1
|
Variable termination sites of DNA polymerases encountering a DNA-protein cross-link. PLoS One 2018; 13:e0198480. [PMID: 29856874 PMCID: PMC5983568 DOI: 10.1371/journal.pone.0198480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere with DNA and RNA synthesis and DNA repair. DPCs are highly genotoxic and the ability of cells to deal with them is relevant for many chemotherapeutic interventions. However, interactions of DNA polymerases with DPCs have been poorly studied due to the lack of a convenient experimental model. We have used NaBH4-induced trapping of E. coli formamidopyrimidine-DNA glycosylase with DNA to construct model DNA polymerase substrates containing a DPC in single-stranded template, or in the template strand of double-stranded DNA, or in the non-template (displaced) strand of double-stranded DNA. Nine DNA polymerases belonging to families A, B, X, and Y were studied with respect to their behavior upon encountering a DPC: Klenow fragment of E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, Pyrococcus furiosus DNA polymerase, Sulfolobus solfataricus DNA polymerase IV, human DNA polymerases β, κ and λ, and DNA polymerases from bacteriophages T4 and RB69. Although none were able to fully bypass DPCs in any context, Family B DNA polymerases (T4, RB69) and Family Y DNA polymerase IV were able to elongate the primer up to the site of the cross-link if a DPC was located in single-stranded template or in the displaced strand. In other cases, DNA synthesis stopped 4-5 nucleotides before the site of the cross-link in single-stranded template or in double-stranded DNA if the polymerases could displace the downstream strand. We suggest that termination of DNA polymerases on a DPC is mostly due to the unrelieved conformational strain experienced by the enzyme when pressing against the cross-linked protein molecule.
Collapse
|
2
|
Daimon K, Ishino S, Imai N, Nagumo S, Yamagami T, Matsukawa H, Ishino Y. Two Family B DNA Polymerases From Aeropyrum pernix, Based on Revised Translational Frames. Front Mol Biosci 2018; 5:37. [PMID: 29713633 PMCID: PMC5911459 DOI: 10.3389/fmolb.2018.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/28/2018] [Indexed: 11/23/2022] Open
Abstract
Living organisms are divided into three domains, Bacteria, Eukarya, and Archaea. Comparative studies in the three domains have provided useful information to understand the evolution of the DNA replication machinery. DNA polymerase is the central enzyme of DNA replication. The presence of multiple family B DNA polymerases is unique in Crenarchaeota, as compared with other archaeal phyla, which have a single enzyme each for family B (PolB) and family D (PolD). We analyzed PolB1 and PolB3 in the hyperthermophilic crenarchaeon, Aeropyrum pernix, and found that they are larger proteins than those predicted from the coding regions in our previous study and from public database annotations. The recombinant larger PolBs exhibited the same DNA polymerase activities as previously reported. However, the larger PolB3 showed remarkably higher thermostability, which made this enzyme applicable to PCR. In addition, the high tolerance to salt and heparin suggests that PolB3 will be useful for amplification from the samples with contaminants, and therefore it has a great potential for diagnostic use in the medical and environmental field.
