1
|
Wang C, Tai H, Chen Y, Zhai Z, Zhang L, Pu Z, Zhang M, Li C, Xie Z. Soil Microbiota Modulates Root Transcriptome With Divergent Effect on Maize Growth Under Low and High Phosphorus Inputs. PLANT, CELL & ENVIRONMENT 2025; 48:2132-2144. [PMID: 39552518 DOI: 10.1111/pce.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Plant growth can be promoted by beneficial microorganisms, or inhibited by detrimental ones. Although the interaction process between a single microbial species and its host has been extensively studied, the growth and transcriptional response of the host to soil microbiota is poorly understood. We planted maize in natural or sterile soil collected from a long-term experimental site with two different soil phosphate (P) regimes. We examined the composition of microbial communities inhabiting root-associated niches in natural soil. In parallel, we determined the biomass, ionomes, and root transcriptome profiling of maize grown in natural or sterile soil. Soil microbiota could promote or inhibit different P starvation-responsive (PSR) genes, as well as induce several defense-related metabolic processes independently of external P levels. Soil microbiota accompanied by long-term application of P fertilizer induced lower intensity of PSR and defense responses, inhibiting maize growth. Under a low P regime, the PSR and defense responses were induced to a higher extent, promoting P absorption and growth. Our findings suggest a soil P-dependent effect of microbiota on maize growth by integrating PSR and defense responses and provide a more refined understanding of the interaction between root growth and soil microbiota.
Collapse
Affiliation(s)
- Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Huanhuan Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Zhiwen Zhai
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
| | - Maolin Zhang
- Dongying City Yibang Agricultural Technology Development Co., Ltd., Dongying, Shandong Province, China
| | - Chunjian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Wang T, Wang F, Deng S, Wang K, Feng D, Xu F, Guo W, Yu J, Wu Y, Wuriyanghan H, Li ST, Gu X, Le L, Pu L. Single-cell transcriptomes reveal spatiotemporal heat stress response in maize roots. Nat Commun 2025; 16:177. [PMID: 39747108 PMCID: PMC11697069 DOI: 10.1038/s41467-024-55485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Plant roots perceive heat stress (HS) and adapt their architecture accordingly, which in turn influence the yield in crops. Investigating their heterogeneity and cell type-specific response to HS is essential for improving crop resilience. Here, we generate single-cell transcriptional landscape of maize (Zea mays) roots in response to HS. We characterize 15 cell clusters corresponding to 9 major cell types and identify cortex as the main root cell type responsive to HS with the most differentially expressed genes and its trajectory being preferentially affected upon HS. We find that cortex size strongly correlated with heat tolerance that is experimentally validated by using inbred lines and genetic mutation analysis of one candidate gene in maize, providing potential HS tolerance indicator and targets for crop improvement. Moreover, interspecies comparison reveals conserved root cell types and core markers in response to HS in plants, which are experimentally validated. These results provide a universal atlas for unraveling the transcriptional programs that specify and maintain the cell identity of maize roots in response to HS at a cell type-specific level.
Collapse
Affiliation(s)
- Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Shangrao Normal University, Shangrao, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Shuhan Deng
- Glbizzia Biosciences Co., Ltd, Beijing, China
| | - Kailai Wang
- Glbizzia Biosciences Co., Ltd, Beijing, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hada Wuriyanghan
- School of Life Science, Inner Mongolia University, Hohhot, China
| | | | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Xu Y, Yan Y, Zhou T, Chun J, Tu Y, Yang X, Qin J, Ou L, Ye L, Liu F. Genome-wide transcriptome and gene family analysis reveal candidate genes associated with potassium uptake of maize colonized by arbuscular mycorrhizal fungi. BMC PLANT BIOLOGY 2024; 24:838. [PMID: 39242995 PMCID: PMC11378567 DOI: 10.1186/s12870-024-05398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Potassium (K) is an essential nutrient for plant growth and development. Maize (Zea mays) is a widely planted crops in the world and requires a huge amount of K fertilizer. Arbuscular mycorrhizal fungi (AMF) are closely related to the K uptake of maize. Genetic improvement of maize K utilization efficiency will require elucidating the molecular mechanisms of maize K uptake through the mycorrhizal pathway. Here, we employed transcriptome and gene family analysis to elucidate the mechanism influencing the K uptake and utilization efficiency of mycorrhizal maize. METHODS AND RESULTS The transcriptomes of maize were studied with and without AMF inoculation and under different K conditions. AM symbiosis increased the K concentration and dry weight of maize plants. RNA sequencing revealed that genes associated with the activity of the apoplast and nutrient reservoir were significantly enriched in mycorrhizal roots under low-K conditions but not under high-K conditions. Weighted gene correlation network analysis revealed that three modules were strongly correlated with K content. Twenty-one hub genes enriched in pathways associated with glycerophospholipid metabolism, glycerolipid metabolism, starch and sucrose metabolism, and anthocyanin biosynthesis were further identified. In general, these hub genes were upregulated in AMF-colonized roots under low-K conditions. Additionally, the members of 14 gene families associated with K obtain were identified (ARF: 38, ILK: 4, RBOH: 12, RUPO: 20, MAPKK: 89, CBL: 14, CIPK: 44, CPK: 40, PIN: 10, MYB: 174, NPF: 79, KT: 19, HAK/HKT/KUP: 38, and CPA: 8) from maize. The transcript levels of these genes showed that 92 genes (ARF:6, CBL:5, CIPK:13, CPK:2, HAK/HKT/KUP:7, PIN:2, MYB:26, NPF:16, RBOH:1, MAPKK:12 and RUPO:2) were upregulated with AM symbiosis under low-K conditions. CONCLUSIONS This study indicated that AMF increase the resistance of maize to low-K stress by regulating K uptake at the gene transcription level. Our findings provide a genome-level resource for the functional assignment of genes regulated by K treatment and AM symbiosis in K uptake-related gene families in maize. This may contribute to elucidate the molecular mechanisms of maize response to low K stress with AMF inoculation, and provided a theoretical basis for AMF application in the crop field.
