1
|
Zhang R, Wang Y, Kang Y, Du Y, Wang X, Jiao S, Yang X, Liu Y, Qin S, Zhang W. Transcriptomics-proteomics analysis reveals StCOMT1 regulates drought, alkali and combined stresses in potato. PLANT CELL REPORTS 2025; 44:109. [PMID: 40299051 DOI: 10.1007/s00299-025-03496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Transcriptome proteome association analysis screened candidate DEGs, DEPs, and DEGs/DEPs associated with potato response to drought, alkali, and combined stresses. Overexpression of StCOMT1 enhances potato drought and alkali tolerance. Drought and salinity have severely impeded potato (Solanum tuberosum L.) growth and development, significantly reducing global potato production. However, the molecular mechanisms regulating the combined drought and alkali stress process are not fully understood. This study compared the mRNA and protein expression profiles of potato under drought (PEG-6000), alkali (NaHCO3), and combined (PEG-6000 + NaHCO3) stresses by transcriptome and TMT proteomics sequencing to investigate the common or specific responses of 'Atlantic' potato to single and combined stresses of drought and alkali were preliminarily explored. It was found that 2215 differentially expressed genes (DEGs) and 450 differentially expressed proteins (DEPs) were jointly identified under drought, alkali, and combined stresses. Under drought, alkali, and combined stresses, 234, 185, and 246 DEGs/DEPs were identified, respectively. These DEGs, DEPs, and DEGs/DEPs identified revealed the potential roles of several signaling and metabolic pathways in mediating drought and alkali stress tolerance, including plant hormone signaling, MAPK signaling pathway, phenylpropanoid biosynthesis, and glutathione metabolism. Caffeic acid-O-methyltransferase (COMT) is an essential methylating enzyme in the phenylpropane biosynthetic pathway, which is involved in lignin synthesis and plays an important role in protecting plants from abiotic stresses. In this study, we investigated the changes in physiologic characteristics, such as growth, antioxidant defense, osmotic regulation and lignin accumulation, in overexpressing StCOMT1 (PT0001512/M0ZIL7) transgenic potato after stress. It proved that the gene has the function of adapting to drought and alkali stress, and provided a theoretical basis for further research on the resistance mechanism of the gene in drought and alkali tolerance in potato.
Collapse
Affiliation(s)
- Ruyan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
| | - Yong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
| | - Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
| | - Yunyun Du
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
| | - Xingxing Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
| | - Shujuan Jiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China
- Potato Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China.
| | - Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 , China.
| |
Collapse
|
2
|
Kazaz S, Tripathi J, Tian Y, Turumtay H, Chin D, Pamukçu İ, Nimavat M, Turumtay EA, Baidoo EEK, Scown CD, Eudes A. In planta production of the nylon precursor beta-ketoadipate. J Biotechnol 2025; 404:102-111. [PMID: 40228630 DOI: 10.1016/j.jbiotec.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Beta-ketoadipate (βKA) is an intermediate of the βKA pathway involved in the degradation of aromatic compounds in several bacteria and fungi. Beta-ketoadipate also represents a promising chemical for the manufacturing of performance-advantaged nylons. We established a strategy for the in planta synthesis of βKA via manipulation of the shikimate pathway and the expression of bacterial enzymes from the βKA pathway. Using Nicotiana benthamiana as a transient expression system, we demonstrated the efficient conversion of protocatechuate (PCA) to βKA when plastid-targeted bacterial-derived PCA 3,4-dioxygenase (PcaHG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaB) were co-expressed with 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB). This metabolic pathway was reconstituted in Arabidopsis by introducing a construct (pAtβKA) with stacked pcaG, pcaH, and pcaB genes into a PCA-overproducing genetic background that expresses AroG and QsuB (referred as QsuB-2). The resulting QsuB-2 x pAtβKA stable lines displayed βKA titers as high as 0.25 % on a dry weight basis in stems, along with a drastic reduction in lignin content and improvement of biomass saccharification efficiency compared to wild-type controls, and without any significant reduction in biomass yields. Using biomass sorghum as a potential crop for large-scale βKA production, techno-economic analysis indicated that βKA accumulated at titers of 0.25 % and 4 % on a dry weight basis could be competitively priced in the range of $2.04-34.49/kg and $0.47-2.12/kg, respectively, depending on the selling price of the residual biomass recovered after βKA extraction. This study lays the foundation for a more environmentally-friendly synthesis of βKA using plants as production hosts.
Collapse
Affiliation(s)
- Sami Kazaz
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jaya Tripathi
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yang Tian
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Halbay Turumtay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dylan Chin
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Rausser College of Natural Resources, University of California-Berkeley, Berkeley, CA 94720, USA
| | - İrem Pamukçu
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Monikaben Nimavat
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Emine Akyuz Turumtay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corinne D Scown
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Energy & Biosciences Institute, University of California-Berkeley, Berkeley, CA 94720, USA; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Dare AP, Wu C, Carvajal JI, Nguyen HM, Günther CS, Hamiaux C, Bailey S, Deng C, Mengist MF, Iorizzo M, Foster TM, Chagné D, Montanari S, Espley RV. Haplotyped genome mapping and functional characterization of a blueberry anthocyanin acetyltransferase (AAT) controlling the accumulation of acylated anthocyanins. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1607-1624. [PMID: 39657585 PMCID: PMC11981897 DOI: 10.1093/jxb/erae489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Blueberry has a diversity of anthocyanins that confer its characteristic blue-coloured skin. Whilst most cultivars produce only anthocyanin glycosides, some can add aliphatic or aromatic groups to the sugar moiety to create acylated anthocyanins. Due to their enhanced stability, acylated anthocyanins represent an attractive breeding target in blueberry. In this study, a haplotype-resolved assembly of a previously identified quantitative trait locus on chromosome 2 of 'Hortblue Petite' (Vaccinium corymbosum) was created to identify candidate anthocyanin acyltransferase genes. One full-length gene (VcAAT1a) was selected based on quantitative PCR expression profiling and transient expression in tobacco leaves and in strawberry and blueberry fruit flesh. In all three systems, VcAAT1a was able to produce a range of acylated anthocyanins in planta. Recombinant VcAAT1a protein demonstrated that, while VcAAT1a was able to act on both anthocyanin 3-O-glucosides and 3-O-galactosides, it could only utilize acetyl-CoA as an acyl donor. Protein modelling using AlphaFold suggested that this restricted range in acyl donors may be due to a spatially restricted sub-pocket in the acyl-binding site of VvAAT1. Finally, LUC/REN promoter activation assays revealed that the VcAAT1a promoter was transactivated by the VcMYBPA1 and VcMYBPA2 transcription factors, further expanding our knowledge of anthocyanin regulation in blueberry.
Collapse
Affiliation(s)
- Andrew P Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
| | - Jose I Carvajal
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
| | - Han M Nguyen
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sarah Bailey
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - David Chagné
- Genomics Aotearoa, Dunedin, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sara Montanari
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
4
|
Bömeke P, Petersen M. Phenolic metabolism in Sarcandra glabra is mediated by distinct BAHD hydroxycinnamoyltransferases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70035. [PMID: 40029908 PMCID: PMC11875395 DOI: 10.1111/tpj.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Sarcandra glabra (Chloranthaceae) has an elaborate phenolic metabolism, encompassing various hydroxycinnamic acid esters. This may imply that multiple hydroxycinnamoyltransferases are involved in establishing this spectrum of natural compounds. Five coding sequences from S. glabra, belonging to the superfamily of BAHD acyltransferases, have been amplified from S. glabra cDNA, and the proteins were expressed in Escherichia coli. By assaying the proteins biochemically, the main substrates of these enzymes were identified as p-coumaroyl- and caffeoyl-CoA as donor substrates together with varying acceptor substrates. SgHST mainly forms p-coumaroyl- and caffeoylshikimic acid, but also the corresponding quinic acid esters as well as amides with 3- and 5-hydroxyanthranilic acids. SgHQT1 predominantly catalyzes the formation of p-coumaroyl- and caffeoyl-5-O-quinic acid, while SgHQT2 correspondingly forms p-coumaroyl- and caffeoyl-4-O-quinic acid. To our knowledge, this is the first characterized enzyme forming cryptochlorogenic acid and its precursor p-coumaroyl-4-O-quinic acid. SgRAS synthesizes rosmarinic acid and its precursors (caffeoyl-4'-hydroxyphenyllactic, p-coumaroyl-4'-hydroxyphenyllactic, p-coumaroyl-3',4'-dihydroxyphenyllactic acids) as well as amides with aromatic d-amino acids. No substrates could be identified for the fifth sequence, SgHCT-F, which phylogenetically groups with benzyl alcohol O-benzoyltransferases. All enzymes, except SgHCT-F, were fully kinetically characterized, and their expression in different tissues of S. glabra was assessed.
Collapse
Affiliation(s)
- Paul Bömeke
- Institut für Pharmazeutische Biologie und BiotechnologiePhilipps‐Universität MarburgRobert‐Koch‐Str. 4Marburg35037Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und BiotechnologiePhilipps‐Universität MarburgRobert‐Koch‐Str. 4Marburg35037Germany
| |
Collapse
|
5
|
Xie X, Lin M, Xiao G, Liu H, Wang F, Liu D, Ma L, Wang Q, Li Z. Phenolic amides (avenanthramides) in oats - an update review. Bioengineered 2024; 15:2305029. [PMID: 38258524 PMCID: PMC10807472 DOI: 10.1080/21655979.2024.2305029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.
