1
|
Lin Y, Zheng J, Wan Q, Chen Z, Chen Q, Wan S, Chen J. Identification of Key Pathways and Candidate Genes Controlling Organ Size Through Transcriptome and Weighted Gene Co-Expression Network Analyses in Navel Orange Plants ( Citrus sinensis). Genes (Basel) 2025; 16:259. [PMID: 40149411 PMCID: PMC11942113 DOI: 10.3390/genes16030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Organ size is a critical target trait in fruit-tree breeding programs, as it significantly impacts the economic value of plants by influencing their biomass, yield, and quality. Understanding the molecular mechanisms underlying organ size in citrus is essential for breeding new cultivars with superior fruit quality. Methods: In this study, we investigated the regulatory network involved in organ size using the Citrus sinensis 'Newhall' navel orange variety and its large-organ mutant, 'M25'. Results: Ploidy analysis indicated that the organ enlargement observed in 'M25' was not attributable to changes in chromosome ploidy. Furthermore, RNA sequencing of tender leaves and young fruits from both 'M25' and 'Newhall' oranges identified 1817 and 1605 differentially expressed genes (DEGs), respectively. Functional enrichment analysis revealed that these DEGs were enriched in pathways associated with organ size regulation, including those related to cell division, DNA replication, protein biosynthesis, plant hormone signal transduction, and cell wall metabolism. Weighted gene co-expression network analysis identified the grey 60 and orange modules as the key modules influencing organ enlargement; from these modules, we identified 51 and 35 hub genes, respectively. Combined homologous function annotation and expression analysis identified four transcription-factor-encoding hub genes (Cs_ont_6g005380, Cs_ont_8g025330, Cs_ont_9g019400, and Cs_ont_9g008010) as candidate genes potentially related to organ size. Conclusions: Among these, Cs_ont_8g025330 (CsMYB73) was inferred to be the key gene influencing organ size through auxin and cytokinin regulation. These findings lay the foundation for further investigations of the regulatory mechanism of organ size in navel orange varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianmei Chen
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (J.Z.); (Q.W.); (Z.C.); (Q.C.); (S.W.)
| |
Collapse
|
2
|
Liu N, Guo Q, Shi F, Gao L, Liu Y, Wang Y, Gong Z, Liu H, Sun Y, Li B, Ni B, Zhu RL, Zhao Q. Developmentally controlled subcellular remodeling and VND-initiated vacuole-executed PCD module shape xylem-like cells in peat moss. Commun Biol 2024; 7:1323. [PMID: 39402183 PMCID: PMC11473775 DOI: 10.1038/s42003-024-07003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/02/2024] [Indexed: 10/17/2024] Open
Abstract
Peat moss (Sphagnum) is a non-vascular higher plant with unique xylem-like hyaline (H) cells that are accompanied by photosynthetic chlorophyllous cells. These cellular structures play crucial roles in water storage and carbon sequestration. However, it is largely unknown how peat moss develops the H cells. This study systematically explored the Sphagnum Developmental Cell Atlas and Lineage and classified leaf cell development into two lineages with six stages (S0-S5) based on changes in key cellular traits, including the formation of spiral secondary cell walls (S4) and the presence of water pores (S5). Cell lineage-specific subcellular remodeling was transcriptionally regulated during leaf development, and vacuole-mediated clearance of organelles and cell death led to mature dead H cells. Interestingly, expression of land plant conserved Vascular-related NAC Domain (VND) genes correlated with H cell formation. Overall, these results suggest that the origination of xylem-like H cells is related to VND, likely through the neofunctionalization of vacuole-mediated cell death to attempt xylem formation in peat moss, suggesting potential uncoupling of xylem and phloem cell origins. This study positions peat moss as a potential model organism for studying integrative evolutionary cell biology.