Collapse
Affiliation(s)
- Katsuya Daimon
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Imai
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiyo Nagumo
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Matsukawa
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Miyazono KI, Ishino S, Tsutsumi K, Ito T, Ishino Y, Tanokura M. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I. Nucleic Acids Res 2015; 43:7122-36. [PMID: 26138487 PMCID: PMC4538837 DOI: 10.1093/nar/gkv654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022] Open
Abstract
Nucleases play important roles in nucleic acid processes, such as replication, repair and recombination. Recently, we identified a novel single-strand specific 3′-5′ exonuclease, PfuExo I, from the hyperthermophilic archaeon Pyrococcus furiosus, which may be involved in the Thermococcales-specific DNA repair system. PfuExo I forms a trimer and cleaves single-stranded DNA at every two nucleotides. Here, we report the structural basis for the cleavage mechanism of this novel exonuclease family. A structural analysis of PhoExo I, the homologous enzyme from P. horikoshii OT3, showed that PhoExo I utilizes an RNase H-like active site and possesses a 3′-OH recognition site ∼9 Å away from the active site, which enables cleavage at every two nucleotides. Analyses of the heterotrimeric and monomeric PhoExo I activities showed that trimerization is indispensable for its processive cleavage mechanism, but only one active site of the trimer is required.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kanae Tsutsumi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Nishida H, Kajisa T, Miyazawa Y, Tabuse Y, Yoda T, Takeyama H, Kambara H, Sakata T. Self-oriented immobilization of DNA polymerase tagged by titanium-binding peptide motif. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:732-740. [PMID: 25517038 DOI: 10.1021/la503094k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We developed a titanium-binding-peptide-1 (TBP-1)-tagged DNA polymerase, for self-oriented immobilization onto a titanium oxide (TiO2) substrate. The enzymatic function of a polymerase immobilized on a solid state device is strongly dependent on the orientation of the enzyme. The TBP-tagged DNA polymerase, which was derived from a hyperthermophilic archaeon, was designed to incorporate the RKLPDA peptide at the N-terminus, and synthesized by translation processes in Escherichia coli (E. coli). The specific binding of the TBP-tagged DNA polymerase onto a TiO2 substrate was clearly monitored by surface plasmon resonance spectroscopy (SPR) and by surface potential detection with an extended-gate field effect transistor (FET). In the SPR analyses, constant quantities of the DNA polymerase were stably immobilized on the titanium substrate under flow conditions, regardless of the concentration of the DNA polymerase, and could be completely removed by a 4 M MgCl2 wash after measurement. The FET signal showed the contribution of the molecular charge in the TBP motif to the binding with TiO2. In addition, the TBP-tagged DNA polymerase-tethered TiO2 gate electrode enabled the effective detection of the positive charges of hydrogen ions produced by the DNA extension reaction, according to the FET principle. Therefore, the self-oriented immobilization platform based on the motif-inserted enzyme is suitable for the quick and stable immobilization of functional enzymes on biosensing devices.
Collapse
Affiliation(s)
- Hirokazu Nishida
- Central Research Laboratory, Hitachi Ltd. 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yamagami T, Ishino S, Kawarabayasi Y, Ishino Y. Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering. Front Microbiol 2014; 5:461. [PMID: 25232352 PMCID: PMC4153296 DOI: 10.3389/fmicb.2014.00461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, DNA labeling, mutagenesis, and other experiments. Thermostable DNA polymerases are especially useful and became quite valuable after the development of PCR technology. A DNA polymerase from Thermus aquaticus (Taq polymerase) is the most famous DNA polymerase as a PCR enzyme, and has been widely used all over the world. In this study, the gene fragments of the family A DNA polymerases were amplified by PCR from the DNAs from microorganisms within environmental soil samples, using a primer set for the two conserved regions. The corresponding region of the pol gene for Taq polymerase was substituted with the amplified gene fragments, and various chimeric DNA polymerases were prepared. Based on the properties of these chimeric enzymes and their sequences, two residues, E742 and A743, in Taq polymerase were found to be critical for its elongation ability. Taq polymerases with mutations at 742 and 743 actually showed higher DNA affinity and faster primer extension ability. These factors also affected the PCR performance of the DNA polymerase, and improved PCR results were observed with the mutant Taq polymerase.