Collapse
Affiliation(s)
- Xi Xie
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Miaoyan Lin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Feng Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Dongjie Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Li Y, Zhang W, Huang Y, Cui G, Zhang X. Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem. Int J Biol Macromol 2024; 283:137817. [PMID: 39561835 DOI: 10.1016/j.ijbiomac.2024.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yufang Huang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Gaochang Cui
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
7
|
Torrens-Spence MP, Matos JO, Li T, Kastner DW, Kim CY, Wang Z, Glinkerman CM, Sherk J, Kulik HJ, Wang Y, Weng JK. Mechanistic basis for the emergence of EPS1 as a catalyst in salicylic acid biosynthesis of Brassicaceae. Nat Commun 2024; 15:10356. [PMID: 39609394 PMCID: PMC11605079 DOI: 10.1038/s41467-024-54437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Salicylic acid (SA) production in Brassicaceae plants is uniquely accelerated from isochorismate by EPS1, a newly identified enzyme in the BAHD acyltransferase family. We present crystal structures of EPS1 from Arabidopsis thaliana in both its apo and substrate-analog-bound forms. Integrating microsecond-scale molecular dynamics simulations with quantum mechanical cluster modeling, we propose a pericyclic rearrangement lyase mechanism for EPS1. We further reconstitute the isochorismate-derived SA biosynthesis pathway in Saccharomyces cerevisiae, establishing an in vivo platform to examine the impact of active-site residues on EPS1 functionality. Moreover, stable transgenic expression of EPS1 in soybean increases basal SA levels, highlighting the enzyme's potential to enhance defense mechanisms in non-Brassicaceae plants lacking an EPS1 ortholog. Our findings illustrate the evolutionary adaptation of an ancestral enzyme's active site to enable a novel catalytic mechanism that boosts SA production in Brassicaceae plants.
Collapse
Affiliation(s)
| | - Jason O Matos
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Bioengineering, and Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Tianjie Li
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ziqi Wang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | | | - Jennifer Sherk
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Bioengineering, and Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA.
- Department of Chemistry and Chemical Biology, Department of Bioengineering, and Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
8
|
Yoshida K, Sakamoto S, Mitsuda N. Synthetic-biology approach for plant lignocellulose engineering. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:213-230. [PMID: 40115770 PMCID: PMC11921142 DOI: 10.5511/plantbiotechnology.24.0630a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/30/2024] [Indexed: 03/23/2025]
Abstract
Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Yokohama, Kanagawa 245-0051, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
9
|
Akyuz Turumtay E, Turumtay H, Tian Y, Lin CY, Chai YN, Louie KB, Chen Y, Lipzen A, Harwood T, Satish Kumar K, Bowen BP, Wang Q, Mansfield SD, Blow MJ, Petzold CJ, Northen TR, Mortimer JC, Scheller HV, Eudes A. Expression of dehydroshikimate dehydratase in poplar induces transcriptional and metabolic changes in the phenylpropanoid pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4960-4977. [PMID: 38809816 PMCID: PMC11349870 DOI: 10.1093/jxb/erae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Collapse
Affiliation(s)
- Emine Akyuz Turumtay
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Recep Tayyip Erdogan University, Department of Chemistry, 53100, Rize, Turkiye
| | - Halbay Turumtay
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Karadeniz Technical University, Department of Energy System Engineering, 61830, Trabzon, Turkiye
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chien-Yuan Lin
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yen Ning Chai
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Harwood
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kavitha Satish Kumar
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qian Wang
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI 53726, USA
| | - Matthew J Blow
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny C Mortimer
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Henrik V Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
10
|
Senanayake M, Lin CY, Mansfield SD, Eudes A, Davison BH, Pingali SV, O'Neill H. Ectopic Production of 3,4-Dihydroxybenzoate in Planta Affects Cellulose Structure and Organization. Biomacromolecules 2024; 25:3542-3553. [PMID: 38780531 DOI: 10.1021/acs.biomac.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway. In this work, three transgenic poplar lines with increasing QsuB expression levels and different lignin contents were studied using small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS). SANS showed that although the cellulose microfibril cross-sectional dimension remained unchanged, the ordered organization of the microfibrils progressively decreased with increased QsuB expression. This was correlated with decreasing total lignin content in the QsuB lines. WAXS showed that the crystallite dimensions of cellulose microfibrils transverse to the growth direction were not affected by the QsuB expression, but the crystallite dimensions parallel to the growth direction were decreased by ∼20%. Cellulose crystallinity was also decreased with increased QsuB expression, which could be related to high levels of 3,4-dihydroxybenzoate, the product of QsuB expression, disrupting microfibril crystallization. In addition, the cellulose microfibril orientation angle showed a bimodal distribution at higher QsuB expression levels. Overall, this study provides new structural insights into the impact of ectopic synthesis of small-molecule metabolites on cellulose organization and structure that can be used for future efforts aimed at reducing biomass recalcitrance.
Collapse
Affiliation(s)
- Manjula Senanayake
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brian H Davison
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
11
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
12
|
Zhou J, Zou X, Deng Z, Duan L. Analysing a Group of Homologous BAHD Enzymes Provides Insights into the Evolutionary Transition of Rosmarinic Acid Synthases from Hydroxycinnamoyl-CoA:Shikimate/Quinate Hydroxycinnamoyl Transferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:512. [PMID: 38498481 PMCID: PMC10892161 DOI: 10.3390/plants13040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The interplay of various enzymes and compounds gives rise to the intricate secondary metabolic networks observed today. However, the current understanding of their formation and expansion remains limited. BAHD acyltransferases play important roles in the biosynthesis of numerous significant secondary metabolites. In plants, they are widely distributed and exhibit a diverse range of activities. Among them, rosmarinic acid synthase (RAS) and hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) have gained significant recognition and have been extensively investigated as prominent members of the BAHD acyltransferase family. Here, we conducted a comprehensive study on a unique group of RAS homologous enzymes in Mentha longifolia that display both catalytic activities and molecular features similar to HCT and Lamiaceae RAS. Subsequent phylogenetic and comparative genome analyses revealed their derivation from expansion events within the HCT gene family, indicating their potential as collateral branches along the evolutionary trajectory, leading to Lamiaceae RAS while still retaining certain ancestral vestiges. This discovery provides more detailed insights into the evolution from HCT to RAS. Our collective findings indicate that gene duplication is the driving force behind the observed evolutionary pattern in plant-specialized enzymes, which probably originated from ancestral enzyme promiscuity and were subsequently shaped by principles of biological adaptation.
Collapse
Affiliation(s)
| | | | | | - Lian Duan
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, China; (J.Z.); (X.Z.); (Z.D.)
| |
Collapse
|
13
|
Chen Y, Wang Z, Gao T, Huang Y, Li T, Jiang X, Liu Y, Gao L, Xia T. Deep learning and targeted metabolomics-based monitoring of chewing insects in tea plants and screening defense compounds. PLANT, CELL & ENVIRONMENT 2024; 47:698-713. [PMID: 37882465 DOI: 10.1111/pce.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Tea is an important cash crop that is often consumed by chewing pests, resulting in reduced yields and economic losses. It is important to establish a method to quickly identify the degree of damage to tea plants caused by leaf-eating insects and screen green control compounds. This study was performed through the combination of deep learning and targeted metabolomics, in vitro feeding experiment, enzymic analysis and transient genetic transformation. A small target damage detection model based on YOLOv5 with Transformer Prediction Head (TPH-YOLOv5) algorithm for the tea canopy level was established. Orthogonal partial least squares (OPLS) was used to analyze the correlation between the degree of damage and the phenolic metabolites. A potential defensive compound, (-)-epicatechin-3-O-caffeoate (EC-CA), was screened. In vitro feeding experiments showed that compared with EC and epicatechin gallate, Ectropis grisescens exhibited more significant antifeeding against EC-CA. In vitro enzymatic experiments showed that the hydroxycinnamoyl transferase (CsHCTs) recombinant protein has substrate promiscuity and can catalyze the synthesis of EC-CA. Transient overexpression of CsHCTs in tea leaves effectively reduced the degree of damage to tea leaves. This study provides important reference values and application prospects for the effective monitoring of pests in tea gardens and screening of green chemical control substances.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- Henan Key Laboratory of Tea Plant Biology, College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zhenyu Wang
- Henan Key Laboratory of Tea Plant Biology, College of Life Science, Xinyang Normal University, Xinyang, China
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yipeng Huang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Tongtong Li
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
14
|
Zhang Y, Wang L, Kong X, Chen Z, Zhong S, Li X, Shan R, You X, Wei K, Chen C. Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [ Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors. Int J Mol Sci 2023; 25:242. [PMID: 38203412 PMCID: PMC10779186 DOI: 10.3390/ijms25010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
Collapse
Affiliation(s)
- Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Sitong Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| |
Collapse
|
15
|
Song K, Zhang X, Liu J, Yao Q, Li Y, Hou X, Liu S, Qiu X, Yang Y, Chen L, Hong K, Lin L. Integration of Metabolomics and Transcriptomics to Explore Dynamic Alterations in Fruit Color and Quality in 'Comte de Paris' Pineapples during Ripening Processes. Int J Mol Sci 2023; 24:16384. [PMID: 38003574 PMCID: PMC10671212 DOI: 10.3390/ijms242216384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcriptome investigations were carried out. These investigations were conducted using pulp samples collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones, coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs) and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid, and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes related to the organic acid accumulations were upregulated and downregulated, respectively. Importantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific insight into the molecular breeding of pineapples.
