1
|
Zhou Z, Duan Y, Li Y, Zhang P, Li Q, Yu L, Han C, Huo J, Chen W, Xiao Y. CYP98A monooxygenases: a key enzyme family in plant phenolic compound biosynthesis. HORTICULTURE RESEARCH 2025; 12:uhaf074. [PMID: 40303436 PMCID: PMC12038246 DOI: 10.1093/hr/uhaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Phenolic compounds are derived from the phenylpropanoid metabolic pathways of plants and include phenylpropionic acids, lignins, coumarins, and flavonoids. These compounds are among the most abundant and diverse classes of secondary metabolites found throughout the plant kingdom. Phenolic compounds play critical roles in the growth, development, and stress resistance of horticultural plants. Moreover, some phenolic compounds exhibit substantial biological activities, and they are widely utilized across various sectors, such as the pharmaceutical and food industries. The cytochrome P450 monooxygenase 98A subfamily (CYP98A) is involved mainly in the biosynthesis of phenolic compounds, mediating the meta-hydroxylation of aromatic rings in the common phenylpropane biosynthesis pathways of phenolic compounds. However, research on this family of oxidases is currently fragmented, and a systematic and comprehensive review has not yet been conducted. This review offers an exhaustive summary of the molecular features of the CYP98A family and the functions of CYP98A monooxygenases in the biosynthesis of different types of phenolic compounds. In addition, this study provides a reference for the exploration and functional study of plant CYP98A family enzymes. An enhanced understanding of CYP98A monooxygenases can help in the cultivation of high-quality horticultural plants with increased resistance to biotic and abiotic stresses and enhanced accumulation of natural bioactive compounds via metabolic engineering strategies. Moreover, the structural optimization and modification of CYP98A monooxygenases can provide additional potential targets for synthetic biology, enabling the efficient in vitro production of important phenolic compounds to address production supply conflicts.
Collapse
Affiliation(s)
- Zheng Zhou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
- Navy Special Medical Centre, Second Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Yonghao Duan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Yajing Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Pan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Luyao Yu
- Navy Special Medical Centre, Second Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Cuicui Han
- Navy Special Medical Centre, Second Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Juncheng Huo
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Wansheng Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Ying Xiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
2
|
Alzahrani Y, Abdulbaki AS, Alsamadany H. Genotypic variability in stress responses of Sorghum bicolor under drought and salinity conditions. Front Genet 2025; 15:1502900. [PMID: 39845188 PMCID: PMC11750996 DOI: 10.3389/fgene.2024.1502900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Sorghum bicolor: widely cultivated in Asia and Africa, faces increasing challenges from climate change, specifically from abiotic stresses like drought and salinity. This study evaluates how different sorghum genotypes respond to separate and combined stresses of drought and salinity. Methods Carried out with three replications using a randomized complete block design, the experiment measured biochemical and physiological parameters, including stomatal conductance, chlorophyll content, and antioxidant enzyme activities. Molecular analysis focused on stress-responsive gene expression. Results Results indicated enhanced stress responses under combined conditions, with significant variation in antioxidant enzymatic activities among genotypes. Genotype-specific osmotic adjustments were observed through proline and glycine betaine accumulation. Physiological parameters such as chlorophyll content, cell membrane stability, stomatal conductance, and water potential were critical indicators of stress tolerance. Gene expression analysis revealed upregulation of stress-responsive genes, particularly under combined stress conditions. Discussion Correlation and principal component analysis analyses highlighted the interdependencies among traits, emphasizing their roles in oxidative stress mitigation. Samsorg-17 exhibited the highest resilience due to consistently high levels of catalase, superoxide dismutase, and glycine betaine, alongside superior physiological attributes. CRS-01 showed moderate resilience with the highest Na/K ratio and notable photosynthesis rate and relative water content, but was less consistent in biochemical markers under stress. Samsorg-42 demonstrated resilience under specific conditions but was generally less robust than Samsorg-17 across most indicators. These findings emphasize the importance of developing stress-resilient sorghum cultivars through targeted breeding programs to enhance tolerance to drought and salinity in sustainable agriculture.
