1
|
Sillo F, Blaser SRGA, Díaz-Tielas C, Clayton J, Araniti F, Sánchez-Moreiras AM, George TS, Balestrini R, Vetterlein D. Size Matters: Influence of Available Soil Volume on the Root Architecture and Plant Response at Transcriptomic and Metabolomic Levels in Barley. PLANT, CELL & ENVIRONMENT 2025; 48:4685-4702. [PMID: 40065576 DOI: 10.1111/pce.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 05/06/2025]
Abstract
Pot size is a critical factor in plant growth experiments, influencing root architecture, nutrient uptake, and overall plant development as well as sensing of stress. In controlled environments, variation in pot size can impact phenotypic and molecular outcomes and may bias experimental results. Here, we investigated how pot size affects the root system architecture and molecular responses of two barley genotypes, the landrace BERE and the modern elite CONCERTO, through assessment of shoot and root traits and by using X-ray computed tomography complemented by transcriptomic and metabolomic analyses. The two genotypes showed distinctly different adaptations to changes in pot size. The landrace showed greater stability and adaptability with consistent root traits and enhanced accumulation of osmoprotectant metabolites across different pot sizes with respect to CONCERTO. Conversely, the elite line was more sensitive to pot size variations, particularly showing altered root architecture and transcriptomic responses. Overall, this study highlights the importance of selecting an appropriate pot size for plant growth experiments, particularly when focused on root traits, and highlights the importance of considering the physiological and molecular changes due to growth environment choice in experimental design in barley.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
| | - Sebastian R G A Blaser
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Carla Díaz-Tielas
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | - Jessica Clayton
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | | | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
- National Research Council, Institute of Biosciences and BioResources, Bari, Italy
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Sanchez-Munoz R, Depaepe T, Samalova M, Hejatko J, Zaplana I, Van Der Straeten D. Machine-learning meta-analysis reveals ethylene as a central component of the molecular core in abiotic stress responses in Arabidopsis. Nat Commun 2025; 16:4778. [PMID: 40404615 PMCID: PMC12098884 DOI: 10.1038/s41467-025-59542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/22/2025] [Indexed: 05/24/2025] Open
Abstract
Understanding how plants adapt their physiology to overcome severe and often multifactorial stress conditions in nature is vital in light of the climate crisis. This remains a challenge given the complex nature of the underlying molecular mechanisms. To provide a comprehensive picture of stress-mitigation mechanisms, an exhaustive analysis of publicly available stress-related transcriptomic data has been conducted. We combine a meta-analysis with an unsupervised machine-learning algorithm to identify a core of stress-related genes active at 1-6 h and 12-24 h of exposure in Arabidopsis thaliana shoots and roots. To ensure robustness and biological significance of the output, often lacking in meta-analyses, a triple validation is incorporated. We present a 'stress gene core': a set of key genes involved in plant tolerance to ten adverse environmental conditions and ethylene-precursor supplementation rather than individual conditions. Notably, ethylene plays a key regulatory role in this core, influencing gene expression and acting as a critical factor in stress tolerance. Additionally, the analysis provides insights into previously uncharacterized genes, key genes within large families, and gene expression dynamics, which are used to create biologically validated databases that can guide further abiotic stress research. These findings establish a strong framework for advancing multi-stress-resilient crops, paving the way for sustainable agriculture in the face of climate challenges.
Collapse
Affiliation(s)
- Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium
- Department of Agri-Food Engineering and Biotechnology (DEAB), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Castelldefels, 08860, Barcelona, Spain
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium
| | - Marketa Samalova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Isiah Zaplana
- Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, 08028, Spain.