Collapse
Affiliation(s)
- Kanghua Song
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Xiumei Zhang
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Jiameng Liu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Yixing Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Shenghui Liu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Xunxia Qiu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| | - Yue Yang
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Li Chen
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Keqian Hong
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Lijing Lin
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| |
Collapse
|
16
|
Xu D, Wang Z, Zhuang W, Wang T, Xie Y. Family characteristics, phylogenetic reconstruction, and potential applications of the plant BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1218914. [PMID: 37868312 PMCID: PMC10585174 DOI: 10.3389/fpls.2023.1218914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The BAHD acyltransferase family is a class of proteins in plants that can acylate a variety of primary and specialized secondary metabolites. The typically acylated products have greatly improved stability, lipid solubility, and bioavailability and thus show significant differences in their physicochemical properties and pharmacological activities. Here, we review the protein structure, catalytic mechanism, and phylogenetic reconstruction of plant BAHD acyltransferases to describe their family characteristics, acylation reactions, and the processes of potential functional differentiation. Moreover, the potential applications of the BAHD family in human activities are discussed from the perspectives of improving the quality of economic plants, enhancing the efficacy of medicinal plants, improving plant biomass for use in biofuel, and promoting stress resistance of land plants. This review provides a reference for the research and production of plant BAHD acyltransferases.
Collapse
Affiliation(s)
- Donghuan Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Xin J, Che T, Huang X, Yan H, Jiang S. A comprehensive view of metabolic responses to CYP98 perturbation in ancestral plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107793. [PMID: 37276808 DOI: 10.1016/j.plaphy.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 monooxygenase 98 (CYP98) is a critical rate-limiting enzyme of the phenylpropanoid pathway. One of the end-product of the phenylpropanoid pathway is a lignin monomer, although the occurrence of lignin in bryophytes is controversial. Here we investigated the functions of PpCYP98 in Physcomitrium patens by transcriptome and metabolome analyses. We identified 5266 differentially expressed genes (DEGs) and 68 differentially abundant secondary metabolites between wild-type and ΔPpCYP98 gametophores. Of the identified metabolites, 23 phenolic acids were identified, with only one showing upregulation. Among the phenolic acids, 4-coumaroyl tartaric acid and chlorogenic acid showed significant decreases. Declines were also observed in coniferylaldehyde and coniferin, precursor substances and downstream products of the lignin monomer coniferyl alcohol, respectively. Thus, the pre-lignin synthesis pathway already exists in bryophytes, and PpCYP98 plays vital roles in this pathway. Besides, most flavonoids show significant reductions, including eriodyctiol, dihydroquecetin, and dihydromyricetin, whereas naringenin chalone and dihydrokaempferol were increased after PpCYP98 knockout. Therefore, the synthesis of flavonoids shares the core pathway with phenylpropanoids and mainly starts from caffeoyl-CoA, that is the compound of divergence between the two pathways in moss. PpCYP98 showed systemic effects on metabolisms, including carbohydrate, fatty acid, and hormonal signaling transductions, suggesting that PpCYP98 might indirectly regulate carbon influx allocation. Our results demonstrated roles of PpCYP98 were essential for the development of the early landing plant.
Collapse
Affiliation(s)
- Jiankang Xin
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Tianmin Che
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550001, China.
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Shan Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; College of International Education, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
18
|
Kafer JM, Molinari MDC, Henning FA, Koltun A, Marques VV, Marin SRR, Nepomuceno AL, Mertz-Henning LM. Transcriptional Profile of Soybean Seeds with Contrasting Seed Coat Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:1555. [PMID: 37050181 PMCID: PMC10097363 DOI: 10.3390/plants12071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soybean is the primary source of vegetable protein and is used for various purposes, mainly to feed animals. This crop can have diverse seed coat colors, varying from yellow, black, brown, and green to bicolor. Black seed coat cultivars have already been assigned as favorable for both seed and grain production. Thus, this work aimed to identify genes associated with soybean seed quality by comparing the transcriptomes of soybean seeds with contrasting seed coat colors. The results from RNA-seq analyses were validated with real-time PCR using the cultivar BRS 715A (black seed coat) and the cultivars BRS 413 RR and DM 6563 IPRO (yellow seed coat). We found 318 genes differentially expressed in all cultivars (freshly harvested seeds and seeds stored in cold chamber). From the in silico analysis of the transcriptomes, the following genes were selected and validated with RT-qPCR: ACS1, ACSF3, CYP90A1, CYP710A1, HCT, CBL, and SAHH. These genes are genes induced in the black seed coat cultivar and are part of pathways responsible for ethylene, lipid, brassinosteroid, lignin, and sulfur amino acid biosynthesis. The BRSMG 715A gene has almost 4times more lignin than the yellow seed coat cultivars. These attributes are related to the BRSMG 715A cultivar's higher seed quality, which translates to more longevity and resistance to moisture and mechanical damage. Future silencing studies may evaluate the knockout of these genes to better understand the biology of soybean seeds with black seed coat.
Collapse
Affiliation(s)
- João M. Kafer
- Biotechnology Department, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mayla D. C. Molinari
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Fernando A. Henning
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | - Alessandra Koltun
- Agronomy Department, State University of Maringá, Maringá 87020-900, PR, Brazil;
| | - Viviani V. Marques
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Silvana R. R. Marin
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | | | | |
Collapse
|
19
|
Beltrame LC, Thompson CE, Freitas LB. Molecular evolution and structural analyses of proteins involved in metabolic pathways of volatile organic compounds in Petunia hybrida (Solanaceae). Genet Mol Biol 2022; 46:e20220114. [PMID: 36534952 PMCID: PMC9762610 DOI: 10.1590/1678-4685-gmb-2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
The association between plants and their pollinators is essential for increasing the diversity in angiosperms. Morphological and physiological traits, mainly floral scent, can influence the pollination dynamics and select pollinators for each plant species. In this work, we studied two proteins involved in producing volatile organic compounds in plants, conyferyl alcohol acyltransferase (CFAT) and benzoyl-CoA:benzyl alcohol/phenyl ethanol benzoyl transferase (BPBT) genes. We aimed to understand these proteins with respect to evolutionary and structural aspects and functions in Solanaceae using phylogenetic methods and comparative molecular modeling. We used Bayesian inference to describe the proteins' evolutionary history using Petunia x hybrida as a query to search for homologs in the Solanaceae family. Theoretical 3D models were obtained for both proteins using Panicum virgatum as a template. The phylogenetic tree included several different enzymes with diverse biological roles in Solanaceae, displaying the transferase domain. We identified only one sequence of CFAT in the databases, which belongs to Petunia x hybrida, and found several BPBT sequences from the genera Nicotiana, Solanum, and Capsicum. The 3D structures of CFAT and BPBT have two different domains, and we have identified the amino acid residues essential for the enzymatic activity and interaction with substrates.
Collapse
Affiliation(s)
- Lucas C. Beltrame
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Claudia E. Thompson
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Farmacociências, Porto Alegre, RS, Brazil
| | - Loreta B. Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Nomura T, Yoneda A, Kato Y. BAHD acyltransferase induced by histone deacetylase inhibitor catalyzes 3-O-hydroxycinnamoylquinic acid formation in bamboo cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1266-1280. [PMID: 36305861 DOI: 10.1111/tpj.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Suspension-cultured cells of a bamboo species (Bambusa multiplex; Bm) produce 3-O-feruloylquinic acid (3-FQA) and 3-O-p-coumaroylquinic acid (3-pCQA) by treatment with the histone deacetylase inhibitor suberoyl bis-hydroxamic acid (SBHA). Acyltransferases catalyzing the formation of 5-O-hydroxycinnamoylquinic acid esters by transesterification from hydroxycinnamoyl-CoAs to the C-5 hydroxy group of quinic acid (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase, HQT) have been identified in the biosynthesis of chlorogenic acids and monolignols; however, an HQT that catalyzes the acylation of the C-3 hydroxy group of quinic acid has not been identified previously. In the present study, we purified a native HQT from SBHA-treated Bm cells. The purified enzyme preferentially accepted feruloyl-/p-coumaroyl-CoAs as acyl-donors and quinic acid as the acyl-acceptor, and the enzyme specifically formed 3-FQA and 3-pCQA but not 5-O-hydroxycinnamoylquinic acid esters or esters with shikimic acid. A cDNA (BmHQT1) encoding this HQT was isolated. Although BmHQT1 is a phylogenetically unique member of the BAHD acyltransferase superfamily that does not cluster with other HQTs, functional characterization of the recombinant enzyme verified that BmHQT1 catalyzes the regiospecific formation of 3-O-hydroxycinnamoylquinic acid esters. Transcript levels of BmHQT1 markedly increased in Bm cells cultured in the presence of SBHA. Moreover, elevated acetylation levels of histone H3 were observed in the coding region of BmHQT1 in the presence of SBHA, indicating that the induced accumulation of 3-FQA/3-pCQA by SBHA is caused by transcriptional activation of BmHQT1 by the action of SBHA as a histone deacetylase inhibitor. The results demonstrate the utility of HDAC inhibitors for discovery of cryptic secondary metabolites and unknown biosynthetic enzymes.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Akari Yoneda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
21
|
De Meester B, Vanholme R, Mota T, Boerjan W. Lignin engineering in forest trees: From gene discovery to field trials. PLANT COMMUNICATIONS 2022; 3:100465. [PMID: 36307984 PMCID: PMC9700206 DOI: 10.1016/j.xplc.2022.100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Wood is an abundant and renewable feedstock for the production of pulp, fuels, and biobased materials. However, wood is recalcitrant toward deconstruction into cellulose and simple sugars, mainly because of the presence of lignin, an aromatic polymer that shields cell-wall polysaccharides. Hence, numerous research efforts have focused on engineering lignin amount and composition to improve wood processability. Here, we focus on results that have been obtained by engineering the lignin biosynthesis and branching pathways in forest trees to reduce cell-wall recalcitrance, including the introduction of exotic lignin monomers. In addition, we draw general conclusions from over 20 years of field trial research with trees engineered to produce less or altered lignin. We discuss possible causes and solutions for the yield penalty that is often associated with lignin engineering in trees. Finally, we discuss how conventional and new breeding strategies can be combined to develop elite clones with desired lignin properties. We conclude this review with priorities for the development of commercially relevant lignin-engineered trees.
