication has not been identified. In addition, conservation of this regulatory mechanism has not been investigated among cyanobacteria. To understand this regulatory signal and its dependence on light, we examined the regulation of DNA replication under both light and dark conditions among three model cyanobacteria, S. elongatus PCC 7942, Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120. Interestingly, DNA replication activity in Synechocystis and Anabaena was retained when cells were transferred to the dark, although it was drastically decreased in S. elongatus. Glycogen metabolism and respiration were higher in Synechocystis and Anabaena than in S. elongatus in the dark. Moreover, DNA replication activity in Synechocystis and Anabaena was reduced to the same level as that in S. elongatus by inhibition of respiratory electron transport after transfer to the dark. These results demonstrate that there is disparity in DNA replication occurring in the dark among cyanobacteria, which is caused by the difference in activity of respiratory electron transport.
Collapse
Affiliation(s)
- Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Jun-Ya Yamamoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shin-Ya Miyagishima
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
22
|
Hirooka S, Miyagishima SY. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs. Front Microbiol 2016; 7:2022. [PMID: 28066348 PMCID: PMC5167705 DOI: 10.3389/fmicb.2016.02022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 12/02/2016] [Indexed: 12/03/2022] Open
Abstract
Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4+, NO3- or urea, while G. sulphuraria grew only when NH4+ was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4+ was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the Tamagawa water supplemented with a nitrogen source formed a large amount of lipid droplets while maintaining cellular growth. These results indicate the potential of sulfuric hot spring waters for large-scale algal cultivation at a low cost.
Collapse
Affiliation(s)
- Shunsuke Hirooka
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan; Japan Science and Technology Agency, Core Research for Evolutionary Science and TechnologyKawaguchi, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan; Japan Science and Technology Agency, Core Research for Evolutionary Science and TechnologyKawaguchi, Japan; Department of Genetics, Graduate University for Advanced StudiesMishima, Japan
| |
Collapse
|
23
|
Markou G, Muylaert K. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2016; 216:453-461. [PMID: 27262720 DOI: 10.1016/j.biortech.2016.05.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition.
Collapse
Affiliation(s)
- Giorgos Markou
- Laboratory Aquatic Biology, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
24
|
Ogawa T, Sonoike K. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements. PLANT & CELL PHYSIOLOGY 2016; 57:558-567. [PMID: 26858287 DOI: 10.1093/pcp/pcw010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition.
Collapse
Affiliation(s)
- Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan Japan Society for the Promotion of Science, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| |
Collapse
|