1
|
Kiemel K, Weithoff G, Tiedemann R. DNA metabarcoding reveals impact of local recruitment, dispersal, and hydroperiod on assembly of a zooplankton metacommunity. Mol Ecol 2023; 32:6190-6209. [PMID: 35869804 DOI: 10.1111/mec.16627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2023]
Abstract
Understanding the environmental impact on the assembly of local communities in relation to their spatial and temporal connectivity is still a challenge in metacommunity ecology. This study aims to unravel underlying metacommunity processes and environmental factors that result in observed zooplankton communities. Unlike most metacommunity studies, we jointly examine active and dormant zooplankton communities using a DNA metabarcoding approach to overcome limitations of morphological species identification. We applied two-fragment (COI and 18S) metabarcoding to monitor communities of 24 kettle holes over a two-year period to unravel (i) spatial and temporal connectivity of the communities, (ii) environmental factors influencing local communities, and (iii) dominant underlying metacommunity processes in this system. We found a strong separation of zooplankton communities from kettle holes of different hydroperiods (degree of permanency) throughout the season, while the community composition within single kettle holes did not differ between years. Species richness was primarily dependent on pH and permanency, while species diversity (Shannon Index) was influenced by kettle hole location. Community composition was impacted by kettle hole size and surrounding field crops. Environmental processes dominated temporal and spatial processes. Sediment communities showed a different composition compared to water samples but did not differ between ephemeral and permanent kettle holes. Our results suggest that communities are mainly structured by environmental filtering based on pH, kettle hole size, surrounding field crops, and permanency. Environmental filtering based on specific conditions in individual kettle holes seems to be the dominant process in community assembly in the studied zooplankton metacommunity.
Collapse
Affiliation(s)
- Katrin Kiemel
- Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Guntram Weithoff
- Unit of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Musseau CL, Onandia G, Petermann JS, Sagouis A, Lischeid G, Jeschke JM. Nonlinear effects of environmental drivers shape macroinvertebrate biodiversity in an agricultural pondscape. Ecol Evol 2022; 12:e9458. [PMID: 36381394 PMCID: PMC9643126 DOI: 10.1002/ece3.9458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Agriculture is a leading cause of biodiversity loss and significantly impacts freshwater biodiversity through many stressors acting locally and on the landscape scale. The individual effects of these numerous stressors are often difficult to disentangle and quantify, as they might have nonlinear impacts on biodiversity. Within agroecosystems, ponds are biodiversity hotspots providing habitat for many freshwater species and resting or feeding places for terrestrial organisms. Ponds are strongly influenced by their terrestrial surroundings, and understanding the determinants of biodiversity in agricultural landscapes remains difficult but crucial for improving conservation policies and actions. We aimed to identify the main effects of environmental and spatial variables on α-, β-, and γ-diversities of macroinvertebrate communities inhabiting ponds (n = 42) in an agricultural landscape in the Northeast Germany, and to quantify the respective roles of taxonomic turnover and nestedness in the pondscape. We disentangled the nonlinear effects of a wide range of environmental and spatial variables on macroinvertebrate α- and β-biodiversity. Our results show that α-diversity is impaired by eutrophication (phosphate and nitrogen) and that overshaded ponds support impoverished macroinvertebrate biota. The share of arable land in the ponds' surroundings decreases β-diversity (i.e., dissimilarity in community), while β-diversity is higher in shallower ponds. Moreover, we found that β-diversity is mainly driven by taxonomic turnover and that ponds embedded in arable fields support local and regional diversity. Our findings highlight the importance of such ponds for supporting biodiversity, identify the main stressors related to human activities (eutrophication), and emphasize the need for a large number of ponds in the landscape to conserve biodiversity. Small freshwater systems in agricultural landscapes challenge us to compromise between human demands and nature conservation worldwide. Identifying and quantifying the effects of environmental variables on biodiversity inhabiting those ecosystems can help address threats impacting freshwater life with more effective management of pondscapes.