Collapse
Affiliation(s)
- Yunjian Xu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Yixiu Yan
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Tianyi Zhou
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Jianhui Chun
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Yuanchao Tu
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Xinyu Yang
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Jie Qin
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Luyan Ou
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Liang Ye
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China
| | - Fang Liu
- School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China.
| |
Collapse
|
4
|
Bai Y, Yang Q, Gan Y, Li M, Zhao Z, Dong E, Li C, He D, Mei X, Cai Y. The ZmNF-YC1-ZmAPRG pathway modulates low phosphorus tolerance in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2867-2881. [PMID: 38393826 DOI: 10.1093/jxb/erae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and yield. Low phosphate use efficiency makes it important to clarify the molecular mechanism of low P stress. In our previous studies, a P efficiency gene ZmAPRG was identified. Here, we further screened the upstream regulator ZmNF-YC1 of ZmAPRG by yeast one hybrid (Y1H) assay, and found it was a low inorganic phosphorus (Pi)-inducible gene. The results of dual luciferase assays, expression analysis, and ChIP-qPCR assays showed that ZmNF-YC1 is a positive regulator of ZmAPRG. Overexpression of ZmNF-YC1 improved low P tolerance, whereas knockout of ZmNF-YC1 decreased low P tolerance in maize. Bimolecular fluorescence complementation (BiFC), yeast two hybrid (Y2H) assay, and yeast three hybrid (Y3H) assay further showed that ZmNF-YC1 can interact with ZmNF-YB14, and recruit ZmNF-YA4/10 to form NF-Y complexes. Transcriptional activation assay confirmed that the NF-Y complexes can activate the promoters of ZmAPRG. Meanwhile, transcriptome and metabolome analyses indicated that overexpression of ZmAPRG improves low P tolerance by regulating lipid composition and photosynthetic capacity, and chlorophyll fluorescence parameters provided evidence in support of this hypothesis. Furthermore, overexpression of ZmAPRG increased grain yield in inbred and hybrid maize under low P conditions. Taken together, our research revealed a low P tolerance mechanism of the ZmNF-YC1-ZmAPRG pathway.
Collapse
Affiliation(s)
- Yang Bai
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Qiuyue Yang
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yuling Gan
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Mei Li
- Department of Agriculture and Horticulture, Guangxi Agricultural Vocational University, Nanning 530007, Guangxi, China
| | - Zikun Zhao
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Erfei Dong
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Di He
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiupeng Mei
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yilin Cai
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Cheng Y, Chen K, He D, He Y, Lei Y, Sun Y. Diversity of Arbuscular Mycorrhizal Fungi of the Rhizosphere of Lycium barbarum L. from Four Main Producing Areas in Northwest China and Their Effect on Plant Growth. J Fungi (Basel) 2024; 10:286. [PMID: 38667957 PMCID: PMC11050802 DOI: 10.3390/jof10040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can help plants absorb more mineral nutrients after they colonize plant roots, and the mycelia harmonize the soil structure and physical and chemical properties by secreting compounds. AMF species co-evolve with their habitat's geographic conditions and hosts; this gradually causes differences in the AMF species. By using Melzer's reagent to analyze the morphology and using Illumina Miseq sequencing technology to perform the molecular identification of AMF communities among the four typical L. barbarum planting areas (Zhongning, Guyuan, Jinghe, and Dulan) investigated, the variety of L. barbarum roots and rhizosphere AMF communities was greater in the Zhongning area, and every region additionally had endemic species. The successfully amplified AMF was re-applied to the L. barbarum seedlings. We found that the total dry weight and accumulation of potassium increased significantly (p < 0.05), and the root volume and number of root branches were significantly higher in the plants that were inoculated with Paraglomus VTX00375 in the pot experiment, indicating that AMF improves root development and promotes plant growth. We have investigated AMF germplasm species in four regions, and we are committed to the development of native AMF resources. The multiplication and application of AMF will be conducive to realizing the potential role of biology in the maintenance of agroecology.
Collapse
Affiliation(s)
- Yuyao Cheng
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| | - Kaili Chen
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| | - Dalun He
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| | - Yaling He
- College of Medicine, Shihezi University, Shihezi 832000, China;
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Yanfei Sun
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| |
Collapse
|
6
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
7
|
Yang X, Hu Q, Zhao Y, Chen Y, Li C, He J, Wang ZY. Identification of GmPT proteins and investigation of their expressions in response to abiotic stress in soybean. PLANTA 2024; 259:76. [PMID: 38418674 DOI: 10.1007/s00425-024-04348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION Investigation the expression patterns of GmPT genes in response to various abiotic stresses and overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress. Soybean is considered to be one of the significant oil crops globally, as it offers a diverse range of essential nutrients that contribute to human health. Salt stress seriously affects the yield of soybean through negative impacts on the growth, nodulation, reproduction, and other agronomy traits. The phosphate transporters 1(PHT1) subfamily, which is a part of the PHTs family in plants, is primarily found in the cell membrane and responsible for the uptake and transport of phosphorus. However, the role of GmPT (GmPT1-GmPT14) genes in response to salt stress has not been comprehensively studied. Here, we conducted a systematic analysis to ascertain the distribution and genomic duplications of GmPT genes, as well as their expression patterns in response to various abiotic stresses. Promoter analysis of GmPT genes revealed that six stress-related cis-elements were enriched in these genes. The overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress, while no significant change was observed under low phosphate treatment, suggesting a crucial role in the response to salt stress. These findings provide novel insights into enhancing plant tolerance to salt stress.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Agriculture, Guizhou University, Guizhou, 550025, China
| | - Qing Hu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yunfeng Zhao
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China.
| | - Jin He
- College of Agriculture, Guizhou University, Guizhou, 550025, China.