Collapse
Affiliation(s)
- Takeshi Yamagami
- Protein Chemistry and Engineering, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Sonoko Ishino
- Protein Chemistry and Engineering, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yutaka Kawarabayasi
- Protein Chemistry and Engineering, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan ; Health Research Institute, National Institute of Advanced Industrial Science and Technology Amagasaki, Japan
| | - Yoshizumi Ishino
- Protein Chemistry and Engineering, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
6
|
Tori K, Ishino S, Kiyonari S, Tahara S, Ishino Y. A novel single-strand specific 3'-5' exonuclease found in the hyperthermophilic archaeon, Pyrococcus furiosus. PLoS One 2013; 8:e58497. [PMID: 23505520 PMCID: PMC3591345 DOI: 10.1371/journal.pone.0058497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 11/21/2022] Open
Abstract
Nucleases play important roles in all DNA transactions, including replication, repair, and recombination. Many different nucleases from bacterial and eukaryotic organisms have been identified and functionally characterized. However, our knowledge about the nucleases from Archaea, the third domain of life, is still limited. We searched for 3'-5' exonuclease activity in the hyperthermophilic archaeon, Pyrococcus furiosus, and identified a protein with the target activity. The purified protein, encoded by PF2046, is composed of 229 amino acids with a molecular weight of 25,596, and displayed single-strand specific 3'-5' exonuclease activity. The protein, designated as PfuExo I, forms a stable trimeric complex in solution and excises the DNA at every two nucleotides from the 3' to 5' direction. The amino acid sequence of this protein is conserved only in Thermococci, one of the hyperthermophilic classes in the Euryarchaeota subdomain in Archaea. The newly discovered exonuclease lacks similarity to any other proteins with known function, including hitherto reported 3'-5' exonucleases. This novel nuclease may be involved in a DNA repair pathway conserved in the living organisms as a specific member for some hyperthermophilic archaea.
Collapse
Affiliation(s)
- Kazuo Tori
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Saki Tahara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci U S A 2011; 108:1845-9. [PMID: 21245343 DOI: 10.1073/pnas.1010933108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally switches between the polymerizing and editing modes. Here, we present the three-dimensional structure of the Pyrococcus furiosus DNA polymerase B-PCNA-DNA ternary complex, which is the core component of the replisome, determined by single particle electron microscopy of negatively stained samples. This structural view, representing the complex in the editing mode, revealed the whole domain configuration of the trimeric PCNA ring and the DNA polymerase, including protein-protein and protein-DNA contacts. Notably, besides the authentic DNA polymerase-PCNA interaction through a PCNA-interacting protein (PIP) box, a novel contact was found between DNA polymerase and the PCNA subunit adjacent to that with the PIP contact. This contact appears to be responsible for the configuration of the complex specific for the editing mode. The DNA was located almost at the center of PCNA and exhibited a substantial and particular tilt angle against the PCNA ring plane. The obtained molecular architecture of the complex, including the new contact found in this work, provides clearer insights into the switching mechanism between the two distinct modes, thus highlighting the functional significance of PCNA in the replication process.
Collapse
|
8
|
Matsukawa H, Yamagami T, Kawarabayasi Y, Miyashita Y, Takahashi M, Ishino Y. A useful strategy to construct DNA polymerases with different properties by using genetic resources from environmental DNA. Genes Genet Syst 2009; 84:3-13. [DOI: 10.1266/ggs.84.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hiroaki Matsukawa
- Department of Genetic Resources Technology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Takeshi Yamagami
- Department of Genetic Resources Technology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Yutaka Kawarabayasi
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology
| | | | | | - Yoshizumi Ishino
- Department of Genetic Resources Technology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| |
Collapse
|
9
|
Gury J, Zinger L, Gielly L, Taberlet P, Geremia RA. Exonuclease activity of proofreading DNA polymerases is at the origin of artifacts in molecular profiling studies. Electrophoresis 2008; 29:2437-44. [PMID: 18429330 DOI: 10.1002/elps.200700667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CE fingerprint methods are commonly used in microbial ecology. We have previously noticed that the position and number of peaks in CE-SSCP (single-strand conformation polymorphism) profiles depend on the DNA polymerase used in PCR [1]. Here, we studied the fragments produced by Taq polymerase as well as four commercially available proofreading polymerases, using the V3 region of the Escherichia coli rss gene as a marker. PCR products rendered multiple peaks in denaturing CE; Taq polymerase was observed to produce the longest fragments. Incubation of the fragments with T4 DNA polymerase indicated that the 3'-ends of the proofreading polymerase amplicons were recessed, while the Taq amplicon was partially +A tailed. Treatment of the PCR product with proofreading DNA polymerase rendered trimmed fragments. This was due to the 3'-5' exonuclease activity of these enzymes, which is essential for proofreading. The nuclease activity was reduced by increasing the concentration of dNTP. The Platinum Pfx DNA polymerase generated very few artifacts and could produce 85% of blunted PCR products. Nevertheless, despite the higher error rate, we recommend the use of Taq polymerase rather than proofreading in the framework for molecular fingerprint studies. They are more cost-effective and therefore ideally suited for high-throughput analysis; the +A tail artifact rate can be controlled by modifying the PCR primers and the reaction conditions.