Collapse
Affiliation(s)
- Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thatiane Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
22
|
Kruse LH, Weigle AT, Irfan M, Martínez-Gómez J, Chobirko JD, Schaffer JE, Bennett AA, Specht CD, Jez JM, Shukla D, Moghe GD. Orthology-based analysis helps map evolutionary diversification and predict substrate class use of BAHD acyltransferases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1453-1468. [PMID: 35816116 DOI: 10.1111/tpj.15902] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Large enzyme families catalyze metabolic diversification by virtue of their ability to use diverse chemical scaffolds. How enzyme families attain such functional diversity is not clear. Furthermore, duplication and promiscuity in such enzyme families limits their functional prediction, which has produced a burgeoning set of incompletely annotated genes in plant genomes. Here, we address these challenges using BAHD acyltransferases as a model. This fast-evolving family expanded drastically in land plants, increasing from one to five copies in algae to approximately 100 copies in diploid angiosperm genomes. Compilation of >160 published activities helped visualize the chemical space occupied by this family and define eight different classes based on structural similarities between acceptor substrates. Using orthologous groups (OGs) across 52 sequenced plant genomes, we developed a method to predict BAHD acceptor substrate class utilization as well as origins of individual BAHD OGs in plant evolution. This method was validated using six novel and 28 previously characterized enzymes and helped improve putative substrate class predictions for BAHDs in the tomato genome. Our results also revealed that while cuticular wax and lignin biosynthetic activities were more ancient, anthocyanin acylation activity was fixed in BAHDs later near the origin of angiosperms. The OG-based analysis enabled identification of signature motifs in anthocyanin-acylating BAHDs, whose importance was validated via molecular dynamic simulations, site-directed mutagenesis and kinetic assays. Our results not only describe how BAHDs contributed to evolution of multiple chemical phenotypes in the plant world but also propose a biocuration-enabled approach for improved functional annotation of plant enzyme families.
Collapse
Affiliation(s)
- Lars H Kruse
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Jesús Martínez-Gómez
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
- L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Jason D Chobirko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jason E Schaffer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Chelsea D Specht
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
- L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
23
|
Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, Loqué D, Eudes A, Ralph J, Mansfield SD. A new approach to zip-lignin: 3,4-dihydroxybenzoate is compatible with lignification. THE NEW PHYTOLOGIST 2022; 235:234-246. [PMID: 35377486 PMCID: PMC9325543 DOI: 10.1111/nph.18136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 06/02/2023]
Abstract
Renewed interests in the development of bioenergy, biochemicals, and biomaterials have elicited new strategies for engineering the lignin of biomass feedstock plants. This study shows, for the first time, that 3,4-dihydroxybenzoate (DHB) is compatible with the radical coupling reactions that assemble polymeric lignin in plants. We introduced a bacterial 3-dehydroshikimate dehydratase into hybrid poplar (Populus alba × grandidentata) to divert carbon flux away from the shikimate pathway, which lies upstream of lignin biosynthesis. Transgenic poplar wood had up to 33% less lignin with p-hydroxyphenyl units comprising as much as 10% of the lignin. Mild alkaline hydrolysis of transgenic wood released fewer ester-linked p-hydroxybenzoate groups than control trees, and revealed the novel incorporation of cell-wall-bound DHB, as well as glycosides of 3,4-dihydroxybenzoic acid (DHBA). Two-dimensional nuclear magnetic resonance (2D-NMR) analysis uncovered DHBA-derived benzodioxane structures suggesting that DHB moieties were integrated into the lignin polymer backbone. In addition, up to 40% more glucose was released from transgenic wood following ionic liquid pretreatment and enzymatic hydrolysis. This work highlights the potential of diverting carbon flux from the shikimate pathway for lignin engineering and describes a new type of 'zip-lignin' derived from the incorporation of DHB into poplar lignin.
Collapse
Affiliation(s)
- Faride Unda
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
- Department of EnergyGreat Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐Madison1552 University AvenueMadisonWI53726USA
| | - Yaseen Mottiar
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
- Department of EnergyGreat Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐Madison1552 University AvenueMadisonWI53726USA
| | - Elizabeth L. Mahon
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
- Department of EnergyGreat Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐Madison1552 University AvenueMadisonWI53726USA
| | - Steven D. Karlen
- Department of EnergyGreat Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐Madison1552 University AvenueMadisonWI53726USA
- Department of BiochemistryUniversity of Wisconsin‐Madison433 Babcock DriveMadisonWI53706USA
| | - Kwang Ho Kim
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
- Clean Energy Research CenterKorea Institute of Science and TechnologySeoul02792Korea
| | - Dominique Loqué
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
| | - Aymerick Eudes
- Joint BioEnergy Institute5885 Hollis StreetEmeryvilleCA94608USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - John Ralph
- Department of EnergyGreat Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐Madison1552 University AvenueMadisonWI53726USA
- Department of BiochemistryUniversity of Wisconsin‐Madison433 Babcock DriveMadisonWI53706USA
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
- Department of EnergyGreat Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐Madison1552 University AvenueMadisonWI53726USA
| |
Collapse
|
24
|
Deng R, Li W, Berhow MA, Jander G, Zhou S. Phenolic sucrose esters: evolution, regulation, biosynthesis, and biological functions. PLANT MOLECULAR BIOLOGY 2022; 109:369-383. [PMID: 33783685 DOI: 10.1007/s11103-021-01142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Phenolic sucrose esters (PSEs) are a diverse group of specialized metabolites that are present in several angiosperm lineages. Phylogenetic reconstruction and structural variation suggest that these metabolites may have evolved independently in monocots and dicots. Constitutive variation in PSE abundance across plant organs and developmental stages is correlated with transcriptional regulation of the upstream phenylpropanoid pathway, whereas pathogen induction is regulated by stress-related phytohormones such as ethylene. Shared structural features of PSEs indicate that their biosynthesis may involve one or more hydroxycinnamoyl transferases and BAHD acetyltransferases, which could be identified by correlative analyses of multi-omics datasets. Elucidation of the core biosynthetic pathway of PSEs will be essential for more detailed studies of the biological function of these compounds and their potential medicinal and agricultural applications.
Collapse
Affiliation(s)
- Renyu Deng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 440307, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 440307, China
| | - Mark A Berhow
- Functional Foods Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 440307, China.
| |
Collapse
|
25
|
Smith RA, Beebe ET, Bingman CA, Vander Meulen K, Eugene A, Steiner AJ, Karlen SD, Ralph J, Fox BG. Identification and characterization of a set of monocot BAHD monolignol transferases. PLANT PHYSIOLOGY 2022; 189:37-48. [PMID: 35134228 PMCID: PMC9070852 DOI: 10.1093/plphys/kiac035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important "monomers" for lignification, in which they are incorporated into the growing lignin polymer chain. p-Coumaroyl-CoA monolignol transferases (PMTs) increase the production of monolignol p-coumarates, and feruloyl-CoA monolignol transferases (FMTs) catalyze the production of monolignol ferulate conjugates. We identified putative FMT and PMT enzymes in sorghum (Sorghum bicolor) and switchgrass (Panicum virgatum) and have compared their activities to those of known monolignol transferases. The putative FMT enzymes produced both monolignol ferulate and monolignol p-coumarate conjugates, whereas the putative PMT enzymes produced monolignol p-coumarate conjugates. Enzyme activity measurements revealed that the putative FMT enzymes are not as efficient as the rice (Oryza sativa) control OsFMT enzyme under the conditions tested, but the SbPMT enzyme is as active as the control OsPMT enzyme. These putative FMTs and PMTs were transformed into Arabidopsis (Arabidopsis thaliana) to test their activities and abilities to biosynthesize monolignol conjugates for lignification in planta. The presence of ferulates and p-coumarates on the lignin of these transformants indicated that the putative FMTs and PMTs act as functional feruloyl-CoA and p-coumaroyl-CoA monolignol transferases within plants.