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium.
| |
Collapse
|
3
|
Vinciarelli F, De Vivo M, Terenzi A, Cazzaniga F, Amati S, Damato P, Salvi E, Del Bianco M, Di Mambro R, Costantino P, Sabatini S, Dello Ioio R. Identification of a Specific Role of Dihydrozeatin in the Regulation of the Cell Differentiation Activity in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2025; 14:1501. [PMID: 40431066 PMCID: PMC12114884 DOI: 10.3390/plants14101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
The plant hormones cytokinins are a class of heterogeneous active compounds that control multiple aspects of development and physiology. Among cytokinins, trans-zeatin (tZ), the most abundant cytokinin, has been extensively studied in relation to its effects on development, and it plays a key role in promoting cell differentiation. In analogy with tZ, here we demonstrate that dihydrozeatin (DHZ) controls (root) development by promoting cell differentiation. By means of pharmacological and genetic analysis, we demonstrate that DHZ is specifically and uniquely perceived by the histidine kinase (HK) receptor AHK3, and that this interaction is sufficient to promote cell differentiation in the root meristem via activation of the transcription factors ARABIDOPSIS RESPONSE REGULATOR 1, 12, and 11. We also show that DHZ and tZ activity might be conserved among plants. Our results support the idea that different types of cytokinins act via specific receptors to exert their roles and suggest new approaches to study their activity in differentiation.
Collapse
Affiliation(s)
- Federico Vinciarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Mirko De Vivo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Alessio Terenzi
- Department of Biology, Università di Pisa (UNIPI), 56126 Pisa, Italy; (A.T.); (E.S.); (R.D.M.)
| | - Francesca Cazzaniga
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Samuele Amati
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Pierpaolo Damato
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Elena Salvi
- Department of Biology, Università di Pisa (UNIPI), 56126 Pisa, Italy; (A.T.); (E.S.); (R.D.M.)
| | | | - Riccardo Di Mambro
- Department of Biology, Università di Pisa (UNIPI), 56126 Pisa, Italy; (A.T.); (E.S.); (R.D.M.)
| | - Paolo Costantino
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Sabrina Sabatini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (F.V.); (M.D.V.); (F.C.); (S.A.); (P.D.); (P.C.)
| |
Collapse
|
4
|
Kumar V, Yadav S, Heymans A, Robert S. "Shape of Cell"-An Auxin and Cell Wall Duet. PHYSIOLOGIA PLANTARUM 2025; 177:e70294. [PMID: 40442876 PMCID: PMC12122918 DOI: 10.1111/ppl.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 06/02/2025]
Abstract
Understanding the mechanisms underlying cell shape acquisition is of fundamental importance in plant science, as this process ultimately defines the structure and function of plant organs. Plants produce cells of diverse shapes and sizes, including pavement cells and stomata of leaves, elongated epidermal cells of the hypocotyl, and cells with outgrowths such as root hairs, and so forth. Plant cells experience mechanical forces of variable magnitude during their development and interaction with neighboring cells and the surrounding environment. From the time of cytokinesis, they are encaged in a complex cell wall matrix, which offers mechanical support and enables directional growth and a differential rate of expansion towards adjacent cells via its mechanochemical heterogeneity. The phytohormone auxin is well characterized for its role in cell expansion and cell elasticity. The interaction between dynamic auxin redistribution and the mechanical properties of the cell wall within tissues drives the development of specific cell shapes. Here, we focus on the regulatory feedback loop involving auxin activity, its influence on cell wall chemistry and mechanical properties, and the coordination of cell shape formation. Integrating insights from molecular and cell biology, biophysics, and computational modeling, we explore the mechanistic link between auxin signaling and cell wall dynamics in shaping plant cells.