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| |
Collapse
|
8
|
Sharma V, Garg N. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H 2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes. Biometals 2024; 37:185-209. [PMID: 37792256 DOI: 10.1007/s10534-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.
Collapse
Affiliation(s)
- Vaishali Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Lu Y, Yan Y, Qin J, Ou L, Yang X, Liu F, Xu Y. Arbuscular mycorrhizal fungi enhance phosphate uptake and alter bacterial communities in maize rhizosphere soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1206870. [PMID: 37426987 PMCID: PMC10325641 DOI: 10.3389/fpls.2023.1206870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can symbiose with many plants and improve nutrient uptake for their host plant. Rhizosphere microorganisms have been pointed to play important roles in helping AMF to mobilize soil insoluble nutrients, especially phosphorus. Whether the change in phosphate transport under AMF colonization will affect rhizosphere microorganisms is still unknown. Here, we evaluated the links of interactions among AMF and the rhizosphere bacterial community of maize (Zea mays L.) by using a maize mycorrhizal defective mutant. Loss of mycorrhizal symbiosis function reduced the phosphorus concentration, biomass, and shoot length of maize colonized by AMF. Using 16S rRNA gene amplicon high-throughput sequencing, we found that the mutant material shifted the bacterial community in the rhizosphere under AMF colonization. Further functional prediction based on amplicon sequencing indicated that rhizosphere bacteria involved in sulfur reduction were recruited by the AMF colonized mutant but reduced in the AMF- colonized wild type. These bacteria harbored much abundance of sulfur metabolism-related genes and negatively correlated with biomass and phosphorus concentrations of maize. Collectively, this study shows that AMF symbiosis recruited rhizosphere bacterial communities to improve soil phosphate mobilization, which may also play a potential role in regulating sulfur uptake. This study provides a theoretical basis for improving crop adaptation to nutrient deficiency through soil microbial management practices.
Collapse
Affiliation(s)
- Yufan Lu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yixiu Yan
- School of Agriculture, Yunnan University, Kunming, China
| | - Jie Qin
- School of Agriculture, Yunnan University, Kunming, China
| | - Luyan Ou
- School of Agriculture, Yunnan University, Kunming, China
| | - Xinyu Yang
- School of Agriculture, Yunnan University, Kunming, China
| | - Fang Liu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Asadollahi M, Iranbakhsh A, Ahmadvand R, Ebadi M, Mehregan I. Synergetic effect of water deficit and arbuscular mycorrhizal symbiosis on the expression of aquaporins in wheat ( Triticum aestivum L.) roots: insights from NGS RNA-sequencing. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:195-208. [PMID: 36875727 PMCID: PMC9981826 DOI: 10.1007/s12298-023-01285-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Wheat (Triticum aestivum) is one of the most important crops in the world. This investigation was attempted to evaluate the transcriptional responses of aquaporins (AQPs) to the mycorrhizal inoculation and/or water deficit conditions in wheat to clarify how the arbuscular mycorrhizal symbiosis can contribute to the modulation of water homeostasis. The wheat seedlings were subjected to the water deficiency, and mycorrhizal inoculation using arbuscular fungus Funneliformis mosseae and Illumina RNA-Seq analyses confirmed that aquaporins expressed differentially in response to both the irrigation levels and mycorrhizal colonization. Results of this study showed that only 13% of the studied AQPs were responsive to water deficit with a tiny fraction (3%) being up-regulated. Mycorrhizal inoculation had a greater impact on the expression of AQPs with ca. 26% being responsive, ca. 4% of which were up-regulated. The samples with arbuscular mycorrhizal inoculation yielded more root and stem biomass. Water deficit and mycorrhizal inoculation caused different AQPs to be up-regulated. The effect of mycorrhizal inoculation on the expression of AQPs was intensified by applying water deficiency with 32% of studied AQPs being responsive, 6% of which up-regulated. We also found that the overexpression of three genes TaNIP1-10, TaNIP3-3, and TaNIP3-4 was chiefly triggered by mycorrhizal inoculation. Our results show that water deficit has a lower impact on the expression of aquaporins compared to what the arbuscular mycorrhizal inoculation has; water deficit and arbuscular mycorrhizal inoculation mainly cause the down-regulation of the aquaporins, and water deficit and the arbuscular inoculation have synergetic effects. These findings could improve our knowledge of how arbuscular mycorrhizal symbiosis can contribute to the modulation of water homeostasis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01285-w.
Collapse
Affiliation(s)
- Maryam Asadollahi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetables Research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Iraj Mehregan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Giovannini L, Sbrana C, Giovannetti M, Avio L, Lanubile A, Marocco A, Turrini A. Diverse mycorrhizal maize inbred lines differentially modulate mycelial traits and the expression of plant and fungal phosphate transporters. Sci Rep 2022; 12:21279. [PMID: 36482115 PMCID: PMC9732053 DOI: 10.1038/s41598-022-25834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Food production is heavily dependent on soil phosphorus (P), a non-renewable mineral resource essential for plant growth and development. Alas, about 80% is unavailable for plant uptake. Arbuscular mycorrhizal fungi may promote soil P efficient use, although the mechanistic aspects are yet to be completely understood. In this study, plant and fungal variables involved in P acquisition were investigated in maize inbred lines, differing for mycorrhizal responsiveness and low-P tolerance, when inoculated with the symbiont Rhizoglomus irregulare (synonym Rhizophagus irregularis). The expression patterns of phosphate transporter (PT) genes in extraradical and intraradical mycelium (ERM/IRM) and in mycorrhizal and control maize roots were assessed, together with plant growth responses and ERM extent and structure. The diverse maize lines differed in plant and fungal accumulation patterns of PT transcripts, ERM phenotypic traits and plant performance. Mycorrhizal plants of the low-P tolerant maize line Mo17 displayed increased expression of roots and ERM PT genes, compared with the low-P susceptible line B73, which revealed larger ERM hyphal densities and interconnectedness. ERM structural traits showed significant correlations with plant/fungal expression levels of PT genes and mycorrhizal host benefit, suggesting that both structural and functional traits are differentially involved in the regulation of P foraging capacity in mycorrhizal networks.