Collapse
Affiliation(s)
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Kirk Vander Meulen
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Alexis Eugene
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
| | | | - Steven D Karlen
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Mendes GGM, Mota TR, Bossoni GEB, Marchiosi R, Oliveira DMD, Constantin RP, Dos Santos WD, Ferrarese-Filho O. Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:12-19. [PMID: 35247693 DOI: 10.1016/j.plaphy.2022.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Lignin is a technological bottleneck to convert polysaccharides into fermentable sugars, and different strategies of genetic-based metabolic engineering have been applied to improve biomass saccharification. Using maize seedlings grown hydroponically for 24 h, we conducted a quick non-transgenic approach with five enzyme inhibitors of the lignin and tricin pathways. Two compounds [3,4-(methylenedioxy)cinnamic acid: MDCA and 2,4-pyridinedicarboxylic acid: PDCA] revealed interesting findings on root growth, lignin composition, and saccharification. By inhibiting hydroxycinnamoyl-CoA ligase, a key enzyme of phenylpropanoid pathway, MDCA decreased the lignin content and improved saccharification, but it decreased root growth. By inhibiting flavone synthase, a key enzyme of tricin biosynthesis, PDCA decreased total lignin content and improved saccharification without affecting root growth. PDCA was three-fold more effective than MDCA, suggesting that controlling lignin biosynthesis with enzymatic inhibitors may be an attractive strategy to improve biomass saccharification.
Collapse
Affiliation(s)
| | - Thatiane Rodrigues Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Dyoni Matias de Oliveira
- Ghent University, Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rodrigo Polimeni Constantin
- Laboratory of Plant Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Wanderley Dantas Dos Santos
- Laboratory of Plant Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil.
| |
Collapse
|
27
|
Hu S, Kamimura N, Sakamoto S, Nagano S, Takata N, Liu S, Goeminne G, Vanholme R, Uesugi M, Yamamoto M, Hishiyama S, Kim H, Boerjan W, Ralph J, Masai E, Mitsuda N, Kajita S. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:358-376. [PMID: 35044002 DOI: 10.1111/tpj.15674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Lignin is a phenolic polymer deposited in the plant cell wall, and is mainly polymerized from three canonical monomers (monolignols), i.e. p-coumaryl, coniferyl and sinapyl alcohols. After polymerization, these alcohols form different lignin substructures. In dicotyledons, monolignols are biosynthesized from phenylalanine, an aromatic amino acid. Shikimate acts at two positions in the route to the lignin building blocks. It is part of the shikimate pathway that provides the precursor for the biosynthesis of phenylalanine, and is involved in the transesterification of p-coumaroyl-CoA to p-coumaroyl shikimate, one of the key steps in the biosynthesis of coniferyl and sinapyl alcohols. The shikimate residue in p-coumaroyl shikimate is released in later steps, and the resulting shikimate becomes available again for the biosynthesis of new p-coumaroyl shikimate molecules. In this study, we inhibited cytosolic shikimate recycling in transgenic hybrid aspen by accelerated phosphorylation of shikimate in the cytosol through expression of a bacterial shikimate kinase (SK). This expression elicited an increase in p-hydroxyphenyl units of lignin and, by contrast, a decrease in guaiacyl and syringyl units. Transgenic plants with high SK activity produced a lignin content comparable to that in wild-type plants, and had an increased processability via enzymatic saccharification. Although expression of many genes was altered in the transgenic plants, elevated SK activity did not exert a significant effect on the expression of the majority of genes responsible for lignin biosynthesis. The present results indicate that cytosolic shikimate recycling is crucial to the monomeric composition of lignin rather than for lignin content.
Collapse
Affiliation(s)
- Shi Hu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Sarah Liu
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core Ghent, VIB, Ghent, Belgium
| | - Mikiko Uesugi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Japan
| | - Hoon Kim
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
28
|
Goldsmith M, Barad S, Knafo M, Savidor A, Ben-Dor S, Brandis A, Mehlman T, Peleg Y, Albeck S, Dym O, Ben-Zeev E, Barbole RS, Aharoni A, Reich Z. Identification and characterization of the key enzyme in the biosynthesis of the neurotoxin β-ODAP in grass pea. J Biol Chem 2022; 298:101806. [PMID: 35271851 PMCID: PMC9061259 DOI: 10.1016/j.jbc.2022.101806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme—β-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way toward engineering β-ODAP–free grass pea cultivars, which are safe for human and animal consumption.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shiri Barad
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maor Knafo
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Savidor
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander Brandis
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tevie Mehlman
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoav Peleg
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shira Albeck
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orly Dym
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Ben-Zeev
- Medicinal Chemistry Unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit S Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel; Plant Molecular Biology Unit, Division of Biochemical Sciences, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ziv Reich
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
29
|
Ernst L, Wohl J, Bauerbach E, Petersen M. Hydroxycinnamoyltransferase and CYP98 in phenolic metabolism in the rosmarinic acid-producing hornwort Anthoceros agrestis. PLANTA 2022; 255:75. [PMID: 35235057 PMCID: PMC8891189 DOI: 10.1007/s00425-022-03856-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION Anthoceros agrestis hydroxycinnamoyltransferase accepts shikimic and 3-hydroxyanthranilic acids while hydroxycinnamoylester/amide 3-hydroxylase (CYP98A147) preferred p-coumaroyl-(3-hydroxy)anthranilic acid compared to the shikimic acid derivative. Alternative pathways towards rosmarinic acid have to be considered. Rosmarinic acid (RA) is a well-known ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. In the search for enzymes involved in RA biosynthesis in the hornwort Anthoceros agrestis, the hydroxycinnamoyltransferase sequence with the highest similarity to rosmarinic acid synthase from Lamiaceae has been amplified and heterologously expressed in Escherichia coli. In parallel, the single cytochrome P450 sequence belonging to the CYP98 group in Anthoceros agrestis was isolated and expressed in Saccharomyces cerevisiae which did not result in protein formation. Codon optimization and co-expression with NADPH:cytochrome P450 reductase (CPR) from Coleus blumei resulted in the formation of active enzymes. Both, the hydroxycinnamoyltransferase and CYP98 were characterized with respect to their temperature and pH optimum as well as their substrate acceptance. The hydroxycinnamoyltransferase (AaHCT6) readily accepted p-coumaroyl- and caffeoyl-CoA with a slightly higher affinity towards p-coumaroyl-CoA. The best acceptor substrate was shikimic acid (Km 25 µM with p-coumaroyl-CoA) followed by 3-hydroxyanthranilic acid (Km 153 µM with p-coumaroyl-CoA). Another accepted substrate was 2,3-dihydroxybenzoic acid. Anthranilic acid and 4-hydroxyphenyllactic acid (as precursor for RA) were not used as substrates. p-Coumaroylesters and -amides are substrates hydroxylated by CYP98 hydroxylases. The only CYP98 sequence from Anthoceros agrestis is CYP98A147. The best substrates for the NADPH-dependent hydroxylation were p-coumaroylanthranilic and p-coumaroyl-3-hydroxyanthranilic acids while p-coumaroylshikimic and p-coumaroyl-4-hydroxyphenyllactic acids were poor substrates. The biosynthetic pathway towards rosmarinic acid thus still remains open and other enzyme classes as well as an earlier introduction of the 3-hydroxyl group to afford the caffeic acid substitution pattern must be taken into consideration.
Collapse
Affiliation(s)
- Lucien Ernst
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Julia Wohl
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Elke Bauerbach
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
30
|
Su M, Liu Y, Lyu J, Zhao S, Wang Y. Chemical and Structural Responses to Downregulated p-Hydroxycinnamoyl-Coenzyme A: Quinate/Shikimate p-Hydroxycinnamoyltransferase in Poplar Cell Walls. FRONTIERS IN PLANT SCIENCE 2022; 12:679230. [PMID: 35154167 PMCID: PMC8830424 DOI: 10.3389/fpls.2021.679230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Unraveling the impact of lignin reduction on cell wall construction of poplar stems is important for accurate understanding the regulatory role of biosynthetic genes. However, few cell-level studies have been conducted on the changes in lignin, other important cell wall composition, and the structural properties of transgenic poplar stems at different developmental stages. In this work, the content and microdistributions of cell wall composition as well as the morphological characteristics of cells were studied for p-hydroxycinnamoyl-coenzyme A:quinate/shikimate p-hydroxycinnamoyltransferase (HCT) downregulated transgenic poplar 84K (Populus alba × P. glandulosa cl. '84k') at different developmental stages. Results show that the lignin contents of the upper, middle, and basal parts of HCT transgenic poplar stems were significantly decreased by 10.84, 7.40, and 7.75%, respectively; and the cellulose contents increased by 8.20, 6.45, and 3.31%, respectively, compared with the control group. The cellulose/lignin ratio of HCT transgenic poplars was therefore increased, especially in the upper sections, where it was 23.2% higher. Raman results indicate the appearance of p-hydroxyphenyl units (H) and a decrease in the ratio of syringyl/guaiacyl (S/G) lignin monomers in fiber cell walls of HCT transgenic poplars. In addition, microstructure observations revealed that the fiber and vessel cells of the HCT transgenic poplars exhibited thin cell walls and large lumen diameters. Compared with the control group, the cell wall thickness of fiber and vessel cells decreased by 6.50 and 10.93% on average, respectively. There was a 13.6% decrease in the average ratio of the cell wall thickness to the lumen diameter and an increase in fiber length and width of 5.60 and 6.11%, respectively. In addition, downregulation of HCT did not change the orientation of cellulosic microfibrils, but it led to an 11.1% increase of the cellulose crystallinity in cell walls compared to the control poplars. The information obtained herein could lead to a better understanding of the effects of genetic modifications on wood cell walls.