Collapse
Affiliation(s)
- Vinod Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Adrien Heymans
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
5
|
Zhu M, Hsu CW, Peralta Ogorek LL, Taylor IW, La Cavera S, Oliveira DM, Verma L, Mehra P, Mijar M, Sadanandom A, Perez-Cota F, Boerjan W, Nolan TM, Bennett MJ, Benfey PN, Pandey BK. Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature 2025:10.1038/s41586-025-08941-z. [PMID: 40307555 DOI: 10.1038/s41586-025-08941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Land plants thrive in soils showing vastly different properties and environmental stresses1. Root systems can adapt to contrasting soil conditions and stresses, yet how their responses are programmed at the individual cell scale remains unclear. Using single-cell RNA sequencing and spatial transcriptomic approaches, we showed major expression changes in outer root cell types when comparing the single-cell transcriptomes of rice roots grown in gel versus soil conditions. These tissue-specific transcriptional responses are related to nutrient homeostasis, cell wall integrity and defence in response to heterogeneous soil versus homogeneous gel growth conditions. We also demonstrate how the model soil stress, termed compaction, triggers expression changes in cell wall remodelling and barrier formation in outer and inner root tissues, regulated by abscisic acid released from phloem cells. Our study reveals how root tissues communicate and adapt to contrasting soil conditions at single-cell resolution.
Collapse
Affiliation(s)
- Mingyuan Zhu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Lucas L Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Salvatore La Cavera
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lokesh Verma
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Poonam Mehra
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Medhavinee Mijar
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham, UK
| | - Fernando Perez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Malcolm J Bennett
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
6
|
Xu R, Jiang S, Ge H, Zhang B, Shu J, Zhang T, Cao L, Zhang S. MhIDA small peptides modulate the growth and development of roots in Malus hupehensis. PLANT CELL REPORTS 2025; 44:110. [PMID: 40304744 DOI: 10.1007/s00299-025-03492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
KEY MESSAGE MhIDA small peptides promote apple root growth by enhancing auxin synthesis and cell wall remodeling gene expression, revealing a peptide-based strategy to improve root architecture. Although small peptides have been well documented as crucial regulators of plant growth and development, the molecular mechanisms underlying lateral root morphogenesis in Malus hupehensis remain poorly understood. In this research, exogenous application of 1 µM MhIDA-Like family peptides increased primary root (PR) length by 14.31-19.96% and lateral root (LR) number by 124.54-149.08%. MhIDA, predominant expression in the root tip and lateral root primordium, demonstrated the most substantial promoting effects on PR elongation, LR number and density when the treatment concentration reached 1 µM. Furthermore, similar effects were found in MhIDA-overexpression transgenic apple seedlings, with the number and density of transgenic LRs increase by 80.52 and 126.86%, respectively, compared with wild-type seedlings. More importantly, 1 µM MhIDA treatment induced significant hormonal alterations, with the content of auxin, salicylic acid and gibberellic acid increasing by 1.5-fold, 1.4-fold, and 2.1-fold, respectively, compared to control. The qRT-PCR results showed that MhIDA could induce the expression of auxin synthesis genes (MhTAA1 and MhYUCC1) that were up-regulated by about twofold, and the cell wall remodeling-related genes (MhEXP17, MhXTR6, MhPGAZAT and MhPGLR) were upregulated by about 2- to 4-fold after 1 µM MhIDA treatment, thereby regulating LR emergence and formation of Malus hupehensis. Overall, these findings suggested the MhIDA peptide can promote the growth and development of roots, laying the foundation for cultivating apple rootstocks with strong roots and higher resistance to abiotic stress.
Collapse
Affiliation(s)
- Ruirui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Shuna Jiang
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hongjuan Ge
- Qingdao Agriculture Academy, Qingdao, 266100, Shandong, China
| | - Buhang Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Tianpeng Zhang
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China.
| | - Lijun Cao
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.