Collapse
Affiliation(s)
- Luca Giovannini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy, Via Moruzzi 1, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
12
|
Ojeda-Rivera JO, Alejo-Jacuinde G, Nájera-González HR, López-Arredondo D. Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4125-4150. [PMID: 35524816 PMCID: PMC9729153 DOI: 10.1007/s00122-022-04095-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Improving phosphorus (P) crop nutrition has emerged as a key factor toward achieving a more resilient and sustainable agriculture. P is an essential nutrient for plant development and reproduction, and phosphate (Pi)-based fertilizers represent one of the pillars that sustain food production systems. To meet the global food demand, the challenge for modern agriculture is to increase food production and improve food quality in a sustainable way by significantly optimizing Pi fertilizer use efficiency. The development of genetically improved crops with higher Pi uptake and Pi-use efficiency and higher adaptability to environments with low-Pi availability will play a crucial role toward this end. In this review, we summarize the current understanding of Pi nutrition and the regulation of Pi-starvation responses in plants, and provide new perspectives on how to harness the ample repertoire of genetic mechanisms behind these adaptive responses for crop improvement. We discuss on the potential of implementing more integrative, versatile, and effective strategies by incorporating systems biology approaches and tools such as genome editing and synthetic biology. These strategies will be invaluable for producing high-yielding crops that require reduced Pi fertilizer inputs and to develop a more sustainable global agriculture.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
13
|
Rui W, Mao Z, Li Z. The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:11027. [PMID: 36232323 PMCID: PMC9570102 DOI: 10.3390/ijms231911027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
More than 80% of land plant species can form symbioses with arbuscular mycorrhizal (AM) fungi, and nutrient transfer to plants is largely mediated through this partnership. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake progress, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungal-root interface have been identified. In this review, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation) and focus on P and N transfer from the fungal partner to the host plant, with a highlight on a possible interplay between P and N nutrient exchanges. Transporters belonging to the plant or AM fungi can synergistically process the transmembrane transport of soil nutrients to the symbiotic interface for further plant acquisition. Although much progress has been made to elucidate the complex mechanism for the integrated roles of nutrient transfers in AM symbiosis, questions still remain to be answered; for example, P and N transporters are less studied in different species of AM fungi; the involvement of AM fungi in plant N uptake is not as clearly defined as that of P; coordinated utilization of N and P is unknown; transporters of cultivated plants inoculated with AM fungi and transcriptomic and metabolomic networks at both the soil-fungi interface and fungi-plant interface have been insufficiently studied. These findings open new perspectives for fundamental research and application of AM fungi in agriculture.
Collapse
Affiliation(s)
| | | | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
| |
Collapse
|
14
|
Israel A, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022; 11:2591. [PMID: 36076777 PMCID: PMC9455813 DOI: 10.3390/foods11172591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal and aromatic plants (MAPs) have been used worldwide for thousands of years and play a critical role in traditional medicines, cosmetics, and food industries. In recent years, the cultivation of MAPs has become of great interest worldwide due to the increased demand for natural products, in particular essential oils (EOs). Climate change has exacerbated the effects of abiotic stresses on the growth, productivity, and quality of MAPs. Hence, there is a need for eco-friendly agricultural strategies to enhance plant growth and productivity. Among the adaptive strategies used by MAPs to cope with the adverse effects of abiotic stresses including water stress, salinity, pollution, etc., their association with beneficial microorganisms such as arbuscular mycorrhizal fungi (AMF) can improve MAPs' tolerance to these stresses. The current review (1) summarizes the effect of major abiotic stresses on MAPs' growth and yield, and the composition of EOs distilled from MAP species; (2) reports the mechanisms through which AMF root colonization can trigger the response of MAPs to abiotic stresses at morphological, physiological, and molecular levels; (3) discusses the contribution and synergistic effects of AMF and other amendments (e.g., plant growth-promoting bacteria, organic or inorganic amendments) on MAPs' growth and yield, and the composition of distilled EOs in stressed environments. In conclusion, several perspectives are suggested to promote future investigations.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, F-62228 Calais, France
| |
Collapse
|
15
|
Kumar K, Yadava P, Gupta M, Choudhary M, Jha AK, Wani SH, Dar ZA, Kumar B, Rakshit S. Narrowing down molecular targets for improving phosphorus-use efficiency in maize (Zea mays L.). Mol Biol Rep 2022; 49:12091-12107. [PMID: 35752697 DOI: 10.1007/s11033-022-07679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
Conventional agricultural practices rely heavily on chemical fertilizers to boost production. Among the fertilizers, phosphatic fertilizers are copiously used to ameliorate low-phosphate availability in the soil. However, phosphorus-use efficiency (PUE) for major cereals, including maize, is less than 30%; resulting in more than half of the applied phosphate being lost to the environment. Rock phosphate reserves are finite and predicted to exhaust in near future with the current rate of consumption. Thus, the dependence of modern agriculture on phosphatic fertilizers poses major food security and sustainability challenges. Strategies to optimize and improve PUE, like genetic interventions to develop high PUE cultivars, could have a major impact in this area. Here, we present the current understanding and recent advances in the biological phenomenon of phosphate uptake, translocation, and adaptive responses of plants under phosphate deficiency, with special reference to maize. Maize is one of the most important cereal crops that is cultivated globally under diverse agro-climatic conditions. It is an industrial, feed and food crop with multifarious uses and a fast-rising global demand and consumption. The interesting aspects of diversity in the root system architecture traits, the interplay between signaling pathways contributing to PUE, and an in-depth discussion on promising candidate genes for improving PUE in maize are elaborated.