Collapse
Affiliation(s)
- Minglei Su
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianxiong Lyu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yurong Wang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
31
|
Yoshida K, Sakamoto S, Mitsuda N. In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. PLANT & CELL PHYSIOLOGY 2021; 62:1813-1827. [PMID: 34718770 DOI: 10.1093/pcp/pcab157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
To mitigate the effects of global warming and to preserve the limited fossil fuel resources, an increased exploitation of plant-based materials and fuels is required, which would be one of the most important innovations related to sustainable development. Cell walls account for the majority of plant dry biomass and so is the target of such innovations. In this review, we discuss recent advances in in planta cell wall engineering through genetic manipulations, with a focus on wild-type-based and mutant-based approaches. The long history of using a wild-type-based approach has resulted in the development of many strategies for manipulating lignin, hemicellulose and pectin to decrease cell wall recalcitrance. In addition to enzyme-encoding genes, many transcription factor genes important for changing relevant cell wall characteristics have been identified. Although mutant-based cell wall engineering is relatively new, it has become feasible due to the rapid development of genome-editing technologies and systems biology-related research; we will soon enter an age of designed artificial wood production via complex genetic manipulations of many industrially important trees and crops.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Nase-cho 344-1, Totsuka-ku, Yokohama, Kanagawa, 245-0051 Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| |
Collapse
|
32
|
Reboledo G, Agorio AD, Vignale L, Batista-García RA, Ponce De León I. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2021; 107:365-385. [PMID: 33521880 DOI: 10.1007/s11103-021-01116-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astri D Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
33
|
Chen Y, Yi N, Yao SB, Zhuang J, Fu Z, Ma J, Yin S, Jiang X, Liu Y, Gao L, Xia T. CsHCT-Mediated Lignin Synthesis Pathway Involved in the Response of Tea Plants to Biotic and Abiotic Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10069-10081. [PMID: 34410120 DOI: 10.1021/acs.jafc.1c02771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many studies have shown that phenolic compounds such as lignin and flavonoids enhance plant resistance. Tea plants are rich in flavonoid compounds. Whether these compounds are related to tea plant resistance is unclear. In this study, an interesting conclusion was drawn on the basis of experimental results: in response to abiotic stress (except for sucrose treatment), gene expression was increased in the phenylpropanoid and lignin pathways and was reduced in the flavonoid pathway in tea plants. CsHCTs, the genes located at the branch point of the lignin and flavonoid pathways, are most suitable for regulating the ratio of carbon flow in the lignin pathway and flavonoid synthesis. Enzymatic and genetic modification experiments proved that CsHCTs encode hydroxycinnamoyl-coenzyme A:shikimate/quinate hydroxycinnamoyl transferase in vitro and in vivo. Furthermore, the genetic modification results showed that the contents of phenolic acids and lignin were increased in tobacco and Arabidopsis plants overexpressing CsHCTs, whereas the content of flavonol glycosides was decreased. Both types of transgenic plants showed resistance to many abiotic stresses and bacterial infections. We speculate that CsHCTs participate in regulation of the metabolic flow of carbon from the flavonoid pathway to the chlorogenic acid, caffeoylshikimic acid, and lignin pathways to increase resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ning Yi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Sheng Bo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jing Ma
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shixin Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
34
|
de Vries S, Fürst-Jansen JMR, Irisarri I, Dhabalia Ashok A, Ischebeck T, Feussner K, Abreu IN, Petersen M, Feussner I, de Vries J. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:975-1002. [PMID: 34165823 DOI: 10.1111/tpj.15387] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land-plant-specific adaptation shaped by selective forces in the terrestrial habitat. Recent data have, however, revealed that streptophyte algae, the algal relatives of land plants, have candidates for the genetic toolkit for phenylpropanoid biosynthesis and produce phenylpropanoid-derived metabolites. Using phylogenetic and sequence analyses, we here show that the enzyme families that orchestrate pivotal steps in phenylpropanoid biosynthesis have independently undergone pronounced radiations and divergence in multiple lineages of major groups of land plants; sister to many of these radiated gene families are streptophyte algal candidates for these enzymes. These radiations suggest a high evolutionary versatility in the enzyme families involved in the phenylpropanoid-derived metabolism across embryophytes. We suggest that this versatility likely translates into functional divergence, and may explain the key to one of the defining traits of embryophytes: a rich specialized metabolism.
Collapse
Affiliation(s)
- Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Ilka N Abreu
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtsr. 1, 37077, Goettingen, Germany
| |
Collapse
|
35
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Kriegshauser L, Knosp S, Grienenberger E, Tatsumi K, Gütle DD, Sørensen I, Herrgott L, Zumsteg J, Rose JKC, Reski R, Werck-Reichhart D, Renault H. Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. THE PLANT CELL 2021; 33:1472-1491. [PMID: 33638637 PMCID: PMC8254490 DOI: 10.1093/plcell/koab044] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/31/2021] [Indexed: 05/04/2023]
Abstract
The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.
Collapse
Affiliation(s)
- Lucie Kriegshauser
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Samuel Knosp
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Etienne Grienenberger
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Kanade Tatsumi
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Desirée D Gütle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laurence Herrgott
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Julie Zumsteg
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Danièle Werck-Reichhart
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Hugues Renault
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
- Author for correspondence:
| |
Collapse
|
37
|
Murayama K, Kato-Murayama M, Sato T, Hosaka T, Ishiguro K, Mizuno T, Kitao K, Honma T, Yokoyama S, Tanaka Y, Shirouzu M. Anthocyanin 5,3'-aromatic acyltransferase from Gentiana triflora, a structural insight into biosynthesis of a blue anthocyanin. PHYTOCHEMISTRY 2021; 186:112727. [PMID: 33743393 DOI: 10.1016/j.phytochem.2021.112727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The acylation of anthocyanins contributes to their structural diversity. Aromatic acylation is responsible for the blue color of anthocyanins and certain flowers. Aromatic acyltransferase from Gentiana triflora Pall. (Gentianaceae) (Gt5,3'AT) catalyzes the acylation of glucosyl moieties at the 5 and 3' positions of anthocyanins. Anthocyanin acyltransferase transfers an acyl group to a single position, such that Gt5,3'AT possesses a unique enzymatic activity. Structural investigation of this aromatic acyl group transfer is fundamental to understand the molecular mechanism of the acylation of double positions. In this study, structural analyses of Gt5,3'AT were conducted to identify the underlying mechanism. The crystal structure indicated that Gt5,3'AT shares structural similarities with other BAHD family enzymes, consisting of N and C terminal lobes. Structural comparison revealed that acyl group preference (aromatic or aliphatic) for the enzymes was determined by four amino acid positions, which are well conserved in aromatic and aliphatic CoA-binding acyltransferases. Although a complex structure with anthocyanins was not obtained, the binding of delphinidin 3,5,3'-triglucoside to Gt5,3'AT was investigated by evaluating the molecular dynamics. The simulation indicated that acyl transfer by Gt5,3'AT preferentially occurs at the 5-position rather than at the 3'-position, with interacting amino acids that are mainly located in the C-terminal lobe. Subsequent assays of chimeric enzymes (exchange of the N-terminal lobe and the C-terminal lobe between Gt5,3'AT and lisianthus anthocyanin 5AT) demonstrated that acyl transfer selectivity may be caused by the C-terminal lobe.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8575, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Tomohiro Sato
- Laboratory for Structure-Based Molecular Design, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Kanako Ishiguro
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, 619-0284, Japan
| | - Takayuki Mizuno
- Department of Botany, National Museum of Nature and Science, Tsukuba, 305-0005, Japan
| | - Kazunori Kitao
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, 619-0284, Japan
| | - Teruki Honma
- Laboratory for Structure-Based Molecular Design, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, 230-0045, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, 619-0284, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan.
| |
Collapse
|
38
|
Negrel J, Klinguer A, Adrian M. In vitro inhibition of shikimate hydroxycinnamoyltransferase by acibenzolar acid, the first metabolite of the plant defence inducer acibenzolar-S-methyl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:119-127. [PMID: 33836466 DOI: 10.1016/j.plaphy.2021.03.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Acibenzolar acid, the first metabolite formed in planta from the defence inducer acibenzolar-S-methyl (ASM), has been shown to be an inhibitor of the enzyme shikimate hydroxycinnamoyltransferase (HST), extracted from grapevine or tobacco cell suspension cultures. Using a purified recombinant Arabidopsis thaliana HST, the inhibition was found to be competitive, acibenzolar acid binding reversibly to the shikimate binding site of the HST:p-coumaroyl-CoA complex, with a Ki value of 250 μM. The other hydroxycinnamoyltransferases tested in the course of this study, using either hydroxypalmitic acid, putrescine, tyramine, or quinic acid as acyl acceptors were not, or only slightly, inhibited by acibenzolar acid. To understand the specificity of the interaction of acibenzolar acid with HST, we analyzed the structure-activity relationship of a series of benzoic or acibenzolar acid analogues, tested either as AtHST substrates or as inhibitors. This analysis confirmed previously published data on the substrate flexibility of HST and demonstrated that both the carboxyl group and the thiadiazole moiety of acibenzolar acid are playing an important role in the interaction with the shikimate binding site. Acibenzolar acid, which cannot form an ester bond with p-coumaric acid, was however a less potent inhibitor than protocatechuic or 3-hydroxybenzoic acids, which are used as acyl acceptors by HST. Our results show that the interaction of acibenzolar acid with HST, which is probably directly linked to the substrate promiscuity of HST, is unlikely to play a direct role in the defence-inducing properties of ASM in plants.