| | - Shizhong Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
7
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
8
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Balkova D, Mala K, Hejatko J, Panzarova K, Abdelhakim L, Pleskacova B, Samalova M. Differential expression and localization of expansins in Arabidopsis shoots: implications for cell wall dynamics and drought tolerance. FRONTIERS IN PLANT SCIENCE 2025; 16:1546819. [PMID: 39996115 PMCID: PMC11847903 DOI: 10.3389/fpls.2025.1546819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
Expansins are cell wall-modifying proteins implicated in plant growth and stress responses. In this study, we explored the differential localization of expansins in Arabidopsis thaliana shoots, with a focus on EXPA1, EXPA10, EXPA14, and EXPA15 utilizing pEXPA::EXPA translational fusion lines. Employing the chemically inducible system pOp6/LhGR for EXPA1 overexpression and high-throughput automatic phenotyping we evaluated the drought response and photosynthetic efficiency under stress conditions. We observed distinct expression patterns of expansins, with EXPA1 primarily localized in stomatal guard cells, while EXPA10 and EXPA15 showed strong cell wall (CW) localization in epidermal and other tissues. Overexpression of EXPA1 resulted in pronounced changes in CW-related gene expression, particularly during early stages of induction, including the upregulation of other expansins and CW-modifying enzymes. The induced EXPA1 line also displayed significant morphological changes in shoots, including smaller plant size, delayed senescence, and structural alterations in vascular tissues. Additionally, EXPA1 overexpression conferred drought tolerance, as evidenced by enhanced photosynthetic efficiency (Fv/FM), and low steady-state non-photochemical quenching (NPQ) values under drought stress. These findings highlight the critical role of EXPA1 in regulating plant growth, development, and stress response, with potential applications in improving drought tolerance in crops.
Collapse
Affiliation(s)
- Darina Balkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Katerina Mala
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Hejatko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | | | | | - Marketa Samalova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
10
|
Landes T, Khanal BP, Bethge HL, Lehrich T, Kilic MS, Renz F, Zabic M, Knoche M, Heinemann D. Micromechanical behavior of the apple fruit cuticle investigated by Brillouin light scattering microscopy. Commun Biol 2025; 8:174. [PMID: 39905204 PMCID: PMC11794438 DOI: 10.1038/s42003-025-07555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
The cuticle is a polymeric membrane covering all plant aerial organs of primary origin. It regulates water loss and defends against environmental stressors and pathogens. Despite its significance, understanding of the micro-mechanical properties of the cuticle (cuticular membrane; CM) remains limited. In this study, non-invasive Brillouin light scattering (BLS) spectroscopy was applied to probe the micro-mechanics of native CM, dewaxed CM (DCM), and isolated cutin matrix (CU) of mature apple fruit. The BLS signal arises from the photon interaction with thermally induced pressure waves and allows for imaging with mechanical contrast. The derived loss tangent showed significant differences with wax extraction from the CM and further with carbohydrate extraction from the DCM, consistent with tensile test results. Spatial heterogeneity between anticlinal and periclinal regions was observed by BLS microscopy of CM and DCM, but not in CU. The key conclusions are: (1) BLS is sensitive to micro-mechanical variations, particularly the strain-stiffening effect of the cutin framework, offering insights into the CM's micro-mechanical behavior and underlying chemical structures; (2) CM and DCM exhibit spatial micro-mechanical heterogeneity between periclinal and anticlinal regions.
Collapse
Affiliation(s)
- Timm Landes
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Bishnu P Khanal
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Hans Lukas Bethge
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Tina Lehrich
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Maximilian Seydi Kilic
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167, Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167, Hannover, Germany
| | - Miroslav Zabic
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167, Hannover, Germany.
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
11
|
Hussain S, Chang J, Li J, Chen L, Ahmad S, Song Z, Zhang B, Chen X. Multifunctional Role of Cytokinin in Horticultural Crops. Int J Mol Sci 2025; 26:1037. [PMID: 39940806 PMCID: PMC11816932 DOI: 10.3390/ijms26031037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
Cytokinins (CKs) are a class of phytohormones identified in the early 1960s and are mainly responsible for stimulating cell division. Following the discovery, research to help understand the pluralistic roles of CKs in plant growth and stress biology increased. With their fascinating ability, CKs serve as an important element in regulating the defense-growth trade-off. Herein, we demonstrate how the CK fine-tuning the organogenesis of different parts of horticultural plants is discussed. CK's role in tailoring reproductive biology (flowering, sex differentiation, fruit set, and fruit attributes) has been presented. An extensive explanation of the CK-mediated response of horticultural crops to abiotic (temperature, drought, and salinity) and biotic stresses (fungal, bacterial, and nematodes) is provided. Finally, we posit the unexplored roles of CKs and highlight the research gaps worth addressing.