Collapse
Affiliation(s)
- Jerome Gury
- Laboratoire d'écologie alpine, UMR UJF-CNRS 5553, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
10
|
Kiyonari S, Uchimura M, Shirai T, Ishino Y. Physical and functional interactions between uracil-DNA glycosylase and proliferating cell nuclear antigen from the euryarchaeon Pyrococcus furiosus. J Biol Chem 2008; 283:24185-93. [PMID: 18562313 PMCID: PMC3259797 DOI: 10.1074/jbc.m802837200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/10/2008] [Indexed: 01/27/2023] Open
Abstract
Uracil-DNA glycosylase (UDG) is an important repair enzyme in all organisms to remove uracil bases from DNA. Recent biochemical studies have revealed that human nuclear UDG (UNG2) forms a multiprotein complex in replication foci and initiates the base excision repair pathway by interacting with proliferating cell nuclear antigen (PCNA). Here, we show the physical and functional interactions between UDG and PCNA from the hyperthermophilic euryarchaeon, Pyrococcus furiosus. The physical interaction between the two proteins was identified by a surface plasmon resonance analysis. Furthermore, the uracil glycosylase activity of P. furiosus UDG is stimulated by P. furiosus PCNA (PfuPCNA) in vitro. This stimulatory effect was observed only when wild type PfuPCNA, but not a monomeric PCNA mutant, was present in the reaction. Mutational analyses revealed that our predicted PCNA-binding region (AKTLF) in P. furiosus UDG is actually important for the interaction with PfuPCNA. This is the first report describing the functional interaction between archaeal UDG and PCNA.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Department of Genetic
Resources Technology, Faculty of Agriculture, Kyushu University, and
BIRD-Japan Science and Technology
Agency, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan and the
Department of Bioscience, Nagahama
Institute of Bio-Science and Technology and
BIRD-Japan Science and Technology
Agency, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Maiko Uchimura
- Department of Genetic
Resources Technology, Faculty of Agriculture, Kyushu University, and
BIRD-Japan Science and Technology
Agency, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan and the
Department of Bioscience, Nagahama
Institute of Bio-Science and Technology and
BIRD-Japan Science and Technology
Agency, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Tsuyoshi Shirai
- Department of Genetic
Resources Technology, Faculty of Agriculture, Kyushu University, and
BIRD-Japan Science and Technology
Agency, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan and the
Department of Bioscience, Nagahama
Institute of Bio-Science and Technology and
BIRD-Japan Science and Technology
Agency, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Yoshizumi Ishino
- Department of Genetic
Resources Technology, Faculty of Agriculture, Kyushu University, and
BIRD-Japan Science and Technology
Agency, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan and the
Department of Bioscience, Nagahama
Institute of Bio-Science and Technology and
BIRD-Japan Science and Technology
Agency, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
11
|
Tori K, Kimizu M, Ishino S, Ishino Y. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs. J Bacteriol 2007; 189:5652-7. [PMID: 17496095 PMCID: PMC1951807 DOI: 10.1128/jb.00073-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.