Collapse
Affiliation(s)
- Ningjing Liu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuqi Guo
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Fangming Shi
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Gao
- The IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongqi Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Zhiwei Gong
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Haoran Liu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yue Sun
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
3
|
Siadjeu C, Kadereit G. C 4-like Sesuvium sesuvioides (Aizoaceae) exhibits CAM in cotyledons and putative C 4-like + CAM metabolism in adult leaves as revealed by transcriptome analysis. BMC Genomics 2024; 25:688. [PMID: 39003461 PMCID: PMC11245778 DOI: 10.1186/s12864-024-10553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The co-occurrence of C4 and CAM photosynthesis in a single species seems to be unusual and rare. This is likely due to the difficulty in effectively co-regulating both pathways. Here, we conducted a comparative transcriptomic analysis of leaves and cotyledons of the C4-like species Sesuvium sesuvioides (Aizoaceae) using RNA-seq. RESULTS When compared to cotyledons, phosphoenolpyruvate carboxylase 4 (PEPC4) and some key C4 genes were found to be up-regulated in leaves. During the day, the expression of NADP-dependent malic enzyme (NADP-ME) was significantly higher in cotyledons than in leaves. The titratable acidity confirmed higher acidity in the morning than in the previous evening indicating the induction of weak CAM in cotyledons by environmental conditions. Comparison of the leaves of S. sesuvioides (C4-like) and S. portulacastrum (C3) revealed that PEPC1 was significantly higher in S. sesuvioides, while PEPC3 and PEPC4 were up-regulated in S. portulacastrum. Finally, potential key regulatory elements involved in the C4-like and CAM pathways were identified. CONCLUSIONS These findings provide a new species in which C4-like and CAM co-occur and raise the question if this phenomenon is indeed so rare or just hard to detect and probably more common in succulent C4 lineages.
Collapse
Affiliation(s)
- Christian Siadjeu
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany.
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany
- Botanischer Garten München-Nymphenburg Und Botanische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Menzinger Str. 65, Munich, 80638, Germany
| |
Collapse
|
4
|
Sha G, Cheng J, Wang X, Xue Q, Zhang H, Zhai R, Yang C, Wang Z, Xu L. PbbHLH137 interacts with PbGIF1 to regulate pear fruit development by promoting cell expansion to increase fruit size. PHYSIOLOGIA PLANTARUM 2024; 176:e14451. [PMID: 39075941 DOI: 10.1111/ppl.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024]
Abstract
The regulation of fruit development is a complex process and a core issue in the fruit tree industry. To investigate the role of PbGIF1 in pear fruit development, we identified a transcription factor PbbHLH137 that regulates pear (Pyrus bretschneideri) fruit development by screening a yeast library constructed from fruit cDNA. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and split luciferase complementation (split-LUC) assays were performed to confirm the PbbHLH137-PbGIF1 interaction. By tracing the complete fruit development process, we found that PbbHLH137 expression was closely related to fruit size and highly involved at the late pear fruit development stage. Transgenic experiments showed that heterologous expression of PbbHLH137 or PbGIF1 promoted fruit enlargement. PbbHLH137 promoted mainly the expansion of fruit cell volume, whereas PbGIF1 mainly increased the number of cells. Further LUC experiments demonstrated that PbGIF1 promoted the transcriptional activation ability of PbbHLH137. Our work identified PbbHLH137 as a transcription factor that regulates fruit development, and showed that PbGIF1 played an ongoing role during fruit development, making it a candidate gene for genetic improvement of pear fruit development.
Collapse
Affiliation(s)
- Guangya Sha
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jingjing Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xue Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Qiyang Xue
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Haiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
5
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Yu J, Gao B, Li D, Li S, Chiang VL, Li W, Zhou C. Ectopic Expression of PtrLBD39 Retarded Primary and Secondary Growth in Populus trichocarpa. Int J Mol Sci 2024; 25:2205. [PMID: 38396881 PMCID: PMC10889148 DOI: 10.3390/ijms25042205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by distinct transcription factor (TF)-mediated regulatory pathways. Notably, we identified PtrLBD39, a highly stem phloem-specific TF in Populus trichocarpa and found that the ectopic expression of PtrLBD39 in P. trichocarpa markedly retarded both primary and secondary growth. In these overexpressing plants, the RNA-seq, ChIP-seq, and weighted gene co-expression network analysis (WGCNA) revealed that PtrLBD39 directly or indirectly regulates TFs governing vascular tissue development, wood formation, hormonal signaling pathways, and enzymes responsible for wood components. This regulation led to growth inhibition, decreased fibrocyte secondary cell wall thickness, and reduced wood production. Therefore, our study indicates that, following ectopic expression in P. trichocarpa, PtrLBD39 functions as a repressor influencing both primary and secondary growth.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Boyuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Danning Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| |