Collapse
Affiliation(s)
- Yahya Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulbaki Shehu Abdulbaki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Federal University Dutsinma, Dutsinma, Katsina State, Nigeria
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Feki K, Tounsi S, Kamoun H, Al-Hashimi A, Brini F. Decoding the role of durum wheat ascorbate peroxidase TdAPX7B-2 in abiotic stress response. Funct Integr Genomics 2024; 24:223. [PMID: 39604585 DOI: 10.1007/s10142-024-01505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
APX proteins are H2O2-scavenging enzymes induced during oxidative stress. In the first part of this study, we provided an extensive knowledge on the APX family of Triticum durum, TdAPX and their related TdAPX-R, via the genome wide analysis. The outcomes showed that these proteins are clustered into four major subgroups. Furthermore, the exon-intron structure and the synteny analyses revealed that during evolution the genes TdAPX and TdAPX-R are relatively conserved. Besides, during their evolution, these genes underwent purifying selection pressure and were duplicated in segmental. In parallel, the analysis of the conserved motifs and the multiple sequence alignment demonstrated that the residues involved in the active sites, heme- and cations-binding are conserved only in TdAPX proteins. Following the RNA-seq data and the regulatory elements analyses, we focused in the second part of this study on the functional characterization of TdAPX7B-2. The qRT-PCR data showed the upregulation of TdAPX7B-2 essentially in leaves of durum wheat exposed to salt, cold, drought, metals and ABA treatments. The tolerance phenotype of the TdAPX7B-2-expressing Arabidopsis lines to salt, direct-induced oxidative stress and heavy metals was manifested by the development of root system, proline accumulation and induction of the antioxidant CAT, SOD and POD enzymes to maintain the non-toxic H2O2 levels. Likewise, the response to salt stress and direct-oxidative stress of the transgenic lines was accompanied mainly by the induction of AtNCED3, AtRD29A/B and AtERD1.
Collapse
Affiliation(s)
- Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia.
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
- University of Jandouba, Higher School of Agriculture of Kef (ESAK), Boulifa Campus, BP 7119, Kef, Tunisia
| | - Hanen Kamoun
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| |
Collapse
|
4
|
Caccamo A, Lazzarotto F, Margis-Pinheiro M, Messens J, Remacle C. The ascorbate peroxidase-related protein: insights into its functioning in Chlamydomonas and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1487328. [PMID: 39445148 PMCID: PMC11496181 DOI: 10.3389/fpls.2024.1487328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
We review the newly classified ascorbate peroxidase-related (APX-R) proteins, which do not use ascorbate as electron donor to scavenge H2O2. We summarize recent discoveries on the function and the characterization of the APX-R protein of the green unicellular alga Chlamydomonas reinhardtii and the land plant Arabidopsis thaliana. Additionally, we conduct in silico analyses on the conserved MxxM motif, present in most of the APX-R protein in different organisms, which is proposed to bind copper. Based on these analyses, we discuss the similarities between the APX-R and the class III peroxidases.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Liège, Belgium
- Redox Signaling Lab, VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Messens Lab, Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernanda Lazzarotto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcia Margis-Pinheiro
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joris Messens
- Redox Signaling Lab, VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Messens Lab, Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Karimzadegan V, Koirala M, Sobhanverdi S, Merindol N, Majhi BB, Gélinas SE, Timokhin VI, Ralph J, Dastmalchi M, Desgagné-Penix I. Characterization of cinnamate 4-hydroxylase (CYP73A) and p-coumaroyl 3'-hydroxylase (CYP98A) from Leucojum aestivum, a source of Amaryllidaceae alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108612. [PMID: 38598867 DOI: 10.1016/j.plaphy.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Biosynthesis of Amaryllidaceae alkaloids (AA) starts with the condensation of tyramine with 3,4-dihydroxybenzaldehyde. The latter derives from the phenylpropanoid pathway that involves modifications of trans-cinnamic acid, p-coumaric acid, caffeic acid, and possibly 4-hydroxybenzaldehyde, all potentially catalyzed by hydroxylase enzymes. Leveraging bioinformatics, molecular biology techniques, and cell biology tools, this research identifies and characterizes key enzymes from the phenylpropanoid pathway in Leucojum aestivum. Notably, we focused our work on trans-cinnamate 4-hydroxylase (LaeC4H) and p-coumaroyl shikimate/quinate 3'-hydroxylase (LaeC3'H), two key cytochrome P450 enzymes, and on the ascorbate peroxidase/4-coumarate 3-hydroxylase (LaeAPX/C3H). Although LaeAPX/C3H consumed p-coumaric acid, it did not result in the production of caffeic acid. Yeasts expressing LaeC4H converted trans-cinnamate to p-coumaric acid, whereas LaeC3'H catalyzed specifically the 3-hydroxylation of p-coumaroyl shikimate, rather than of free p-coumaric acid or 4-hydroxybenzaldehyde. In vivo assays conducted in planta in this study provided further evidence for the contribution of these enzymes to the phenylpropanoid pathway. Both enzymes demonstrated typical endoplasmic reticulum membrane localization in Nicotiana benthamiana adding spatial context to their functions. Tissue-specific gene expression analysis revealed roots as hotspots for phenylpropanoid-related transcripts and bulbs as hubs for AA biosynthetic genes, aligning with the highest AAs concentration. This investigation adds valuable insights into the phenylpropanoid pathway within Amaryllidaceae, laying the foundation for the development of sustainable production platforms for AAs and other bioactive compounds with diverse applications.