Collapse
Affiliation(s)
- Kazuo Tori
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
12
|
Ishino S, Ishino Y. Comprehensive search for DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:681-91. [PMID: 16838855 DOI: 10.1080/15257770600686485] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
DNA polymerase activities were scanned in a Pyrococcus furiosus cell extract to identify all of the DNA polymerases in this organism. Three main fractions containingDNA polymerizing activity were subjected to Western blot analyses, which revealed that the main activities in each fraction were derived from three previously identified DNA polymerases. PCNA (proliferating cell nuclear antigen), the sliding clamp of DNA polymerases, did not bind tightly to any of the three DNA polymerases. A primer usage preference was also shown for each purified DNA polymerase. Considering their biochemical properties, the roles of the three DNA polymerases during DNA replication in the cells are discussed.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Molecular Microbiology, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | |
Collapse
|
13
|
Nishida H, Matsumiya S, Tsuchiya D, Ishino Y, Morikawa K. Stoichiometric complex formation by proliferating cell nuclear antigen (PCNA) and its interacting protein: purification and crystallization of the DNA polymerase and PCNA monomer mutant complex from Pyrococcus furiosus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:253-6. [PMID: 16511315 PMCID: PMC2197164 DOI: 10.1107/s1744309106004362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/06/2006] [Indexed: 11/10/2022]
Abstract
Replicative DNA polymerase interacts with processivity factors, the beta-subunit of DNA polymerase III or proliferating cell nuclear antigen (PCNA), in order to function with a long template DNA. The archaeal replicative DNA polymerase from Pyrococcus furiosus interacts with PCNA via its PCNA-interacting protein (PIP) motif at the C-terminus. The PCNA homotrimeric ring contains one PIP interacting site on each monomer and since the ring can accommodate up to three molecules simultaneously, formation of a stable stoichiometric complex of PCNA with its interacting protein has been difficult to control in vitro. A stable complex of the DNA polymerase with PCNA, using a PCNA monomer mutant, has been purified and crystallized. The best ordered crystal diffracted to 3.0 A resolution using synchrotron radiation. The crystals belong to space group P2(1)2(1)2, with unit-cell parameters a = 225.3, b = 123.3, c = 91.3 A.
Collapse
Affiliation(s)
- Hirokazu Nishida
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Shigeki Matsumiya
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Daisuke Tsuchiya
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan
| | - Kosuke Morikawa
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Correspondence e-mail:
| |
Collapse
|
14
|
Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:219-62. [PMID: 16566093 DOI: 10.1007/b135786] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.
Collapse
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstrasse 12, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
15
|
Nishida H, Ishino S, Miyata T, Morikawa K, Ishino Y. Identification of the critical region in Replication factor C from Pyrococcus furiosus for the stable complex formation with Proliferating cell nuclear antigen and DNA. Genes Genet Syst 2005; 80:83-93. [PMID: 16172520 DOI: 10.1266/ggs.80.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis. The function of RFC is to load PCNA, a processivity factor of replicative DNA polymerases, onto primed DNA templates. The central hole of the PCNA homo-trimeric ring encircles doublestranded DNA, so that DNA polymerases can operate for DNA synthesis with PCNA along a DNA template. The Pyrococcus furiosus RFC (PfuRFC) consists of a small subunit (RFCS, 37kDa) and a large subunit (RFCL, 55kDa), which show significant sequence identity to the eukaryotic homologs. The C-terminal region of RFCL has an acidic cluster of about 30 amino acids, which consists mainly of glutamic acid residues, and a following basic cluster of 10 amino acids, which consists mainly of lysine residues. These clusters of charged amino acids, which precede the C-terminal consensus sequence, PIP (PCNA interacting protein)-box, are conserved in several archaeal RFCLs. The series of mutant PfuRFC containing the C-terminal deletions in RFCL were constructed. The mutational analyses showed that the charged cluster is not essential for loading of PCNA onto DNA. However, the region containing the basic cluster is important for the stable ternary (RFC-PCNA-DNA) complex formation.
