1
|
Kusumawardhani H, Zoppi F, Avendaño R, Schaerli Y. Engineering intercellular communication using M13 phagemid and CRISPR-based gene regulation for multicellular computing in Escherichia coli. Nat Commun 2025; 16:3569. [PMID: 40234414 PMCID: PMC12000618 DOI: 10.1038/s41467-025-58760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Engineering multicellular consortia, where information processing is distributed across specialized cell types, offers a promising strategy for implementing sophisticated biocomputing systems. However, a major challenge remains in establishing orthogonal intercellular communication, or "wires," within synthetic bacterial consortia. In this study, we address this bottleneck by integrating phagemid-mediated intercellular communication with CRISPR-based gene regulation for multicellular computing in synthetic E. coli consortia. We achieve intercellular communication with high sensitivity by regulating the transfer of single guide RNAs (sgRNAs) encoded on M13 phagemids from sender to receiver cells. Once inside the receiver cells, the transferred sgRNAs mediate gene regulation via CRISPR interference. Leveraging this approach, we successfully constructed one-, two-, and four-input logic gates. Our work expands the toolkit for intercellular communication and paves the way for complex information processing in synthetic microbial consortia, with diverse potential applications, including biocomputing, biosensing, and biomanufacturing.
Collapse
Affiliation(s)
- Hadiastri Kusumawardhani
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Florian Zoppi
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roberto Avendaño
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Lloyd JPB, Khan A, Lister R. The switch-liker's guide to plant synthetic gene circuits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70090. [PMID: 40052500 PMCID: PMC11887007 DOI: 10.1111/tpj.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Synthetic gene circuits offer powerful new approaches for engineering plant traits by enabling precise control over gene expression through programmable logical operations. Unlike simple 'always-on' transgenes, circuits can integrate multiple input signals to achieve sophisticated spatiotemporal regulation of target genes while minimising interference with host cellular processes. Recent advances have demonstrated several platforms for building plant gene circuits, including systems based on bacterial transcription factors, site-specific recombinases and CRISPR/Cas components. These diverse molecular tools allow the construction of circuits that perform Boolean logic operations to control transgene expression or modulate endogenous pathways. However, implementing synthetic gene circuits in plants faces unique challenges, including long generation times that slow design-build-test cycles, limited availability of characterised genetic parts across species and technical hurdles in stable transformation. This review examines the core principles and components of plant synthetic gene circuits, including sensors, integrators, and actuators. We discuss recent technological developments, key challenges in circuit design and implementation, and strategies to overcome them. Finally, we explore the future applications of synthetic gene circuits in agriculture and basic research, from engineering stress resistance to enabling controlled bioproduction of valuable compounds. As this technology matures, synthetic gene circuits have the potential to enable sophisticated new plant traits that respond dynamically to environmental and developmental cues.
Collapse
Affiliation(s)
- James P. B. Lloyd
- ARC Centre of Excellence in Plants for Space, School of Molecular SciencesThe University of Western AustraliaPerthAustralia
| | - Adil Khan
- ARC Centre of Excellence in Plants for Space, School of Molecular SciencesThe University of Western AustraliaPerthAustralia
| | - Ryan Lister
- ARC Centre of Excellence in Plants for Space, School of Molecular SciencesThe University of Western AustraliaPerthAustralia
- Harry Perkins Institute of Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
3
|
Castaneda-Méndez O, Akter S, Beltrán J. Engineering plant biosensors: recent advances in design and applications. Curr Opin Biotechnol 2025; 91:103240. [PMID: 39693803 DOI: 10.1016/j.copbio.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Plants have evolved sophisticated molecular switches to perceive and respond to both endogenous and exogenous signals, enabling changes in form and function in response to environmental and developmental cues. As autotrophic, multicellular organisms, plants represent promising platforms for designing and engineering sense-and-report modules. Advances in protein engineering and functional screening have facilitated the reprogramming of native switches into biosensors capable of detecting novel small molecules. These sensors can be incorporated into plants to activate signaling cascades or to control new biological functions. This review highlights recent advancements in plant biosensor engineering for small molecules, discusses emerging applications, and provides insights into biotechnological uses. Additionally, it explores the challenges and opportunities of using plant-based biosensors in agriculture and environmental contexts.