Collapse
Affiliation(s)
- Shahid Hussain
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Lei Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Sheraz Ahmad
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Zhao Song
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Xiao Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| |
Collapse
|
12
|
Jiang X, Zeng X, Xu M, Li M, Zhang F, He F, Yang T, Wang C, Gao T, Long R, Yang Q, Kang J. The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa ( Medicago sativa L.). HORTICULTURE RESEARCH 2025; 12:uhae271. [PMID: 39807345 PMCID: PMC11725648 DOI: 10.1093/hr/uhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/13/2024] [Indexed: 01/16/2025]
Abstract
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log 10 (P) ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Xiangcui Zeng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Ming Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China, 266109
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China, 010000
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| |
Collapse
|
13
|
Datta S, Mandal D, Mitra S, Chakraborty S, Nag Chaudhuri R. ABI3 regulates ABI1 function to control cell length in primary root elongation zone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2437-2455. [PMID: 39495594 DOI: 10.1111/tpj.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Post-embryonic primary root growth is effectively an interplay of several hormone signalling pathways. Here, we show that the ABA-responsive transcription factor ABI3 controls primary root growth through the regulation of JA signalling molecule JAZ1 along with ABA-responsive factor ABI1. In the absence of ABI3, the primary root elongation zone is shortened with significantly reduced cell length. Expression analyses and ChIP-based assays indicate that ABI3 negatively regulates JAZ1 expression by occupying its upstream regulatory sequence and enriching repressive histone modification mark H3K27 trimethylation, thereby occluding RNAPII occupancy. Previous studies have shown that JAZ1 interacts with ABI1, the protein phosphatase 2C, that works during ABA signalling. Our results indicate that in the absence of ABI3, when JAZ1 expression levels are high, the ABI1 protein shows increased stability, compared to when JAZ1 is absent, or ABI3 is overexpressed. Consequently, in the abi3-6 mutant, due to the higher stability of ABI1, reduced phosphorylation of plasma membrane H+-ATPase (AHA2) occurs. HPTS staining further indicated that abi3-6 root cell apoplasts show reduced protonation, compared to wild-type and ABI3 overexpressing seedlings. Such impeded proton extrusion negatively affects cell length in the primary root elongation zone. ABI3 therefore controls cell elongation in the primary root by affecting the ABI1-dependent protonation of root cell apoplasts. In summary, ABI3 controls the expression of JAZ1 and in turn modulates the function of ABI1 to regulate cell length in the elongation zone during primary root growth.
Collapse
Affiliation(s)
- Saptarshi Datta
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Drishti Mandal
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Sicon Mitra
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Swarnavo Chakraborty
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
14
|
Wang Y, Strauss S, Smith RS, Sampathkumar A. Actin-mediated avoidance of tricellular junction influences global topology at the Arabidopsis shoot apical meristem. Cell Rep 2024; 43:114844. [PMID: 39418163 DOI: 10.1016/j.celrep.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Division plane orientation contributes to cell shape and topological organization, playing a key role in morphogenesis, but the precise physical and molecular mechanism influencing these processes remains largely obscure in plants. In particular, it is less clear how the placement of the new walls occurs in relation to the walls of neighboring cells. Here, we show that genetic perturbation of the actin cytoskeleton results in more rectangular cell shapes and higher incidences of four-way junctions, perturbing the global topology of cells in the shoot apical meristem of Arabidopsis thaliana. Actin mutants also exhibit changes in the expansion rate of the new versus the maternal cell wall after division, affecting the evolution of internal angles at tricellular junctions. Further, the increased width of the preprophase band in the actin mutant contributes to inaccuracy in the placement of the new cell wall. Computational simulation further substantiates this hypothesis and reproduces the observed cell shape defects.