Collapse
Affiliation(s)
- Hirokazu Nishida
- Department of Structural Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
16
|
Ishino S, Oyama T, Yuasa M, Morikawa K, Ishino Y. Mutational analysis of Pyrococcus furiosus replication factor C based on the three-dimensional structure. Extremophiles 2003; 7:169-75. [PMID: 12768447 DOI: 10.1007/s00792-002-0308-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 11/12/2002] [Indexed: 11/26/2022]
Abstract
In eukaryotic DNA replication, replication factor C (RFC) acts as a "clamp loader" that loads PCNA onto a primed DNA template in an ATP-dependent manner. Proteins with functions essentially identical to that of RFC exist in Archaea. We have determined the crystal structure of the small subunit (RFCS) of Pyrococcus furiosus RFC at 2.8-A resolution. Using the information from the determined tertiary structure, we prepared several mutations in RFCS and biochemically characterized them. Truncation of the C-terminal alpha-helix (alpha16) causes a failure in RFCS oligomerization and a loss of the stimulating activity for the PCNA-dependent DNA synthesis by DNA polymerases. The site-directed reduction of the negative charges at the center part of the RFCS complex affected the stability of the RFC-PCNA interaction and reduced the clamp-loading activity. These results contribute to our general understanding of the structure-function relationship of the RFC molecule for the clamp-loading event.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, 565-0874 Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
17
|
Matsumiya S, Ishino S, Ishino Y, Morikawa K. Intermolecular ion pairs maintain the toroidal structure of Pyrococcus furiosus PCNA. Protein Sci 2003; 12:823-31. [PMID: 12649440 PMCID: PMC2323854 DOI: 10.1110/ps.0234503] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two mutant proliferating cell nuclear antigens from the hyperthermophilic archaeon Pyrococcus furiosus, PfuPCNA(D143A) and PfuPCNA(D143A/D147A), were prepared by site-specific mutagenesis. The results from gel filtration showed that mutations at D143 and D147 drastically affect the stability of the trimeric structure of PfuPCNA. The PfuPCNA(D143A) still retained the activity to stimulate the DNA polymerase reaction, but PfuPCNA(D143A/D147A) lost the activity. Crystal structures of the mutant PfuPCNAs were determined. Although the wild-type PCNA forms a toroidal trimer with intermolecular hydrogen bonds between the N- and C-terminal domains, the mutant PfuPCNAs exist as V-shaped dimers through intermolecular hydrogen bonds between the two C-terminal domains in the crystal. Because the mutated residues are involved in the intermolecular ion pairs through their side chains in the wild-type PfuPCNA, these ion pairs seem to play a key role in maintaining the toroidal structure of the PfuPCNA trimer. The comparison of the crystal structures revealed intriguing conformational flexibility of each domain in the PfuPCNA subunit. This structural versatility of PCNA may be involved in the mechanisms for ring opening and closing.
Collapse
Affiliation(s)
- Shigeki Matsumiya
- Department of Structural Biology, Biomolecular Engineering Research Institute, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
18
|
Matsumiya S, Ishino S, Ishino Y, Morikawa K. Physical interaction between proliferating cell nuclear antigen and replication factor C fromPyrococcus furiosus. Genes Cells 2002; 7:911-22. [PMID: 12296822 DOI: 10.1046/j.1365-2443.2002.00572.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA), which is recognized as a DNA polymerase processivity factor, has direct interactions with various proteins involved in the important genetic information processes in Eukarya. We determined the crystal structure of PCNA from the hyperthermophilic archaeon, Pyrococcus furiosus (PfuPCNA) at 2.1 A resolution, and found that the toroidal ring-shaped structure, which consists of homotrimeric molecules, is highly conserved between the Eukarya and Archaea. This allowed us to examine its interaction with the loading factor at the atomic level. RESULTS The replication factor C (RFC) is known as the loading factor of PCNA on to the DNA strand. P. furiosus RFC (PfuRFC) has a PCNA binding motif (PIP-box) at the C-terminus of the large subunit (RFCL). An 11 residue-peptide containing a PIP-box sequence of RFCL inhibited the PCNA-dependent primer extension ability of P. furiosus PolI in a concentration-dependent manner. To understand the molecular interaction mechanism of PCNA with PCNA binding proteins, we solved the crystal structure of PfuPCNA complexed with the PIP-box peptide. The interaction mode of the two molecules is remarkably similar to that of human PCNA and a peptide containing the PIP-box of p21(WAF1/CIP1). Moreover, the PIP-box binding may have some effect on the stability of the ring structure of PfuPCNA by some domain shift. CONCLUSIONS Our structural analysis on PfuPCNA suggests that the interaction mode of the PIP-box with PCNA is generally conserved among the PCNA interacting proteins and that the functional meaning of the interaction via the PIP-box possibly depends on each protein. A movement of the C-terminal region of the PCNA monomer by PIP-box binding may cause the PCNA ring to be more rigid, suitable for its functions.