Collapse
Affiliation(s)
- Oscar Castaneda-Méndez
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Shammi Akter
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
4
|
Kong C, Yang Y, Qi T, Zhang S. Predictive genetic circuit design for phenotype reprogramming in plants. Nat Commun 2025; 16:715. [PMID: 39820378 PMCID: PMC11739397 DOI: 10.1038/s41467-025-56042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Plants, with intricate molecular networks for environmental adaptation, offer groundbreaking potential for reprogramming with predictive genetic circuits. However, realizing this goal is challenging due to the long cultivation cycle of plants, as well as the lack of reproducible, quantitative methods and well-characterized genetic parts. Here, we establish a rapid (~10 days), quantitative, and predictive framework in plants. A group of orthogonal sensors, modular synthetic promoters, and NOT gates are constructed and quantitatively characterized. A predictive model is developed to predict the designed circuits' behavior accurately. Our versatile and robust framework, validated by constructing 21 two-input circuits with high prediction accuracy (R2 = 0.81), enables multi-state phenotype control in both Arabidopsis thaliana and Nicotiana benthamiana in response to chemical inducers. Our study achieves predictable design and application of synthetic circuits in plants, offering valuable tools for the rapid engineering of plant traits in biotechnology and agriculture.
Collapse
Affiliation(s)
- Ci Kong
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Yin Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Mostafa HIA. Boolean Logic Gate Operation in Bacteriorhodopsin of Purple Membrane Based on a Molten Globule-like State. Chemphyschem 2024; 25:e202400672. [PMID: 39267598 DOI: 10.1002/cphc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Bacteriorhodopsin (bR) of purple membrane (PM) has increasing technical interests, particularly in photonic devices and bioelectronics. The present work has concerned with monitoring the temperature dependence of passive electric responses in-plane and out-of-plane of the membranes. Based on thermal properties observed orthogonally here for PM, a high-temperature intermediate of bR has been suggested to populate at around 60 °C, which may be ascribed to a molten globule-like state. This intermediate has been found to be enclosed between two reversible thermal transitions for PM. Large-scale turnover in the energy of activation, for these two thermal transitions, occurs steeply at such state at 60 °C, above which does bR reverse the sign of dielectric anisotropy (i. e. crossover) provided the operating frequency should be above the crossover frequency, at which the reversal occurs. No such crossover was found to occur below the crossover frequency, even above the crossover temperature (i. e. 60 °C). Likewise, no such crossover was found to occur below the crossover temperature, even above the crossover frequency. Relying on this reasoning, a logic gate operation may be declared implicating bR for bioelectronics and sense technological relevance. In addition, the results specify "dual frequency" as well as "dual temperature" characteristics to bacteriorhodopsin.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
6
|
Ntelkis N, Goossens A, Šola K. Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102575. [PMID: 38901289 DOI: 10.1016/j.pbi.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Although plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators. Post-translational regulation through enzyme inhibition, protein phosphorylation and ubiquitination are clearly evident in specialized metabolism regulation, but not frequently studied or considered in metabolic engineering efforts. Finally, we contemplate how advances in cell type-specific and post-translational regulation can be applied in metabolic engineering efforts in planta, leading to optimization of plants as metabolite production vehicles.