Collapse
|
7
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
8
|
Qiao L, Wu Q, Yuan L, Huang X, Yang Y, Li Q, Shahzad N, Li H, Li W. SMALL PLANT AND ORGAN 1 ( SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice. Int J Mol Sci 2023; 24:16974. [PMID: 38069299 PMCID: PMC10707047 DOI: 10.3390/ijms242316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qilong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Liuzhen Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Xudong Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Yutao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Nida Shahzad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| |
Collapse
|
9
|
Huang C, Jin X, Lin H, He J, Chen Y. Comparative Transcriptome Sequencing and Endogenous Phytohormone Content of Annual Grafted Branches of Zelkova schneideriana and Its Dwarf Variety HenTianGao. Int J Mol Sci 2023; 24:16902. [PMID: 38069226 PMCID: PMC10706849 DOI: 10.3390/ijms242316902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Zelkova schneideriana is a fast-growing tree species endemic to China. Recent surveys and reports have highlighted a continued decline in its natural populations; therefore, it is included in the Red List of Threatened Species by The International Union for Conservation of Nature. A new variety "HenTianGao" (H) has been developed with smaller plant height, slow growth, and lower branching points. In this study, we attempted to understand the differences in plant height of Z. schneideriana (J) and its dwarf variety H. We determined the endogenous hormone content in the annual grafted branches of both J and H. J exhibited higher gibberellic acid (GA)-19 and trans-Zeatin (tZ) levels, whereas H had higher levels of indole-3-acetic acid (IAA) catabolite 2-oxindole-3-acetic acid (OxIAA), IAA-Glu conjugate, and jasmonic acid (JA) (and its conjugate JA-Ile). The transcriptome comparison showed differential regulation of 20,944 genes enriched in growth and development, signaling, and metabolism-related pathways. The results show that the differential phytohormone level (IAA, JA, tZ, and GA) was consistent with the expression of the genes associated with their biosynthesis. The differences in relative OxIAA, IAA-Glu, GA19, trans-Zeatin, JA, and JA-Ile levels were linked to changes in respective signaling-related genes. We also observed significant differences in the expression of cell size, number, proliferation, cell wall biosynthesis, and remodeling-related genes in J and H. The differences in relative endogenous hormone levels, expression of biosynthesis, and signaling genes provide a theoretical basis for understanding the plant height differences in Z. schneideriana.
Collapse
Affiliation(s)
- Chenfei Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Haiyan Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinsong He
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Yan Chen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| |
Collapse
|
10
|
Kotov AA, Kotova LM. Auxin/cytokinin antagonism in shoot development: from moss to seed plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6391-6395. [PMID: 37988175 DOI: 10.1093/jxb/erad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
This article comments on:Cammarata J, Roeder AHK, Scanlon MJ. 2023. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. Journal of Experimental Botany 74, 6541–6550.
Collapse
Affiliation(s)
- Andrey A Kotov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Liudmila M Kotova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
11
|
Huang M, Zhu X, Bai H, Wang C, Gou N, Zhang Y, Chen C, Yin M, Wang L, Wuyun T. Comparative Anatomical and Transcriptomics Reveal the Larger Cell Size as a Major Contributor to Larger Fruit Size in Apricot. Int J Mol Sci 2023; 24:ijms24108748. [PMID: 37240096 DOI: 10.3390/ijms24108748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fruit size is one of the essential quality traits and influences the economic value of apricots. To explore the underlying mechanisms of the formation of differences in fruit size in apricots, we performed a comparative analysis of anatomical and transcriptomics dynamics during fruit growth and development in two apricot cultivars with contrasting fruit sizes (large-fruit Prunus armeniaca 'Sungold' and small-fruit P. sibirica 'F43'). Our analysis identified that the difference in fruit size was mainly caused by the difference in cell size between the two apricot cultivars. Compared with 'F43', the transcriptional programs exhibited significant differences in 'Sungold', mainly in the cell expansion period. After analysis, key differentially expressed genes (DEGs) most likely to influence cell size were screened out, including genes involved in auxin signal transduction and cell wall loosening mechanisms. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that PRE6/bHLH was identified as a hub gene, which interacted with 1 TIR1, 3 AUX/IAAs, 4 SAURs, 3 EXPs, and 1 CEL. Hence, a total of 13 key candidate genes were identified as positive regulators of fruit size in apricots. The results provide new insights into the molecular basis of fruit size control and lay a foundation for future breeding and cultivation of larger fruits in apricot.