Collapse
Affiliation(s)
- Jonathan Negrel
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| |
Collapse
|
39
|
In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Metab Eng 2021; 66:148-156. [PMID: 33895365 DOI: 10.1016/j.ymben.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable intermediate that naturally occurs during microbial degradation of lignin by bacteria, represents a promising building block for diverse biomaterials and polyesters such as biodegradable plastics. The lack of a chemical synthesis method has hindered large-scale utilization of PDC and metabolic engineering approaches for its biosynthesis have recently emerged. In this study, we demonstrate a strategy for the production of PDC via manipulation of the shikimate pathway using plants as green factories. In tobacco leaves, we first showed that transient expression of bacterial feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB) produced high titers of protocatechuate (PCA), which was in turn efficiently converted into PDC upon co-expression of PCA 4,5-dioxygenase (PmdAB) and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (PmdC) derived from Comamonas testosteroni. We validated that stable expression of AroG in Arabidopsis in a genetic background containing the QsuB gene enhanced PCA content in plant biomass, presumably via an increase of the carbon flux through the shikimate pathway. Further, introducing AroG and the PDC biosynthetic genes (PmdA, PmdB, and PmdC) into the Arabidopsis QsuB background, or introducing the five genes (AroG, QsuB, PmdA, PmdB, and PmdC) stacked on a single construct into wild-type plants, resulted in PDC titers of ~1% and ~3% dry weight in plant biomass, respectively. Consistent with previous studies of plants expressing QsuB, all PDC producing lines showed strong reduction in lignin content in stems. This low lignin trait was accompanied with improvements of biomass saccharification efficiency due to reduced cell wall recalcitrance to enzymatic degradation. Importantly, most transgenic lines showed no reduction in biomass yields. Therefore, we conclude that engineering plants with the proposed de-novo PDC pathway provides an avenue to enrich biomass with a value-added co-product while simultaneously improving biomass quality for the supply of fermentable sugars. Implementing this strategy into bioenergy crops has the potential to support existing microbial fermentation approaches that exploit lignocellulosic biomass feedstocks for PDC production.
Collapse
|
40
|
Kang Y, Yang X, Liu Y, Shi M, Zhang W, Fan Y, Yao Y, Zhang J, Qin S. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Int J Biol Macromol 2021; 182:938-949. [PMID: 33878362 DOI: 10.1016/j.ijbiomac.2021.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The continuing increase in the global saline-alkali land area has made saline-alkali stress the principal abiotic stress limiting plant growth. Potato is the most important non-grain crop, and its production is also severely limited by saline-alkali stress. However, few studies have addressed the mechanism of saline-alkali tolerance of potato with a focus on its response to neutral salt NaCl stress, or its response to alkali stress. Recently, miRNA-mRNA analyses have helped advance our understanding of how plants respond to stress. Here, we have characterized the morphological, physiological, and transcriptome changes of tissue culture seedlings of potato variety "Qingshu No. 9" treated with NaHCO3 (for 0, 2, 6, and 24 h). We found that the leaves of tissue culture seedlings wilted and withered under alkali stress, and the contents of ABA, BRs, trehalose, and lignin in roots increased significantly. The contents of GAs decreased significantly. Subsequently, miRNA-seq analysis results identified 168 differentially expressed miRNAs (DEMIs) under alkali stress, including 21 exist miRNAs and 37 known miRNAs from 47 families and 110 novel miRNAs. The mRNA-seq results identified 5731 differentially expressed mRNAs (DEMs) under alkali stress. By miRNA-mRNA integrated analysis, were obtained 33 miRNA-target gene pairs composed of 20 DEMIs and 33 DEMs. Next, we identified the "phenylpropanoid biosynthesis", "plant hormone signal transduction", and "starch and sucrose metabolism" pathways as necessary for potato to respond to alkali stress. miR4243-x and novel-m064-5p were involved in the response of potato to alkali stress by their negative regulatory effects on shikimate O-hydroxycinnamoyltransferase (HCT) and sucrose-phosphate synthase (SPS) genes, respectively. The expression results of miRNA and mRNA were verified by quantitative real-time PCR (qRT-PCR). Our results clarify the mechanism of potato response to alkali stress at the miRNA level, providing new insights into the molecular mechanisms of potato's response to alkali stress. We report many candidate miRNAs and mRNAs for molecular-assisted screening and salt-alkali resistance breeding.
Collapse
Affiliation(s)
- Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - YanHong Yao
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
41
|
Cardenas CL, Costa MA, Laskar DD, Moinuddin SGA, Lee C, Davin LB, Lewis NG. RNA i Modulation of Chlorogenic Acid and Lignin Deposition in Nicotiana tabacum and Insufficient Compensatory Metabolic Cross-Talk. JOURNAL OF NATURAL PRODUCTS 2021; 84:694-706. [PMID: 33687206 DOI: 10.1021/acs.jnatprod.1c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chlorogenic acid (CGA) and guaiacyl/syringyl (G/S) lignin formation involves hydroxycinnamoyl ester intermediacy, the latter formed via hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) and hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) activities. HQT and HCT RNAi silencing of a commercial tobacco (Nicotiana tabacum) K326 line was examined herein. NtHQT gene silencing gave relatively normal plant phenotypes, with CGA levels reduced (down to 1% of wild type) with no effects on lignin. RNAi NtHCT silencing had markedly adverse phenotypes (e.g., stunted, multiple stems, delayed flowering, with senescence delayed by several months). Lignin contents were partially lowered, with a small increase in cleavable p-hydroxyphenyl (H) monomers; those plants had no detectable CGA level differences relative to wild type. In vitro NtHCT kinetic parameters revealed preferential p-coumaroyl CoA and shikimate esterification, as compared to other structurally related potential acyl group donors and acceptors. In the presence of coenzyme A, NtHCT catalyzed the reverse reaction. Site-directed mutagenesis of NtHCT (His153Ala) abolished enzymatic activity. NtHQT, by comparison, catalyzed preferential conversion of p-coumaroyl CoA and quinic acid to form p-coumaroyl quinate, the presumed CGA precursor. In sum, metabolic pathways to CGA and lignins appear to be fully independent, and previous conflicting reports of substrate versatilities and metabolic cross-talk are resolved.
Collapse
Affiliation(s)
- Claudia L Cardenas
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Dhrubojyoti D Laskar
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Syed G A Moinuddin
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Choonseok Lee
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| |
Collapse
|
42
|
Chao N, Qi Q, Li S, Ruan B, Jiang X, Gai Y. Characterization and functional analysis of the Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) gene family in poplar. PeerJ 2021; 9:e10741. [PMID: 33665007 PMCID: PMC7916539 DOI: 10.7717/peerj.10741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) divides the mass flux to H, G and S units in monolignol biosynthesis and affects lignin content. Ten HCT homologs were identified in the Populus trichocarpa (Torr. & Gray) genome. Both genome duplication and tandem duplication resulted in the expansion of HCT orthologs in Populus. Comprehensive analysis including motif analysis, phylogenetic analysis, expression profiles and co-expression analysis revealed the divergence and putative function of these candidate PoptrHCTs. PoptrHCT1 and 2 were identified as likely involved in lignin biosynthesis. PoptrHCT9 and 10- are likely to be involved in plant development and the response to cold stress. Similar functional divergence was also identified in Populus tomentosa Carr. Enzymatic assay of PtoHCT1 showed that PtoHCT1 was able to synthesize caffeoyl shikimate using caffeoyl-CoA and shikimic acid as substrates.
Collapse
Affiliation(s)
- Nan Chao
- School of Life Science, Tsinghua University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| | - Shuang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Brent Ruan
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, China
| |
Collapse
|
43
|
Serrani-Yarce JC, Escamilla-Trevino L, Barros J, Gallego-Giraldo L, Pu Y, Ragauskas A, Dixon RA. Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:50. [PMID: 33640016 PMCID: PMC7913460 DOI: 10.1186/s13068-021-01905-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) is a central enzyme of the so-called "esters" pathway to monolignols. As originally envisioned, HCT functions twice in this pathway, to form coumaroyl shikimate and then, in the "reverse" direction, to convert caffeoyl shikimate to caffeoyl CoA. The discovery of a caffeoyl shikimate esterase (CSE) that forms caffeic acid directly from caffeoyl shikimate calls into question the need for the reverse HCT reaction in lignin biosynthesis. Loss of function of HCT gives severe growth phenotypes in several dicot plants, but less so in some monocots, questioning whether this enzyme, and therefore the shikimate shunt, plays the same role in both monocots and dicots. The model grass Brachypodium distachyon has two HCT genes, but lacks a classical CSE gene. This study was therefore conducted to evaluate the utility of HCT as a target for lignin modification in a species with an "incomplete" shikimate shunt. RESULTS The kinetic properties of recombinant B. distachyon HCTs were compared with those from Arabidopsis thaliana, Medicago truncatula, and Panicum virgatum (switchgrass) for both the forward and reverse reactions. Along with two M. truncatula HCTs, B. distachyon HCT2 had the least kinetically unfavorable reverse HCT reaction, and this enzyme is induced when HCT1 is down-regulated. Down regulation of B. distachyon HCT1, or co-down-regulation of HCT1 and HCT2, by RNA interference led to reduced lignin levels, with only modest changes in lignin composition and molecular weight. CONCLUSIONS Down-regulation of HCT1, or co-down-regulation of both HCT genes, in B. distachyon results in less extensive changes in lignin content/composition and cell wall structure than observed following HCT down-regulation in dicots, with little negative impact on biomass yield. Nevertheless, HCT down-regulation leads to significant improvements in biomass saccharification efficiency, making this gene a preferred target for biotechnological improvement of grasses for bioprocessing.