Collapse
Affiliation(s)
- Vahid Karimzadegan
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Manoj Koirala
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Sajjad Sobhanverdi
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Bharat Bhusan Majhi
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Vitaliy I Timokhin
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, 53726, USA
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, 53726, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mehran Dastmalchi
- Department of Plant Science, McGill University, Montréal, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université Du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
| |
Collapse
|
6
|
Liang Z, Xu H, Qi H, Fei Y, Cui J. Genome-wide identification and analysis of ascorbate peroxidase (APX) gene family in hemp ( Cannabis sativa L.) under various abiotic stresses. PeerJ 2024; 12:e17249. [PMID: 38685943 PMCID: PMC11057428 DOI: 10.7717/peerj.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Ascorbate peroxidase (APX) plays a critical role in molecular mechanisms such as plant development and defense against abiotic stresses. As an important economic crop, hemp (Cannabis sativa L.) is vulnerable to adverse environmental conditions, such as drought, cold, salt, and oxidative stress, which lead to a decline in yield and quality. Although APX genes have been characterized in a variety of plants, members of the APX gene family in hemp have not been completely identified. In this study, we (1) identified eight members of the CsAPX gene family in hemp and mapped their locations on the chromosomes using bioinformatics analysis; (2) examined the physicochemical characteristics of the proteins encoded by these CsAPX gene family members; (3) investigated their intraspecific collinearity, gene structure, conserved domains, conserved motifs, and cis-acting elements; (4) constructed a phylogenetic tree and analyzed interspecific collinearity; and (5) ascertained expression differences in leaf tissue subjected to cold, drought, salt, and oxidative stresses using quantitative real-time-PCR (qRT-PCR). Under all four stresses, CsAPX6, CsAPX7, and CsAPX8 consistently exhibited significant upregulation, whereas CsAPX2 displayed notably higher expression levels under drought stress than under the other stresses. Taken together, the results of this study provide basic genomic information on the expression of the APX gene family and pave the way for studying the role of APX genes in abiotic stress.
Collapse
Affiliation(s)
- Zixiao Liang
- College of Life Sciences and Agroforestry, Qiqihar University, Qiqihar City, Heilongjiang Province, China
| | - Hongguo Xu
- College of Life Sciences and Agroforestry, Qiqihar University, Qiqihar City, Heilongjiang Province, China
- Key Laboratory of Resistance Genetic Engineering and Cold Biodiversity Conservation, Qiqihar University, Qiqihar City, Heilongjiang Province, China
| | - Hongying Qi
- College of Life Sciences and Agroforestry, Qiqihar University, Qiqihar City, Heilongjiang Province, China
- Key Laboratory of Resistance Genetic Engineering and Cold Biodiversity Conservation, Qiqihar University, Qiqihar City, Heilongjiang Province, China
| | - Yiying Fei
- College of Life Sciences and Agroforestry, Qiqihar University, Qiqihar City, Heilongjiang Province, China
| | - Jiaying Cui
- College of Life Sciences and Agroforestry, Qiqihar University, Qiqihar City, Heilongjiang Province, China
| |
Collapse
|
7
|
Utomo JC, Barrell HB, Kumar R, Smith J, Brant MS, De la Hoz Siegler H, Ro DK. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Metab Eng 2024; 82:286-296. [PMID: 38387678 DOI: 10.1016/j.ymben.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.