Collapse
Affiliation(s)
- Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Xuchun Zhu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chu Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yujing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Mingyu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
12
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
13
|
Characterization and expression analysis of bHLH transcription factors reveal their putative regulatory effects on nectar spur development in Aquilegia species. Gene 2023; 852:147057. [PMID: 36410606 DOI: 10.1016/j.gene.2022.147057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Nectar spur is a hollow extension of certain flower parts and shows strikingly diverse size and shape in Aquilegia. Nectar spur development is involved in cell division and expansion processes. The basic helix-loop-helix (bHLH) transcription factors (TFs) control a diversity of organ morphogenesis, including cell division and cell expansion processes. However, the role of bHLH genes in nectar spur development in Aquilegia is mainly unknown. We conducted a genome-wide identification of the bHLH gene family in Aquilegia to determine structural characteristics and phylogenetic relationships, and to analyze expression profiles of these genes during the development of nectar spur in spurless and spurred species. A total of 120 AqbHLH genes were identified from the Aquilegia coerulea genome. The phylogenetic tree showed that AqbHLH proteins were divided into 15 subfamilies, among which S7 and S8 subfamilies occurred marked expansion. The AqbHLH genes in the same clade had similar motif composition and gene structure characteristics. Conserved residue analysis indicated nineteen residues with conservation of more than 50% were found in the four conserved regions. In the upstream sequence of AqbHLH genes, the light-responsive element was the most abundant cis-acting element. Eighteen AqbHLH genes showed syntenic relationships, and eight genes from four syntenic pairs underwent tandem duplications. According to the expression profiling analysis by public RNA-Seq data and qRT-PCR results, five AqbHLH genes, including AqbHLH027, AqbHLH046, AqbHLH082, AqbHLH083 and AqbHLH092, were differentially expressed between different tissues in A. coerulea at early developmental stages, as well as between spurless and spurred Aquilegia species. Of them, AqbHLH046 was not only highly expressed in spur compared with blade, but also showed higher expression levels in spurred species than spurless specie, suggesting it plays an essential role in the development of spur by regulating cell division. This study lays a foundation to investigate the function of AqbHLH genes family in nectar spur development, and has potential implications for speciation and genetic breeding in the genus Aquilegia.
Collapse
|
14
|
Wang Q, Zhu Z. Light signaling-mediated growth plasticity in Arabidopsis grown under high-temperature conditions. STRESS BIOLOGY 2022; 2:53. [PMID: 37676614 PMCID: PMC10441904 DOI: 10.1007/s44154-022-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2023]
Abstract
Growing concern around global warming has led to an increase in research focused on plant responses to increased temperature. In this review, we highlight recent advances in our understanding of plant adaptation to high ambient temperature and heat stress, emphasizing the roles of plant light signaling in these responses. We summarize how high temperatures regulate plant cotyledon expansion and shoot and root elongation and explain how plants use light signaling to combat severe heat stress. Finally, we discuss several future avenues for this research and identify various unresolved questions within this field.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Stoynova-Bakalova E, Bakalov DV, Baskin TI. Ethylene represses the promoting influence of cytokinin on cell division and expansion of cotyledons in etiolated Arabidopsis thaliana seedlings. PeerJ 2022; 10:e14315. [PMID: 36340204 PMCID: PMC9632460 DOI: 10.7717/peerj.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/07/2022] [Indexed: 01/22/2023] Open
Abstract
The plant hormones ethylene and cytokinin influence many processes; sometimes they act cooperatively, other times antagonistically. To study their antagonistic interaction, we used the cotyledons of etiolated, intact seedlings of Arabidopsis thaliana. We focused on cell division and expansion, because both processes are quantified readily in paradermal sections. Here, we show that exogenous cytokinins modestly stimulate cell division and expansion in the cotyledon, with a phenyl-urea class compound exerting a larger effect than benzyl-adenine. Similarly, both processes were stimulated modestly when ethylene response was inhibited, either chemically with silver nitrate or genetically with the eti5 ethylene-insensitive mutant. However, combining cytokinin treatment with ethylene insensitivity was synergistic, strongly stimulating both cell division and expansion. Evidently, ethylene represses the growth promoting influence of cytokinin, whether endogenous or applied. We suggest that the intact etiolated cotyledon offers a useful system to characterize how ethylene antagonizes cytokinin responsiveness.