Collapse
Affiliation(s)
- Shigeki Matsumiya
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
19
|
Daimon K, Kawarabayasi Y, Kikuchi H, Sako Y, Ishino Y. Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: interactions with the two DNA polymerases. J Bacteriol 2002; 184:687-94. [PMID: 11790738 PMCID: PMC139509 DOI: 10.1128/jb.184.3.687-694.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential component in the eukaryotic DNA replication machinery, in which it works for tethering DNA polymerases on the DNA template to accomplish processive DNA synthesis. The PCNA also interacts with many other proteins in important cellular processes, including cell cycle control, DNA repair, and an apoptotic pathway in the domain EUCARYA: We identified three genes encoding PCNA-like sequences in the genome of Aeropyrum pernix, a crenarchaeal archaeon. We cloned and expressed these genes in Escherichia coli and analyzed the gene products. All three PCNA homologs stimulated the primer extension activities of the two DNA polymerases, polymerase I (Pol I) and Pol II, identified in A. pernix to various extents, among which A. pernix PCNA 3 (ApePCNA3) provided a most remarkable effect on both Pol I and Pol II. The three proteins were confirmed to exist in the A. pernix cells. These results suggest that the three PCNAs work as the processivity factor of DNA polymerases in A. pernix cells under different conditions. In Eucarya, three checkpoint proteins, Hus1, Rad1, and Rad9, have been proposed to form a PCNA-like ring structure and may work as a sliding clamp for the translesion DNA polymerases. Therefore, it is very interesting that three active PCNAs were found in one archaeal cell. Further analyses are necessary to determine whether each PCNA has specific roles, and moreover, how they reveal different functions in the cells.
Collapse
Affiliation(s)
- Katsuya Daimon
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
20
|
Liu L, Komori K, Ishino S, Bocquier AA, Cann IK, Kohda D, Ishino Y. The archaeal DNA primase: biochemical characterization of the p41-p46 complex from Pyrococcus furiosus. J Biol Chem 2001; 276:45484-90. [PMID: 11584001 DOI: 10.1074/jbc.m106391200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the primase complex of the hyperthermophilic archaeon, Pyrococcus furiosus. The two proteins, Pfup41 and Pfup46, have similar sequences to the p48 and p58 subunits, respectively, of the eukaryotic DNA polymerase alpha-primase complex. Unlike previously reported primases, the Pfup41 preferentially utilizes deoxyribonucleotides for its de novo synthesis, and moreover, it synthesizes up to several kilobases in length in a template-dependent manner (Bocquier, A., Liu, L., Cann, I., Komori, K., Kohda, D., and Ishino, Y. (2001) Curr. Biol. 11, 452-456). The p41-p46 complex showed higher DNA binding activity than the catalytic p41 subunit alone. In addition, the amount of DNA synthesized by the p41-p46 complex was much more abundant and shorter in length than that by Pfup41 alone. The activity for RNA primer synthesis, which was not detected with Pfup41, was observed from the reaction using the p41-p46 complex in vitro. The in vitro replication of M13 single-stranded DNA by the P. furiosus proteins was stimulated by ATP. Observation of the labeled primers by using [gamma-(32)P]ATP in the substrates suggests ATP as the preferable initiating nucleotide for the p41-p46 complex. These results show that the primer synthesis activity of Pfup41 is regulated by Pfup46, and the p41-p46 complex may function as the primase in the DNA replication machinery of P. furiosus, in a similar fashion to the eukaryotic polymerase alpha-primase complex.