Collapse
Affiliation(s)
- Yang Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Soeren Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Ln, NR4 7UH Norwich, UK
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
15
|
Jang MJ, Cho HJ, Park YS, Lee HY, Bae EK, Jung S, Jin H, Woo J, Park E, Kim SJ, Choi JW, Chae GY, Guk JY, Kim DY, Kim SH, Kang MJ, Lee H, Cheon KS, Kim IS, Kim YM, Kim MS, Ko JH, Kang KS, Choi D, Park EJ, Kim S. Haplotype-resolved genome assembly and resequencing analysis provide insights into genome evolution and allelic imbalance in Pinus densiflora. Nat Genet 2024; 56:2551-2561. [PMID: 39428511 DOI: 10.1038/s41588-024-01944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Haplotype-level allelic characterization facilitates research on the functional, evolutionary and breeding-related features of extremely large and complex plant genomes. We report a 21.7-Gb chromosome-level haplotype-resolved assembly in Pinus densiflora. We found genome rearrangements involving translocations and inversions between chromosomes 1 and 3 of Pinus species and a proliferation of specific long terminal repeat (LTR) retrotransposons (LTR-RTs) in P. densiflora. Evolutionary analyses illustrated that tandem and LTR-RT-mediated duplications led to an increment of transcription factor (TF) genes in P. densiflora. The haplotype sequence comparison showed allelic imbalances, including presence-absence variations of genes (PAV genes) and their functional contributions to flowering and abiotic stress-related traits in P. densiflora. Allele-aware resequencing analysis revealed PAV gene diversity across P. densiflora accessions. Our study provides insights into key mechanisms underlying the evolution of genome structure, LTR-RTs and TFs within the Pinus lineage as well as allelic imbalances and diversity across P. densiflora.
Collapse
Affiliation(s)
- Min-Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Hye-Young Lee
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Horticulture, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Seungmee Jung
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Hongshi Jin
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Jongchan Woo
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Eunsook Park
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Seo-Jin Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Jin-Wook Choi
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Geun Young Chae
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Ji-Yoon Guk
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Sun-Hyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Min-Jeong Kang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kyeong-Seong Cheon
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - In Sik Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Yong-Min Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Myung-Shin Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant and Environment New Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Kyu-Suk Kang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
| | - Eung-Jun Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea.
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Abstract
Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and β-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
17
|
Fritsche S, Fronek F, Mach RL, Steiger MG. Applicability of non-invasive and live-cell holotomographic imaging on fungi. J Microbiol Methods 2024; 224:106983. [PMID: 38945304 DOI: 10.1016/j.mimet.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The ability to acquire three-dimensional (3D) information of cellular structures without the need for fluorescent tags or staining makes holotomographic imaging a powerful tool in cellular biology. It provides valuable insights by measuring the refractive index (RI), an optical parameter describing the phase delay of light that passes through the living cell. Here, we demonstrate holotomographic imaging on industrial relevant ascomycete fungi and study their development and morphogenesis. This includes conidial germination, subcellular dynamics, and cytoplasmic flow during hyphal growth in Aspergillus niger. In addition, growth and budding of Aureobasidium pullulans cells are captured using holotomographic microscopy. Coupled to fluorescence imaging, lipid droplets, vacuoles, the mitochondrial network, and nuclei are targeted and analyzed in the 3D RI reconstructed images. While lipid droplets and vacuoles can be assigned to a specific RI pattern, mitochondria and nuclei were not pronounced. We show, that the lower sensitivity of RI measurements derives from the fungal cell wall that acts as an additional barrier for the illumination light of the microscope. After cell wall digest of hyphae and protoplast formation of A. niger expressing GFP-tagged histone H2A, location of nuclei could be determined by non-invasive RI measurements. Furthermore, we used coupled fluorescence microscopy to observe migration of nuclei in unperturbed hyphal segments and duplication during growth on a single-cell level. Detailed micromorphological studies in Saccharomyces cerevisiae and Trichoderma reesei are challenging due to cell size restrictions. Overall, holotomography opens up new avenues for exploring dynamic cellular processes in real time and enables the visualization of fungi from a new perspective.