Collapse
Affiliation(s)
| | - Dimitar V. Bakalov
- Department of Pathophysiology, Medical University of Sofia, Sofia, Bulgaria
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts at Amherst, Amherst, MA, United States of America
| |
Collapse
|
16
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
17
|
Sharma S, Kaur P, Gaikwad K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front Genet 2022; 13:940660. [PMID: 36313429 PMCID: PMC9597640 DOI: 10.3389/fgene.2022.940660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cytokinins constitutes a vital group of plant hormones regulating several developmental processes, including growth and cell division, and have a strong influence on grain yield. Chemically, they are the derivatives of adenine and are the most complex and diverse group of hormones affecting plant physiology. In this review, we have provided a molecular understanding of the role of cytokinins in developing seeds, with special emphasis on pulses and oilseed crops. The importance of cytokinin-responsive genes including cytokinin oxidases and dehydrogenases (CKX), isopentenyl transferase (IPT), and cytokinin-mediated genetic regulation of seed size are described in detail. In addition, cytokinin expression in germinating seeds, its biosynthesis, source-sink dynamics, cytokinin signaling, and spatial expression of cytokinin family genes in oilseeds and pulses have been discussed in context to its impact on increasing economy yields. Recently, it has been shown that manipulation of the cytokinin-responsive genes by mutation, RNA interference, or genome editing has a significant effect on seed number and/or weight in several crops. Nevertheless, the usage of cytokinins in improving crop quality and yield remains significantly underutilized. This is primarily due to the multigene control of cytokinin expression. The information summarized in this review will help the researchers in innovating newer and more efficient ways of manipulating cytokinin expression including CKX genes with the aim to improve crop production, specifically of pulses and oilseed crops.
Collapse
Affiliation(s)
- Sandhya Sharma
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
- *Correspondence: Kishor Gaikwad,
| |
Collapse
|
18
|
Yu KMJ, Oliver J, McKinley B, Weers B, Fabich HT, Evetts N, Conradi MS, Altobelli SA, Marshall-Colon A, Mullet J. Bioenergy sorghum stem growth regulation: intercalary meristem localization, development, and gene regulatory network analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:476-492. [PMID: 36038985 DOI: 10.1111/tpj.15960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bioenergy sorghum is a highly productive drought tolerant C4 grass that accumulates 80% of its harvestable biomass in approximately 4 m length stems. Stem internode growth is regulated by development, shading, and hormones that modulate cell proliferation in intercalary meristems (IMs). In this study, sorghum stem IMs were localized above the pulvinus at the base of elongating internodes using magnetic resonance imaging, microscopy, and transcriptome analysis. A change in cell morphology/organization occurred at the junction between the pulvinus and internode where LATERAL ORGAN BOUNDARIES (SbLOB), a boundary layer gene, was expressed. Inactivation of an AGCVIII kinase in DDYM (dw2) resulted in decreased SbLOB expression, disrupted IM localization, and reduced internode cell proliferation. Transcriptome analysis identified approximately 1000 genes involved in cell proliferation, hormone signaling, and other functions selectively upregulated in the IM compared with a non-meristematic stem tissue. This cohort of genes is expressed in apical dome stem tissues before localization of the IM at the base of elongating internodes. Gene regulatory network analysis identified connections between genes involved in hormone signaling and cell proliferation. The results indicate that gibberellic acid induces accumulation of growth regulatory factors (GRFs) known to interact with ANGUSTIFOLIA (SbAN3), a master regulator of cell proliferation. GRF:AN3 was predicted to induce SbARF3/ETT expression and regulate SbAN3 expression in an auxin-dependent manner. GRFs and ARFs regulate genes involved in cytokinin and brassinosteroid signaling and cell proliferation. The results provide a molecular framework for understanding how hormone signaling regulates the expression of genes involved in cell proliferation in the stem IM.