Collapse
Affiliation(s)
- L Liu
- Department of Molecular Biology, Binomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Ishino Y, Tsurimoto T, Ishino S, Cann IK. Functional interactions of an archaeal sliding clamp with mammalian clamp loader and DNA polymerase delta. Genes Cells 2001; 6:699-706. [PMID: 11532029 DOI: 10.1046/j.1365-2443.2001.00451.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND By the total genome sequencing of several archaeal organisms, it has been confirmed that many archaeal proteins related to genetic information systems, including DNA replication, transcription and translation, have similar sequences to those of eukaryotes. In eukaryotic DNA replication, proliferating cell nuclear antigen (PCNA) works in clamping DNA polymerases on the DNA template and accomplishes a processive DNA synthesis. Archaea encode PCNA homologues in their genomes and Pyrococcus furiosus PCNA (PfuPCNA) stimulates the DNA synthesizing activities of the DNA polymerases, Pol I and Pol II, in this organism. RESULTS We have demonstrated that PfuPCNA interacts functionally with calf thymus DNA polymerase delta (Pol delta) and stimulates its activity. Moreover, human replication factor C (RFC) enhances the PfuPCNA-dependent DNA synthesis activity of Pol delta, indicating that human RFC works as the clamp loader for PfuPCNA. These results showed that the three-dimensional structures of archaral PCNA and RFC are actually similar enough to their eukaryotic counterparts to allow a molecular substitution between the two biological domains, albeit at a lower efficiency. CONCLUSIONS We found that the archaeal molecule interacts functionally with the eukaryotic members in the DNA replication process. This finding supports the idea that studies on the DNA replication mechanism of archaeal organisms will provide many important clues for understanding of the intricate molecular recognition that is inherent to the DNA replication machinery in Eukarya.
Collapse
Affiliation(s)
- Y Ishino
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Y Ishino
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Osaka 565-0874, Japan
| | | |
Collapse
|
23
|
Cann IK, Ishino S, Yuasa M, Daiyasu H, Toh H, Ishino Y. Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 2001; 183:2614-23. [PMID: 11274122 PMCID: PMC95179 DOI: 10.1128/jb.183.8.2614-2623.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Mayanagi K, Miyata T, Oyama T, Ishino Y, Morikawa K. Three-dimensional electron microscopy of the clamp loader small subunit from Pyrococcus furiosus. J Struct Biol 2001; 134:35-45. [PMID: 11469875 DOI: 10.1006/jsbi.2001.4357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An archaeal clamp loader, replication factor C (RFC), consists of two proteins, the small subunit (RFCS) and large subunit (RFCL), whose sequences are both highly homologous to those of the eukaryotic RFC components. We have investigated the oligomeric structure of RFCS from Pyrococcus furiosus by electron microscopy using single-particle analysis. RFCS forms mostly ring-shaped hexamers at pH 9.0, although it tends to form C-shaped tetramers or pentamers at a lower pH (pH 5.5). The three-dimensional (3D) structure of the RFCS hexamer was obtained by random conical tilt reconstruction at 24.0-A resolution. RFCS forms a hexameric ring with outer and inner diameters of 117 and 27 A, respectively, and with a height of about 55 A. The six subunits are arranged in a twisted manner with a sixfold symmetry around the channel. The 3D map revealed that the six subunits are arranged in a head-to-tail configuration. Although the RFC complex consists of RFCS and RFCL in vivo, RFCS alone, together with PCNA, substantially enhanced the DNA synthesizing activity of P. furiosus DNA polymerase I in vitro. The 3D reconstruction of RFCS with catalytic activity provides important insights into the organization mechanism and the functional state of the RFC complex.
Collapse
Affiliation(s)
- K Mayanagi
- Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita-City, 565-0874, Japan.
| | | | | | | | | |
Collapse
|