Collapse
Affiliation(s)
- Krishan Kumar
- Delhi Unit Office, ICAR - Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.
| | - Pranjal Yadava
- ICAR - Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Mamta Gupta
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Mukesh Choudhary
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India.,School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Abhishek Kumar Jha
- Delhi Unit Office, ICAR - Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology, Khudwani, Srinagar, Jammu and Kashmir, India
| | - Zahoor Ahmed Dar
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu and Kashmir, India
| | - Bhupender Kumar
- Delhi Unit Office, ICAR - Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Sujay Rakshit
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India.
| |
Collapse
|
16
|
Chen K, Huang G, Li Y, Zhang X, Lei Y, Li Y, Xiong J, Sun Y. Illumina MiSeq Sequencing Reveals Correlations among Fruit Ingredients, Environmental Factors, and AMF Communities in Three Lycium Barbarum Producing Regions of China. Microbiol Spectr 2022; 10:e0229321. [PMID: 35234495 PMCID: PMC8941938 DOI: 10.1128/spectrum.02293-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
The symbiotic relationship of arbuscular mycorrhizal fungi (AMF) is important for Lycium barbarum, a highly nutritious and medicinal crop. However, the influence of environmental factors on AMF communities remains largely elusive. Based on MiSeq sequencing, we analyzed AMF communities in rhizosphere soils of L. barbarum with growth synchronization in three typical L. barbarum cultivation sites in China. The Zhongning region has poor soils with a high richness of AMF communities. Geographical environmental variances lead to differences in AMF communities which in turn affects the active ingredients of L. barbarum fruit. Furthermore, different genera of AMF showed significant correlations with environmental factors and fruit ingredients. The three genera, Claroideoglomus, Dominikia, and Funneliformis correlated to environmental factors and fruits ingredients in a similar manner affecting the whole sugar (TS) and flavonoids (FLA) contents in the fruits of L. barbarum. Also, these showed a significantly positive correlation with soil pH. This fact was unknown so far due to different soil acidity/alkalinity in different studies. IMPORTANCE The climatic and ecological environment is a complex phenomenon, involving various environmental factors that regulate the diversity and population distribution structure of AMF communities affecting plant growth, crop composition, and yield. Current studies on the effects of environmental factors on AMF communities have mainly focused on soil conditions and host plants. Fewer studies have been conducted on the correlation between temperature, enzyme activity, plant fruiting, and AMF communities. The present study investigated the diversity of AMF communities and the influence of environmental factors on their distribution patterns, which showed similar effects on some AMF species. The results suggest that screening AMF fungicides that meet the target may significantly help soil restoration reducing the use of chemical fertilizers and a large amount of human and material resources.
Collapse
Affiliation(s)
- Kaili Chen
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Gang Huang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xinrui Zhang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Xiong
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
17
|
Prathap V, Kumar A, Maheshwari C, Tyagi A. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants. Mol Biol Rep 2022; 49:8071-8086. [PMID: 35318578 DOI: 10.1007/s11033-022-07354-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 12/29/2022]
Abstract
Phosphorus (P), an essential nutrient required by plants often becomes the limiting factor for plant growth and development. Plants employ various mechanisms to sense the continuously changing P content in the soil. Transcription factors, such as SHORT ROOT (SHR), AUXIN RESPONSE FACTOR19 (ARF19), and ETHYLENE-INSENSITIVE3 (EIN3) regulate the growth of primary roots, root hairs, and lateral roots under low P. Crop improvement strategies under low P depend either on improving P acquisition efficiency or increasing P utilization. The various phosphate transporters (PTs) are involved in the uptake and transport of P from the soil to various plant cellular organelles. A plethora of regulatory elements including transcription factors, microRNAs and several proteins play a critical role in the regulation of coordinated cellular P homeostasis. Among these, the well-established P starvation signaling pathway comprising of central transcriptional factor phosphate starvation response (PHR), microRNA399 (miR399) as a long-distance signal molecule, and PHOSPHATE 2 (PHO2), an E2 ubiquitin conjugase is crucial in the regulation of phosphorus starvation responsive genes. Under PHR control, several classes of PHTs, microRNAs, and proteins modulate root architecture, and metabolic processes to enable plants to adapt to low P. Even though sucrose and inositol phosphates are known to influence the phosphorus starvation response genes, the exact mechanism of regulation is still unclear. In this review, a basic understanding of P homeostasis under low P in plants and all the above aspects are discussed.
Collapse
Affiliation(s)
- V Prathap
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anuj Kumar
- ICAR- Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
18
|
Xu Y, Liu F, Wu F, Zhao M, Zou R, Wu J, Li X. A novel SCARECROW-LIKE3 transcription factor LjGRAS36 in Lotus japonicus regulates the development of arbuscular mycorrhizal symbiosis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:573-583. [PMID: 35465207 PMCID: PMC8986927 DOI: 10.1007/s12298-022-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED The symbiosis with arbuscular mycorrhizal (AM) fungi improves plants' nutrient uptake. During this process, transcription factors have been highlighted to play crucial roles. Members of the GRAS transcription factor gene family have been reported involved in AM symbiosis, but little is known about SCARECROW-LIKE3 (SCL3) genes belonging to this family in Lotus japonicus. In this study, 67 LjGRAS genes were identified from the L. japonicus genome, seven of which were clustered in the SCL3 group. Three of the seven LjGRAS genes expression levels were upregulated by AM fungal inoculation, and our biochemical results showed that the expression of LjGRAS36 was specifically induced by AM colonization. Functional loss of LjGRAS36 in mutant ljgras36 plants exhibited a significantly reduced mycorrhizal colonization rate and arbuscular size. Transcriptome analysis showed a deficiency of LjGRAS36 led to the dysregulation of the gibberellic acid signal pathway associated with AM symbiosis. Together, this study provides important insights for understanding the important potential function of SCL3 genes in regulating AM symbiotic development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01161-z.