Collapse
Affiliation(s)
- Camille L. Musseau
- Institute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Gabriela Onandia
- Berlin‐Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Jana S. Petermann
- Berlin‐Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
- Department of Environment and BiodiversityUniversity of SalzburgSalzburgAustria
| | - Alban Sagouis
- Institute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Computer ScienceMartin Luther University, Halle‐WittenbergHalleGermany
| | - Gunnar Lischeid
- Berlin‐Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
- Institute for Environmental Sciences and GeographyUniversity of PotsdamPotsdamGermany
| | - Jonathan M. Jeschke
- Institute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| |
Collapse
|
3
|
Ionescu D, Bizic M, Karnatak R, Musseau CL, Onandia G, Kasada M, Berger SA, Nejstgaard JC, Ryo M, Lischeid G, Gessner MO, Wollrab S, Grossart H. From microbes to mammals: Pond biodiversity homogenization across different land‐use types in an agricultural landscape. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- D. Ionescu
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - M. Bizic
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - R. Karnatak
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - C. L. Musseau
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology Free University of Berlin Germany
| | - G. Onandia
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
| | - M. Kasada
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
| | - S. A. Berger
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - J. C. Nejstgaard
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - M. Ryo
- Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
- Brandenburg University of Technology Cottbus–Senftenberg Cottbus Germany
| | - G. Lischeid
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
| | - M. O. Gessner
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Department of Ecology Berlin Institute of Technology (TU Berlin) Berlin Germany
| | - S. Wollrab
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - H.‐P. Grossart
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin & Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Institute of Biochemistry and Biology Potsdam University Potsdam Germany
| |
Collapse
|
4
|
Paranaíba JR, Aben R, Barros N, Quadra G, Linkhorst A, Amado AM, Brothers S, Catalán N, Condon J, Finlayson CM, Grossart HP, Howitt J, Oliveira Junior ES, Keller PS, Koschorreck M, Laas A, Leigh C, Marcé R, Mendonça R, Muniz CC, Obrador B, Onandia G, Raymundo D, Reverey F, Roland F, Rõõm EI, Sobek S, von Schiller D, Wang H, Kosten S. Cross-continental importance of CH 4 emissions from dry inland-waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151925. [PMID: 34838923 DOI: 10.1016/j.scitotenv.2021.151925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 ± 17.4 g CO2-eq m-2 d-1 from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.
Collapse
Affiliation(s)
- José R Paranaíba
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil; Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - Ralf Aben
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nathan Barros
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Gabrielle Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Annika Linkhorst
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden; Department of Environmental Radioactivity and Monitoring, Federal Institute of Hydrology, Koblenz, Germany
| | - André M Amado
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil; Departamento de Oceanografia e Limnologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Soren Brothers
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
| | - Núria Catalán
- Laboratoire des Sciences du Climat et l'Environnement (LSCE), CNRS-UMR 8212, France
| | - Jason Condon
- Graham Centre for Agricultural Innovation, School of Agricultural & Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Colin M Finlayson
- Institute for Land, Water and Society, Charles Sturt University, Albury, Australia
| | - Hans-Peter Grossart
- Department Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany; Institute of Biogeochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Julia Howitt
- Institute for Land, Water and Society, Charles Sturt University, Wagga Wagga, Australia
| | - Ernandes S Oliveira Junior
- Center of Ethnoecology, Limnology and Biodiversity, Laboratory of Ichthyology of the Pantanal North, University of the State of Mato Grosso, Cáceres, Brazil
| | - Philipp S Keller
- Department of Lake Research, Helmholtz Center for Environmental Research, UFZ, Magdeburg, Germany
| | - Matthias Koschorreck
- Department of Lake Research, Helmholtz Center for Environmental Research, UFZ, Magdeburg, Germany
| | - Alo Laas
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Catherine Leigh
- Biosciences and Food Technology Discipline, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Rafael Marcé
- Catalan Institute for Water Research (ICRA), Girona, Spain; Universitat de Girona, Girona, Spain
| | - Raquel Mendonça
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Claumir C Muniz
- Center of Ethnoecology, Limnology and Biodiversity, Laboratory of Ichthyology of the Pantanal North, University of the State of Mato Grosso, Cáceres, Brazil
| | - Biel Obrador
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Water Research Institute (IdRA), University of Barcelona, Barcelona, Spain
| | - Gabriela Onandia
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Diego Raymundo
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Florian Reverey
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Eva-Ingrid Rõõm
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; Environmental Investment Centre, Tallinn, Estonia
| | - Sebastian Sobek
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Daniel von Schiller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Water Research Institute (IdRA), University of Barcelona, Barcelona, Spain
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Bizic M, Ionescu D, Karnatak R, Musseau CL, Onandia G, Berger SA, Nejstgaard JC, Lischeid G, Gessner MO, Wollrab S, Grossart HP. Land-use type temporarily affects active pond community structure but not gene expression patterns. Mol Ecol 2022; 31:1716-1734. [PMID: 35028982 DOI: 10.1111/mec.16348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/30/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics, to understand the responses of active bacterial, archaeal, and eukaryotic communities, to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel eDNA study which revealed the homogenization of biodiversity across KH conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced in eukaryotes than in bacteria. In contrast, gene expression patterns did not differ between months or across land-use type, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results show that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.
Collapse
Affiliation(s)
- M Bizic
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - D Ionescu
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - R Karnatak
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - C L Musseau
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - G Onandia
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - S A Berger
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - J C Nejstgaard
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - G Lischeid
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Institute for Environmental Sciences and Geography, Potsdam University, Potsdam, Germany
| | - M O Gessner
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - S Wollrab
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - H-P Grossart
- Departments of Experimental Limnology and Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin and Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.,Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|