Collapse
Affiliation(s)
- Ka Man Jasmine Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843-2128, USA
| | - Joel Oliver
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843-2128, USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843-2128, USA
| | - Brock Weers
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843-2128, USA
| | - Hilary T Fabich
- ABQMR, Inc., 2301 Yale Blvd. SE, Suite C2, Albuquerque, New Mexico, 87106, USA
| | - Nathan Evetts
- ABQMR, Inc., 2301 Yale Blvd. SE, Suite C2, Albuquerque, New Mexico, 87106, USA
| | - Mark S Conradi
- ABQMR, Inc., 2301 Yale Blvd. SE, Suite C2, Albuquerque, New Mexico, 87106, USA
| | - Stephen A Altobelli
- ABQMR, Inc., 2301 Yale Blvd. SE, Suite C2, Albuquerque, New Mexico, 87106, USA
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois, Champaign-Urbana, Illinois, 61801, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843-2128, USA
| |
Collapse
|
19
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Guo L, Wang C, Chen J, Ju Y, Yu F, Jiao C, Fei Z, Ding Y, Wei Q. Cellular differentiation, hormonal gradient, and molecular alternation between the division zone and the elongation zone of bamboo internodes. PHYSIOLOGIA PLANTARUM 2022; 174:e13774. [PMID: 36050899 DOI: 10.1111/ppl.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Bamboo differentiates a cell division zone (DZ) and a cell elongation zone (EZ) to promote internode elongation during rapid growth. However, the biological mechanisms underlying this sectioned growth behavior are still unknown. Using histological, physiological, and genomic data, we found that the cell wall and other subcellular organelles such as chloroplasts are more developed in the EZ. Abundant hydrogen peroxide accumulated in the pith cells of the EZ, and stomata formed completely in the EZ. In contrast, most cells in the DZ were in an undifferentiated state with wrinkled cell walls and dense cytoplasm. Hormone detection revealed that the levels of gibberellin, auxin, cytokinin, and brassinosteroid were higher in the DZ than in the EZ. However, the levels of salicylic acid and jasmonic acid were higher in the EZ than in the DZ. Transcriptome analysis with qRT-PCR quantification revealed that the transcripts for cell division and primary metabolism had higher expression in the DZ, whereas the genes for photosynthesis, cell wall growth, and secondary metabolism were dramatically upregulated in the EZ. Overexpression of a MYB transcription factor, BmMYB83, promotes cell wall lignification in transgenic plants. BmMYB83 is specifically expressed in cells that may have lignin deposits, such as protoxylem vessels and fiber cells. Our results indicate that hormone gradient and transcriptome reprogramming, as well as specific expression of key genes such as BmMYB83, may lead to differentiation of cell growth in the bamboo internode.
Collapse
Affiliation(s)
- Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chunyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Ju
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Zeng Y, Tang Y, Shen S, Zhang M, Chen L, Ye D, Zhang X. Plant-specific small peptide AtZSP1 interacts with ROCK1 to regulate organ size in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1696-1713. [PMID: 35285523 DOI: 10.1111/nph.18093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Organ size is an important agronomic trait. Small peptides function in various stages of plant growth, but their regulatory mechanisms in organ growth remain poorly understood. Here, we characterize a novel small peptide, AtZSP1, which positively regulates organ size in Arabidopsis. Loss-of-function mutant atzsp1-1 exhibited small organs, whereas AtZSP1 overexpression plants (p35S:AtZSP1#1) produced larger organs. Differentially expressed genes in the shoots of atzsp1-1 and p35S:AtZSP1#1 were enriched in the cytokinin pathway. Further analysis on shoots of atzsp1-1 showed that endogenous cytokinin levels were significantly reduced, consistent with reduced expression of the cytokinin response genes ARR5/6/7 and a decrease in pARR5:GUS activity. By contrast, cytokinin levels were elevated in p35S:AtZSP1#1. These results indicate that AtZSP1 affects shoot size via changes in cytokinin levels. AtZSP1 is ubiquitously expressed and encodes a 57-amino acid endomembrane-associated protein that is highly conserved among plant species. AtZSP1 interacts with ROCK1 at the endomembrane. Genetic analysis confirmed that the small organs and low cytokinin levels in atzsp1-1 shoots are partially suppressed by the rock1-4 mutation, suggesting that AtZSP1 may function in a common pathway with ROCK1 to antagonistically regulate organ growth. Our study identified an unknown small peptide, AtZSP1, and defined its function in regulating organ size in Arabidopsis.
Collapse
Affiliation(s)
- Yuejuan Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Tang
- University of California, Berkeley, 371 Koshland Hall, Berkeley, CA, 94720, USA
| | - Simin Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Man Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liqun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Auxin and Cytokinin Interplay during Leaf Morphogenesis and Phyllotaxy. PLANTS 2021; 10:plants10081732. [PMID: 34451776 PMCID: PMC8400353 DOI: 10.3390/plants10081732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022]
Abstract
Auxins (IAA) and cytokinins (CKs) are the most influential phytohormones, having multifaceted roles in plants. They are key regulators of plant growth and developmental processes. Additionally, their interplay exerts tight control on plant development and differentiation. Although several reviews have been published detailing the auxin-cytokinin interplay in controlling root growth and differentiation, their roles in the shoot, particularly in leaf morphogenesis are largely unexplored. Recent reports have provided new insights on the roles of these two hormones and their interplay on leaf growth and development. In this review, we focus on the effect of auxins, CKs, and their interactions in regulating leaf morphogenesis. Additionally, the regulatory effects of the auxins and CKs interplay on the phyllotaxy of plants are discussed.
Collapse
|