Collapse
Affiliation(s)
- Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, 650500 Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, 650500 Kunming, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
- School of Agriculture, Yunnan University, 650500 Kunming, China
| | - Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Ruifan Zou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, 650500 Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, 650500 Kunming, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|
19
|
He M, Li X, Mang M, Li Z, Ludewig U, Schulze WX. A systems-biology approach identifies co-expression modules in response to low phosphate supply in maize lines of different breeding history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1249-1270. [PMID: 34897849 DOI: 10.1111/tpj.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plants cope with low phosphorus availability by adjusting growth and metabolism through transcriptomic and proteomic adaptations. We hypothesize that selected genotypes with distinct phosphorous (P) use efficiency covering the breeding history of European Flint heterotic pool provide a tool to reveal general and genotype-specific molecular responses to P limitation. We reconstructed protein and gene co-expression networks by weighted correlation network analysis and related these to phosphate deficiency-induced traits. In roots, low phosphate supply resulted in a decreasing abundance of proteins in the oxidative pentose phosphate pathway and a negative correlation with root and shoot phosphate content. We observed an increase in abundance and positive correlation with root and shoot phosphate content for proteins in sucrose biosynthesis, lipid metabolism, respiration and RNA processing. Purple acid phosphatases, superoxide dismutase and phenylalanine ammonia lyase were identified as being upregulated under low phosphate in all genotypes. Overall, correlations between protein and mRNA abundance changes were limited, with ribosomal proteins and the ubiquitin protein degradation pathway exclusively responding with protein abundance changes. Carbohydrate, phospho- and sulfo-lipid metabolism showed abundance changes at the protein and mRNA levels. These partially non-overlapping proteomic and transcriptomic adjustments to low phosphate suggest sugar and lipid metabolism as metabolic processes associated with improved P use efficiency specifically in Founder Flint lines. We identified a mitogen-activated protein kinase-kinase as a potential genotype-specific regulator of sucrose metabolism at low phosphate in Founder Flint line EP1. We conclude that, during breedingt of Elite Flint lines, regulation of primary metabolism has changed to result in a distinct low phosphate response in Founder lines.
Collapse
Affiliation(s)
- Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuelian Li
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Melissa Mang
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| |
Collapse
|
20
|
Cheng S, Zou YN, Kuča K, Hashem A, Abd_Allah EF, Wu QS. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front Microbiol 2021; 12:809473. [PMID: 35003041 PMCID: PMC8733408 DOI: 10.3389/fmicb.2021.809473] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
Collapse
Affiliation(s)
- Shen Cheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
21
|
Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, Yan Z, Coqueiro Dias Araujo P, Demesa-Arevalo E, Lee L, Van Eck J, Gingeras TR, Jackson D, Gallagher KL, Birnbaum KD. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 2021; 374:1247-1252. [PMID: 34855479 DOI: 10.1126/science.abj2327] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carlos Ortiz-Ramírez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.,UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato 36821, México
| | - Bruno Guillotin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ramin Rahni
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sanqiang Zhang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Zhe Yan
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 1904, USA
| | | | | | - Laura Lee
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kimberly L Gallagher
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 1904, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
22
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
23
|
Wang F, Cui P, Tian Y, Huang Y, Wang H, Liu F, Chen Y. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2406-2419. [PMID: 32431055 PMCID: PMC7680542 DOI: 10.1111/pbi.13414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/26/2020] [Accepted: 05/05/2020] [Indexed: 05/20/2023]
Abstract
Phosphorus, an essential mineral macronutrient, is a major constituent of fertilizers for maize (Zea mays L.) production. However, the molecular mechanisms of phosphate (Pi) acquisition in maize plants and its redistribution remain unclear. This study presents the functional characterization of ZmPT7 in Pi uptake and redistribution in maize. The ZmPT7 was expressed in roots and leaves, and induced during Pi starvation. The ZmPT7 complemented the Pi-uptake deficiency of yeast mutant phoΔnull and Arabidopsis mutant pht1;1Δ4Δ, indicating that ZmPT7 functioned as a Pi transporter. We generated zmpt7 mutants by CRISPR/Cas9 and ZmPT7-overexpressing lines. The zmpt7 mutants showed reduced, whereas the ZmPT7-overexpressing lines displayed increased Pi-uptake capacity and Pi redistribution from old to young leaves, demonstrating that ZmPT7 played central roles in Pi acquisition and Pi redistribution from old to young leaves. The ZmCK2 kinases phosphorylated ZmPT7 at Ser-521 in old maize leaves, which enhanced transport activity of ZmPT7. The Ser-520 of Arabidopsis AtPHT1;1, a conserved residue of ZmPT7 Ser-521, was also phosphorylated by AtCK2 kinase, and the mutation of Ser-520 to Glu (phosphorylation mimic) yielded enhanced transport activity of AtPHT1;1. Taken together, these results indicate that ZmPT7 plays important roles in Pi acquisition and redistribution, and its transport activity is modulated by phosphorylation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Peng‐Juan Cui
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yan Tian
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yun Huang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hai‐Feng Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Fang Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi‐Fang Chen
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
24
|
Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2020; 558:196-201. [PMID: 32962860 DOI: 10.1016/j.bbrc.2020.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
Abstract
Phosphate transporters (PHTs) are well-known for their roles in phosphate uptake in plants. However, their actions in imparting plant growth in plants are still not so clear. In our previous study, we observed that maize PHT1 gene ZmPt9 plays a significant role in phosphate uptake. In this study, we further characterized ZmPt9 in response to low phosphate condition through ZmPt9 promoter inductive analysis by GUS staining and quantification. To elucidate the function of ZmPt9, we generated overexpression plant in Arabidopsis. ZmPt9 overexpressing Arabidopsis plants conferred small leaves and early flowering compared with the wild-type plants. In addition, ZmPt9 can complement the late flowering phenotype of Arabidopsis mutant pht1;2. The qRT-PCR analysis revealed that overexpression of ZmPt9 in Arabidopsis changed expression levels of some flowering-related genes. Further expressed detection of hormone related genes revealed that GA and auxin maybe the main determinant for growth influences of ZmPt9. In conclusion, these results suggest that apart from phosphate transport activity, ZmPt9 can be further exploited for improving crops growth.