Collapse
Affiliation(s)
- Joseph Christian Utomo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hailey Brynn Barrell
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Jessica Smith
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Maximilian Simon Brant
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
8
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Wolf ESA, Vela S, Cuevas HE, Vermerris W. A Sorghum F-Box Protein Induces an Oxidative Burst in the Defense Against Colletotrichum sublineola. PHYTOPATHOLOGY 2024; 114:405-417. [PMID: 37717251 DOI: 10.1094/phyto-06-23-0184-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The hemibiotrophic fungal pathogen Colletotrichum sublineola is the causal agent of anthracnose in sorghum (Sorghum bicolor), resulting in leaf blight, stalk rot, and head blight in susceptible genotypes, with yield losses of up to 50%. The development of anthracnose-resistant cultivars can reduce reliance on fungicides and provide a more sustainable and economical means for disease management. A previous genome-wide association study of the sorghum association panel identified the candidate resistance gene Sobic.005G172300 encoding an F-box protein. To better understand the role of this gene in the defense against C. sublineola, gene expression following infection with C. sublineola was monitored by RNA sequencing in seedlings of sorghum accession SC110, which harbored the resistance allele, and three accessions that harbored a susceptible allele. Only in SC110 did the expression of Sobic.005G172300 increase during the biotrophic phase of infection. Subsequent transcriptome analysis, gene co-expression networks, and gene regulatory networks of inoculated and mock-inoculated seedlings of resistant and susceptible accessions suggest that the increase in expression of Sobic.005G172300 induces an oxidative burst by lowering the concentration of ascorbic acid during the biotrophic phase of infection. Based on gene regulatory network analysis, the protein encoded by Sobic.005G172300 is proposed to target proteins involved in the biosynthesis of ascorbic acid for polyubiquitination through the SCF E3 ubiquitin ligase, causing their degradation via the proteasome.
Collapse
Affiliation(s)
- Emily S A Wolf
- Plant Molecular & Cellular Biology graduate program, University of Florida, Gainesville, FL 32611
| | - Saddie Vela
- Plant Molecular & Cellular Biology graduate program, University of Florida, Gainesville, FL 32611
| | - Hugo E Cuevas
- U.S. Department of Agriculture-Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR 00680
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
10
|
Li S. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biol 2023; 64:102789. [PMID: 37352686 DOI: 10.1016/j.redox.2023.102789] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
As plants are sessile organisms, they are inevitably exposed to a variety of environmental stimuli that trigger rapid changes in the generation and disposal of reactive oxygen species such as hydrogen peroxide (H2O2). A major H2O2 scavenging system in plant cells is the ascorbate-glutathione cycle, in which ascorbate peroxidase (APX) catalyzes the conversion of H2O2 into water employing ascorbate as specific electron donor. In higher plants, distinct APX isoforms can occur in multiple subcellular compartments, including chloroplasts, mitochondria, and peroxisomes and the cytosol, to modulate organellar and cellular levels of H2O2. It is well established that APX plays crucial roles in protecting plant cells against diverse environmental stresses, as well as in plant growth and development. Apart from ascorbate, recently, APXs have been found to have a broader substrate specificity and possess chaperone activity, hence participating various biological processes. In this review, we describe the antioxidant properties of APXs and highlight their novel roles beyond 'ascorbate peroxidases'.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
11
|
Oliveira DM, Cesarino I. Four is better than one: Structure and function of a unique ascorbate peroxidase with four binding sites. PLANT PHYSIOLOGY 2023; 192:4-6. [PMID: 36810681 PMCID: PMC10152687 DOI: 10.1093/plphys/kiad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Dyoni M Oliveira
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo 05508-090, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, São Paulo 05508-020, Brazil
| |
Collapse
|
12
|
Zhang B, Lewis JA, Kovacs F, Sattler SE, Sarath G, Kang C. Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids. Int J Mol Sci 2023; 24:1778. [PMID: 36675291 PMCID: PMC9864165 DOI: 10.3390/ijms24021778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
APX is a key antioxidant enzyme in higher plants, scavenging H2O2 with ascorbate in several cellular compartments. Here, we report the crystal structures of cytosolic ascorbate peroxidase from switchgrass (Panicum virgatum L., Pvi), a strategic feedstock plant with several end uses. The overall structure of PviAPX was similar to the structures of other APX family members, with a bound ascorbate molecule at the ɣ-heme edge pocket as in other APXs. Our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Significantly, our study suggested that PviAPX can oxidize a broad range of phenylpropanoids with δ-meso site in a rather similar efficiency, which reflects its role in the fortification of cell walls in response to insect feeding. Based on detailed structural and kinetic analyses and molecular docking, as well as that of closely related APX enzymes, the critical residues in each substrate-binding site of PviAPX are proposed. Taken together, these observations shed new light on the function and catalysis of PviAPX, and potentially benefit efforts improve plant health and biomass quality in bioenergy and forage crops.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Frank Kovacs
- Chemistry Department, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA
| | - Gautam Sarath
- Wheat, Sorghum and Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|