Collapse
Affiliation(s)
- Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium; Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| | - Krešimir Šola
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
7
|
Ferreira SS, Antunes MS. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants. THE NEW PHYTOLOGIST 2024; 243:674-687. [PMID: 38752334 DOI: 10.1111/nph.19823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology has the potential to revolutionize biotechnology, public health, and agriculture. Recent studies have shown the enormous potential of plants as chassis for synthetic biology applications. However, tools to precisely manipulate metabolic pathways for bioproduction in plants are still needed. We used bacterial allosteric transcription factors (aTFs) that control gene expression in a ligand-specific manner and tested their ability to repress semi-synthetic promoters in plants. We also tested the modulation of their repression activity in response to specific plant metabolites, especially phenylpropanoid-related molecules. Using these aTFs, we also designed synthetic genetic circuits capable of computing Boolean logic operations. Three aTFs, CouR, FapR, and TtgR, achieved c. 95% repression of their respective target promoters. For TtgR, a sixfold de-repression could be triggered by inducing its ligand accumulation, showing its use as biosensor. Moreover, we designed synthetic genetic circuits that use AND, NAND, IMPLY, and NIMPLY Boolean logic operations and integrate metabolite levels as input to the circuit. We showed that biosensors can be implemented in plants to detect phenylpropanoid-related metabolites and activate a genetic circuit that follows a predefined logic, demonstrating their potential as tools for exerting control over plant metabolic pathways and facilitating the bioproduction of natural products.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
8
|
Pfotenhauer AC, Lenaghan SC. Phytosensors: harnessing plants to understand the world around us. Curr Opin Biotechnol 2024; 87:103134. [PMID: 38705091 DOI: 10.1016/j.copbio.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Although plants are sessile, their ubiquitous distribution, ability to harness energy from the sun, and ability to sense above and belowground signals make them ideal candidates for biosensor development. Synthetic biology has allowed scientists to reimagine biosensors as engineered devices that are focused on accomplishing novel tasks. As such, a new wave of plant-based sensors, phytosensors, are being engineered as multi-component sense-and-report devices that can alert human operators to a variety of hazards. While phytosensors are intrinsically tied to agriculture, a new generation of phytosensors has been envisioned to function in the built environment and even in austere environments, such as space. In this review, we will explore the current state of the art with regard to phytosensor engineering.
Collapse
Affiliation(s)
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA; Department of Food Science, University of Tennessee, Knoxville, USA.
| |
Collapse
|
9
|
Guiziou S. Biocomputing in plants, from proof of concept to application. Curr Opin Biotechnol 2024; 87:103146. [PMID: 38781700 DOI: 10.1016/j.copbio.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In response to the challenges of climate change and the transition toward sustainability, synthetic biology offers innovative solutions. Most current plant synthetic biology applications rely on the constitutive expression of enzymes and regulators. To engineer plant phenotypes tuneable to environmental conditions and plant cellular states, the integration of multiple signals in synthetic circuits is required. While most circuits are developed in model organisms, numerous tools were recently developed to implement biocomputation in plant synthetic circuits. I presented in this review the tools and design methods for logic circuit implementation in plants. I highlighted recent and potential applications of those circuits to understand and engineer plant interaction with the environment, development, and metabolic pathways.
Collapse
Affiliation(s)
- Sarah Guiziou
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK.
| |
Collapse
|
10
|
Akter S, Castaneda-Méndez O, Beltrán J. Synthetic reprogramming of plant developmental and biochemical pathways. Curr Opin Biotechnol 2024; 87:103139. [PMID: 38691988 DOI: 10.1016/j.copbio.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Plant synthetic biology (Plant SynBio) is an emerging field with the potential to enhance agriculture, human health, and sustainability. Integrating genetic tools and engineering principles, Plant SynBio aims to manipulate cellular functions and construct novel biochemical pathways to develop plants with new phenotypic traits, enhanced yield, and be able to produce natural products and pharmaceuticals. This review compiles research efforts in reprogramming plant developmental and biochemical pathways. We highlight studies leveraging new gene expression toolkits to alter plant architecture for improved performance in model and crop systems and to produce useful metabolites in plant tissues. Furthermore, we provide insights into the challenges and opportunities associated with the adoption of Plant SynBio in addressing complex issues impacting agriculture and human health.
Collapse
Affiliation(s)
- Shammi Akter
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Oscar Castaneda-Méndez
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
11
|
Collins E, Shou H, Mao C, Whelan J, Jost R. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level. Biochem J 2024; 481:363-385. [PMID: 38421035 DOI: 10.1042/bcj20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.
Collapse
Affiliation(s)
- Emma Collins
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|