Collapse
Affiliation(s)
- Susanne Fritsche
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Felix Fronek
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Matthias G Steiger
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria.
| |
Collapse
|
18
|
Wang Z, Wang T, Hu J, Jiao H, Jin Y, Sun J, Nan T, Zhao Y, Liu Y, Huang L, Yuan Y. Comparisons of wild and cultivated American ginseng (Panax quinquefolius L.) genomes provide insights into changes in root growth and metabolism during domestication. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1963-1965. [PMID: 38446695 PMCID: PMC11182593 DOI: 10.1111/pbi.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Zhengpeng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
- School of PharmacyJiangsu UniversityZhenjiangChina
| | - Tengteng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jin Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
- Jinlin Agricultural UniversityChangchunChina
| | - Honghong Jiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| | - Yan Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| | - Yuyang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| | - Yunjun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACMS)BeijingChina
| |
Collapse
|
19
|
Bernal-Gallardo JJ, González-Aguilera KL, de Folter S. EXPANSIN15 is involved in flower and fruit development in Arabidopsis. PLANT REPRODUCTION 2024; 37:259-270. [PMID: 38285171 PMCID: PMC11180156 DOI: 10.1007/s00497-023-00493-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
KEY MESSAGE EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 36824, Irapuato, GTO., Mexico
| | - Karla L González-Aguilera
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 36824, Irapuato, GTO., Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 36824, Irapuato, GTO., Mexico.
| |
Collapse
|
20
|
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
21
|
Jeffery HR, Mudukuti N, Buell CR, Childs KL, Cichy K. Gene expression profiling of soaked dry beans (Phaseolus vulgaris L.) reveals cell wall modification plays a role in cooking time. THE PLANT GENOME 2023; 16:e20364. [PMID: 37415293 DOI: 10.1002/tpg2.20364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
Dry beans (Phaseolus vulgaris L.) are a nutritious food, but their lengthy cooking requirements are barriers to consumption. Presoaking is one strategy to reduce cooking time. Soaking allows hydration to occur prior to cooking, and enzymatic changes to pectic polysaccharides also occur during soaking that shorten the cooking time of beans. Little is known about how gene expression during soaking influences cooking times. The objectives of this study were to (1) identify gene expression patterns that are altered by soaking and (2) compare gene expression in fast-cooking and slow-cooking bean genotypes. RNA was extracted from four bean genotypes at five soaking time points (0, 3, 6, 12, and 18 h) and expression abundances were detected using Quant-seq. Differential gene expression analysis and weighted gene coexpression network analysis were used to identify candidate genes within quantitative trait loci for water uptake and cooking time. Genes related to cell wall growth and development as well as hypoxic stress were differentially expressed between the fast- and slow-cooking beans due to soaking. Candidate genes identified in the slow-cooking beans included enzymes that increase intracellular calcium concentrations and cell wall modification enzymes. The expression of cell wall-strengthening enzymes in the slow-cooking beans may increase their cooking time and ability to resist osmotic stress by preventing cell separation and water uptake in the cotyledon.
Collapse
Affiliation(s)
- Hannah R Jeffery
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Nyasha Mudukuti
- Keough School of Global Affairs, University of Notre Dame, Notre Dame, IN, USA
| | - Carol Robin Buell
- Department of Crop & Soil Sciences, Center for Applied Genetic Technologies, and Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Karen Cichy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Sugarbeet and Bean Research Unit, USDA-ARS, East Lansing, MI, USA
| |
Collapse
|