Collapse
Affiliation(s)
- Juan Carlos Serrani-Yarce
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, 76203 TX, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luis Escamilla-Trevino
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, 76203 TX, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jaime Barros
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, 76203 TX, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lina Gallego-Giraldo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, 76203 TX, USA
| | - Yunqiao Pu
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge, TN, USA
| | - Art Ragauskas
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge, TN, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, 76203 TX, USA.
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
44
|
Hao Z, Yogiswara S, Wei T, Benites VT, Sinha A, Wang G, Baidoo EEK, Ronald PC, Scheller HV, Loqué D, Eudes A. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2021; 21:56. [PMID: 33478381 PMCID: PMC7819203 DOI: 10.1186/s12870-021-02842-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological upgrading. RESULTS The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the bioenergy crop switchgrass (Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene (pShOMT) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated with ectopic QsuB expression during the plant regeneration process. CONCLUSION This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass. We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product. We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the performance of the introduced traits and agronomic performances of the transgenic plants.
Collapse
Affiliation(s)
- Zhangying Hao
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sasha Yogiswara
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Tong Wei
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Present address: State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518000 China
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Anagh Sinha
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - George Wang
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Pamela C. Ronald
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720 USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
45
|
Yamane M, Takenoya M, Yajima S, Sue M. Crystal structure of barley agmatine coumaroyltransferase, an N-acyltransferase from the BAHD superfamily. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:590-596. [PMID: 33263570 DOI: 10.1107/s2053230x20014880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]
Abstract
The enzymes of the BAHD superfamily, a large group of acyl-CoA-dependent acyltransferases in plants, are involved in the biosynthesis of diverse secondary metabolites. While the structures of several O-acyltransferases from the BAHD superfamily, such as hydroxycinnamoyl-CoA shikimate hydroxycinnamoyl transferase, have been elucidated, no structural information on N-acyltransferases is available. Hordeum vulgare agmatine coumaroyltransferase (HvACT) is an N-acyltransferase from the BAHD superfamily and is one of the most important enzymes in the secondary metabolism of barley. Here, an apo-form structure of HvACT is reported as the first structure of an N-acyltransferase from the BAHD superfamily. HvACT crystals diffracted to 1.8 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 57.6, b = 59.5, c = 73.6 Å, α = 90, β = 91.3 , γ = 90°. Like other known BAHD superfamily structures, HvACT contains two domains that adopt a two-layer αβ-sandwich architecture and a solvent-exposed channel that penetrates the enzyme core.
Collapse
Affiliation(s)
- Miyo Yamane
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Mihoko Takenoya
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| |
Collapse
|
46
|
Abstract
Cold-active enzymes increase their catalytic efficiency at low-temperature, introducing structural flexibility at or near the active sites. Inevitably, this feat seems to be accompanied by lower thermal stability. These characteristics have made cold-active enzymes into attractive targets for the industrial applications, since they could reduce the energy cost in the reaction, attenuate side-reactions, and simply be inactivated. In addition, the increased structural flexibility could result in broad substrate specificity for various non-native substrates, which is called substrate promiscuity. In this perspective, we deal with a less addressed aspect of cold-active enzymes, substrate promiscuity, which has enormous potential for semi-synthesis or enzymatic modification of fine chemicals and drugs. Further structural and directed-evolutional studies on substrate promiscuity of cold-active enzymes will provide a new workhorse in white biotechnology.
Collapse
|
47
|
Bao F, Zhang T, Ding A, Ding A, Yang W, Wang J, Cheng T, Zhang Q. Metabolic, Enzymatic Activity, and Transcriptomic Analysis Reveals the Mechanism Underlying the Lack of Characteristic Floral Scent in Apricot Mei Varieties. FRONTIERS IN PLANT SCIENCE 2020; 11:574982. [PMID: 33193512 PMCID: PMC7642261 DOI: 10.3389/fpls.2020.574982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 06/01/2023]
Abstract
Apricot mei, a hybrid of Prunus mume and Prunus sibirica, usually has greater cold resistance than P. mume; however, most varieties of Apricot mei lack the characteristic floral scent of P. mume. The volatile and intracellular metabolites, activity levels of key enzymes, and transcriptomes of blooming flowers were comprehensively investigated in five varieties of P. mume. Benzyl acetate and eugenol were determined to be the main components of the P. mume floral scent. However, benzyl benzoate and benzyl alcohol benzoyltransferase activity was detected in only the low-fragrance varieties "Dan Fenghou" and "Yanxing." No benzyl alcohol or benzaldehyde reductase (BAR) activity was detected in the non-fragrant variety "Fenghou." PmBAR1 and PmBAR3 were identified as the key genes responsible for BAR activity. The lack of benzyl alcohol synthesis in the "Fenghou" variety was caused by low activity of PmBAR1-Fen and low expression of PmBAR3. The 60-aa segment at the N-terminus of PmBAR3 was found to play an important role in its enzymatic activity. Correlation tests between floral scent metabolites and the transcriptomes of the five different scented varieties showed that some transcripts associated with hormones, stresses, posttranslational modifications and transporters may also play important regulatory roles in floral scent metabolism in the different varieties.
Collapse
Affiliation(s)
- Fei Bao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tengxun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Anqi Ding
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Aiqin Ding
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
48
|
Cadena-Zamudio JD, Nicasio-Torres P, Monribot-Villanueva JL, Guerrero-Analco JA, Ibarra-Laclette E. Integrated Analysis of the Transcriptome and Metabolome of Cecropia obtusifolia: A Plant with High Chlorogenic Acid Content Traditionally Used to Treat Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21207572. [PMID: 33066422 PMCID: PMC7588936 DOI: 10.3390/ijms21207572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
This investigation cultured Cecropia obtusifolia cells in suspension to evaluate the effect of nitrate deficiency on the growth and production of chlorogenic acid (CGA), a secondary metabolite with hypoglycemic and hypolipidemic activity that acts directly on type 2 diabetes mellitus. Using cell cultures in suspension, a kinetics time course was established with six time points and four total nitrate concentrations. The metabolites of interest were quantified by high-performance liquid chromatography (HPLC), and the metabolome was analyzed using directed and nondirected approaches. Finally, using RNA-seq methodology, the first transcript collection for C. obtusifolia was generated. HPLC analysis detected CGA at all sampling points, while metabolomic analysis confirmed the identity of CGA and of precursors involved in its biosynthesis. Transcriptome analysis identified differentially expressed genes and enzymes involved in the biosynthetic pathway of CGA. C. obtusifolia probably expresses a key enzyme with bifunctional activity, the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HQT/HCT), which recognizes shikimic acid or quinic acid as a substrate and incorporates either into one of the two routes responsible for CGA biosynthesis.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Pilar Nicasio-Torres
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur (CIBIS), Xochitepec 62790, Morelos, Mexico;
| | - Juan Luis Monribot-Villanueva
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - José Antonio Guerrero-Analco
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
- Correspondence: ; Tel.: +52-(228)-842-1823
| |
Collapse
|
49
|
Schnabel A, Cotinguiba F, Athmer B, Yang C, Westermann B, Schaks A, Porzel A, Brandt W, Schumacher F, Vogt T. A piperic acid CoA ligase produces a putative precursor of piperine, the pungent principle from black pepper fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:569-581. [PMID: 31837062 DOI: 10.1111/tpj.14652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Black pepper (Piper nigrum L.) is known for its high content of piperine, a cinnamoyl amide derivative regarded as largely responsible for the pungent taste of this widely used spice. Despite its long history and worldwide use, the biosynthesis of piperine and related amides has been enigmatic up to now. In this report we describe a specific piperic acid CoA ligase from immature green fruits of P. nigrum. The corresponding enzyme was cloned and functionally expressed in E. coli. The recombinant enzyme displays a high specificity for piperic acid and does not accept the structurally related feruperic acid characterized by a similar C-2 extension of the general C6-C3 phenylpropanoid structure. The enzyme is also inactive with the standard set of hydroxycinnamic acids tested including caffeic acid, 4-coumaric acid, ferulic acid, and sinapic acid. Substrate specificity is corroborated by in silico modelling that suggests a perfect fit for the substrate piperic acid to the active site of the piperic acid CoA ligase. The CoA ligase gene shows its highest expression levels in immature green fruits, is also expressed in leaves and flowers, but not in roots. Virus-induced gene silencing provided some preliminary indications that the production of piperoyl-CoA is required for the biosynthesis of piperine in black pepper fruits.
Collapse
Affiliation(s)
- Arianne Schnabel
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Fernando Cotinguiba
- Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro/RJ, Brasil
| | - Benedikt Athmer
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Changqing Yang
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Angela Schaks
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Frank Schumacher
- Core Facility Vienna Botanical Gardens, Rennweg 14/2, 1030, Vienna, Austria
| | - Thomas Vogt
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| |
Collapse
|
50
|
Lin CY, Eudes A. Strategies for the production of biochemicals in bioenergy crops. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:71. [PMID: 32318116 PMCID: PMC7158082 DOI: 10.1186/s13068-020-01707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 05/12/2023]
Abstract
Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|