Collapse
|
25
|
Liu F, Xu Y, Wang H, Zhou Y, Cheng B, Li X. APETALA 2 transcription factor CBX1 is a regulator of mycorrhizal symbiosis and growth of Lotus japonicus. PLANT CELL REPORTS 2020; 39:445-455. [PMID: 31912218 DOI: 10.1007/s00299-019-02501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
An AP2 family gene CBX1 is involved in mycorrhizal symbiosis and growth of Lotus japonicus. APETALA 2 (AP2) transcriptional regulator is highly conserved in plants. CBX1 from Lotus japonicus is a member of AP2 family. AMF (Arbuscular mycorrhizal fungi) inoculation experiment demonstrated that expression of CBX1 was significantly induced by AMF. Further promoter analysis showed that the - 764 to - 498 bp region of the CBX1 promoter containing CTTC motif is the AMF responsive region. Functional analysis of cbx1 mutant suggested CBX1 is critical for mycorrhizal symbiosis, especially for arbuscule formation. Moreover, under noncolonized condition, overexpression of CBX1 reduced the root length of L. japonicus but increased the size of root system and shoot length, whereas cbx1 mutant reduced the root size and shoot length, but not effect on root length. In addition, cbx1 altered activity of monolignol biosynthetic gene and increased lignin levels. Collectively, these data indicated that CBX1 is a positive regulator of symbiotic activity and plays roles in the growth of L. japonicus.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yunjian Xu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Hequn Wang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yuan Zhou
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
26
|
Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01553-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
To screen endophytic Bacillus producing volatile organic compounds (VOCs) with antifungal activity, and to explore their biocontrol properties toward the growth and pathogenicity of Curvularia lunata.
Methods
Two-sealed-base-plate assays were used to estimate the antifungal activities of Bacillus strains against C. lunata. Conjoint analysis of solid-phase microextraction gas chromatography-mass spectrometry and antagonistic experiments were used to identify the VOCs responsible for the antifungal activity. Effects of individual synthetic VOCs were analyzed along with reactive oxygen species (ROS) accumulation in C. lunata conidia. After exposure to individual VOCs, conidia were also sprayed onto maize leaves to evaluate their pathogenicity. Expression levels of virulence-related genes in C. lunata mycelium following exposure to VOCs were analyzed using quantitative real-time PCR.
Results
Among the ten endophytic Bacillus strains and two plant growth-promoting rhizobacterial (PGPR) strains, only B. subtilis strain DZSY21 strongly inhibited the growth of C. lunata by producing VOCs. 2-Methylbutyric acid, 2-heptanone, and isopentyl acetate produced by strain DZSY21 showed inhibitory effects on the mycelia growth and conidial sporulation of C. lunata. 2-Heptanone and isopentyl acetate also repressed the germination of conidia and the expression levels of virulence-related genes in C. lunata mycelium. Moreover, isopentyl acetate strongly enhanced the accumulation of intracellular ROS in conidia. The disease indexes of maize leaves sprayed with VOC-treated C. lunata conidia were reduced from 60.52 to 26.64%.
Conclusion
Endophytic B. subtilis strain DZSY21 displayed the potential to control C. lunata by producing VOCs, especially 2-heptanone and isopentyl acetate.
Collapse
|
27
|
Ho-Plágaro T, Tamayo-Navarrete MI, García-Garrido JM. Histochemical Staining and Quantification of Arbuscular Mycorrhizal Fungal Colonization. Methods Mol Biol 2020; 2146:43-52. [PMID: 32415594 DOI: 10.1007/978-1-0716-0603-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Histochemical staining and light microscopy-based techniques have been widely used to detect and quantify arbuscular mycorrhizal fungi (AMF) in roots. Here we describe a standardized method for staining of AMF in colonized roots, and we provide possible modifications to adjust the protocol according to particular requirements, such as the type of root material or the reduction of toxic products. In addition, we also summarize some of the most common ways to quantify arbuscular mycorrhizal colonization.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Granada, Spain
| | | | - José Manuel García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Granada, Spain.
| |
Collapse
|
28
|
Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109744. [PMID: 31627093 DOI: 10.1016/j.ecoenv.2019.109744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 05/12/2023]
Abstract
Biological strategy of utilization of plants-microbe's interactions to remediate cadmium (Cd) contaminated soils is effective and practical. However, limited evidence at transcriptome level is available about how microbes work with host plants to alleviate Cd stress. In the present study, comparative transcriptomic analysis was performed between maize seedlings inoculated with arbuscular mycorrhizal (AM) fungi and non-AM fungi inoculation under distinct concentrations of CdCl2 (0, 25, and 50 mg per kg soil). Significantly higher levels of Cd were found in root tissues of maize colonized by AM fungi, whereas, Cd content was reduced as much as 50% in leaf tissues when compared to non-AM seedlings, indicating that symbiosis between AM fungi and maize seedlings can significantly block translocation of Cd from roots to leaf tissues. Moreover, a total of 5827 differentially expressed genes (DEG) were determined and approximately 68.54% DEGs were downregulated when roots were exposed to high Cd stress. In contrast, 67.16% (595) DEGs were significantly up-regulated when seedlings were colonized by AM fungi under 0 mg CdCl2. Based on hierarchical clustering analysis, global expression profiles were split into eight distinct clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that hundreds of genes functioning in plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway and glutathione metabolism were enriched. Furthermore, MapMan pathway analysis indicated a more comprehensive overview response, including hormone metabolism, especially in JA, glutathione metabolism, transcription factors and secondary metabolites, to Cd stress in mycorrhizal maize seedlings. These results provide an overview, at the transcriptome level, of how inoculation of maize seedlings by AM fungi could facilitate the relief of Cd stress.
Collapse
Affiliation(s)
- Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China
| | - Manli Zhao
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Min Ge
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
29
|
The Non-Simultaneous Enhancement of Phosphorus Acquisition and Mobilization Respond to Enhanced Arbuscular Mycorrhization on Maize ( Zea mays L.). Microorganisms 2019; 7:microorganisms7120651. [PMID: 31817176 PMCID: PMC6956227 DOI: 10.3390/microorganisms7120651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can ameliorate not only plant phosphorus (P) nutrition but also soil P mobilization, while P mobilization occurs secondarily and may in turn limit P acquisition at certain crop growth stages. It can be termed as the "mycorrhiza-inducible P limitation", which has so far largely escaped study. A pot experiment was conducted to test the dynamic P acquisition of maize (Zea mays L.) at the vegetative growth stage and P mobilization in the soil in response to AM fungal inoculation in an unsterilized arable alkaline soil. The experiment included two fertilization levels and two AM inoculation levels, i.e., nitrogen (N), P, and potassium (K) fertilization (NPK) and non-fertilization (control), as well as Funneliformis mosseae inoculation (+M) and non-inoculation (-M). Regardless of fertilization, +M increased mycorrhizal colonization and plant biomass at weeks 4 and 8 but increased tissue P concentration only at week 4 compared with those of -M. In addition, the plant P acquisition and shoot biomass in the control+M treatment at weeks 4 and 8 were close to and much lower than those of NPK-M, respectively. Furthermore, the increase in soil P mobilization potential, which was achieved by the accelerated soil alkaline phosphatase activity and the decreased soil pH, was lower than the increase in root P-acquiring efficiency, which was achieved by the enhanced mycorrhization and ZEAma;Pht1;6 (a mycorrhiza- inducible Pi transporter in maize root) expression. Regardless of fertilization, +M thus significantly decreased soil available P concentrations compared with those in the -M treatments. Therefore, there was a large, real gap between soil P mobilization and root P acquisition in response to enhanced root mycorrhizal colonization, substantially limiting plant P acquisition and growth.
Collapse
|
30
|
Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol 2019; 202:1-16. [DOI: 10.1007/s00203-019-01730-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
31
|
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. THE NEW PHYTOLOGIST 2019; 223:1127-1142. [PMID: 30843207 DOI: 10.1111/nph.15775] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franziska Krajinski
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
32
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
33
|
Xu Y, Liu F, Li X, Cheng B. The mycorrhiza-induced maize ZmPt9 gene affects root development and phosphate availability in nonmycorrhizal plant. PLANT SIGNALING & BEHAVIOR 2018; 13:e1542240. [PMID: 30395788 PMCID: PMC6296386 DOI: 10.1080/15592324.2018.1542240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
The arbuscular mycorrhizal (AM)-induced ZmPt9 gene is an orthologous to some AM-inducible phosphate (Pi) transporter genes involved in Pi-starvation responses. Promoter GFP assay confirmed its transcript was localized surrounding arbuscule in arbuscule-containing cells. But this gene was not an AM fungi-specific gene. Its function in nonmycorrhizal seedlings was verified through phenotypic analysis of ZmPt9-overexpression Arabidopsis. Overexpression of ZmPt9 in Arabidopsis exhibited increased primary root length and lateral root formation. Furthermore, ZmPt9-overexpression Arabidopsis plants contained more phosphorus (P) than that of wild type. The affection of ZmPt9 in nonmycorrhizal Arabidopsis leads to the hypothesis that symbiosis-inducible genes are also involved in root development and Pi accumulation in AM-independent manner.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
34
|
Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Di Serio C, Maserti B, Guerrieri E, Balestrini R. The Association With Two Different Arbuscular Mycorrhizal Fungi Differently Affects Water Stress Tolerance in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1480. [PMID: 30356724 PMCID: PMC6189365 DOI: 10.3389/fpls.2018.01480] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/21/2018] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are very widespread, forming symbiotic associations with ∼80% of land plant species, including almost all crop plants. These fungi are considered of great interest for their use as biofertilizer in low-input and organic agriculture. In addition to an improvement in plant nutrition, AM fungi have been reported to enhance plant tolerance to important abiotic and biotic environmental conditions, especially to a reduced availability of resources. These features, to be exploited and applied in the field, require a thorough identification of mechanisms involved in nutrient transfer, metabolic pathways induced by single and multiple stresses, physiological and eco-physiological mechanisms resulting in improved tolerance. However, cooperation between host plants and AM fungi is often related to the specificity of symbiotic partners, the environmental conditions and the availability of resources. In this study, the impact of two AM fungal species (Funneliformis mosseae and Rhizophagus intraradices) on the water stress tolerance of a commercial tomato cultivar (San Marzano nano) has been evaluated in pots. Biometric and eco-physiological parameters have been recorded and gene expression analyses in tomato roots have been focused on plant and fungal genes involved in inorganic phosphate (Pi) uptake and transport. R. intraradices, which resulted to be more efficient than F. mosseae to improve physiological performances, was selected to assess the role of AM symbiosis on tomato plants subjected to combined stresses (moderate water stress and aphid infestation) in controlled conditions. A positive effect on the tomato indirect defense toward aphids in terms of enhanced attraction of their natural enemies was observed, in agreement with the characterization of volatile organic compound (VOC) released. In conclusion, our results offer new insights for understanding the molecular and physiological mechanisms involved in the tolerance toward water deficit as mediated by a specific AM fungus. Moreover, they open new perspectives for the exploitation of AM symbiosis to enhance crop tolerance to abiotic and biotic stresses in a scenario of global change.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics, Centre of Viticulture and Enology Research, Conegliano, Italy
| | - Pasquale Cascone
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | | | - Paola Bartolini
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | - Gloriano Moneti
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Claudia Di Serio
- Geriatric Intensive Care Unit, Experimental and Clinical Medicine Department, University of Florence, AOU Careggi, Florence, Italy
| | - Biancaelena Maserti
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | - Emilio Guerrieri
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| |
Collapse
|