1
|
Ozgun O, Ozturk SD, Vural C, Kefeli AU, Balci S, Cabuk D, Uygun K, Kefeli U. Exploring the association of ADAM17 expression with survival in patients with non-small cell lung cancer. J Investig Med 2024; 72:848-856. [PMID: 39091062 DOI: 10.1177/10815589241270543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The A disintegrin and metalloprotease (ADAM) family is involved in many vital cellular events, from proliferation to migration, and accumulated evidence suggests its increased expression in malignant tumors. In this study, we investigated ADAM17 expression in non-small cell lung cancer (NSCLC) and its relationship with clinicopathological factors and survival. Immunohistochemical staining of ADAM expression was performed in 108 patients with NSCLC and in 54 control cases with no known malignant diagnosis. Association between ADAM17 expression, clinicopathological factors, and survival were analyzed. The Kaplan-Meier method was used for survival analysis. ADAM17 was lowly expressed in 89 (82.4%) and highly expressed in 19 (17.6%) of the patients with NSCLC. In univariate analysis, high ADAM17 expression, lymphovascular invasion, stage, and treatment response significantly affected progression-free survival (PFS) and overall survival (OS) (p < 0.05). Multivariate analysis also showed that high ADAM17 expression, lymphovascular invasion, stage, and treatment response were important prognostic factors for PFS and OS (p < 0.05). Our study revealed that high ADAM17 expression significantly associated with OS and PFS in patients with NSCLC. ADAM17 may potentially be the area of a new targeted treatment strategy in NSCLC. Thus, routine evaluation of ADAM17 expression in patients with NSCLC may be a future consideration.
Collapse
Affiliation(s)
- Ozge Ozgun
- Department of Internal Medicine, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Seda Duman Ozturk
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cigdem Vural
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Aysegul Ucuncu Kefeli
- Department of Radiation Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sibel Balci
- Department of Biostatistics and Medical Informatics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Devrim Cabuk
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Kazim Uygun
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Umut Kefeli
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
2
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Li J, Chen P, Wu Q, Guo L, Leong KW, Chan KI, Kwok HF. A novel combination treatment of antiADAM17 antibody and erlotinib to overcome acquired drug resistance in non-small cell lung cancer through the FOXO3a/FOXM1 axis. Cell Mol Life Sci 2022; 79:614. [PMID: 36456730 PMCID: PMC11803039 DOI: 10.1007/s00018-022-04647-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
After the identification of specific epidermal growth factor receptor (EGFR)-activating mutations as one of the most common oncogenic driver mutations in non-small cell lung cancer (NSCLC), several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) with different clinical efficacies have been approved by various health authorities in the last two decades in targeting NSCLC harboring specific EGFR-activating mutations. However, most patients whose tumor initially responded to the first-generation EGFR-TKI developed acquired resistance. In this study, we developed a novel combination strategy, "antiADAM17 antibody A9(B8) + EGFR-TKIs", to enhance the efficacy of EGFR-TKIs. The addition of A9(B8) was shown to restore the effectiveness of erlotinib and overcome acquired resistance. We found that when A9(B8) antibody was treated with erlotinib or gefitinib, the combination treatment synergistically increased apoptosis in an NSCLC cell line and inhibited tumor growth in vivo. Interestingly, the addition of A9(B8) could only reduce the survival of the erlotinib-resistant NSCLC cell line and inhibit the growth of erlotinib-resistant tumors in vivo but not gefitinib-resistant cells. Furthermore, we revealed that A9(B8) overcame erlotinib resistance through the FOXO3a/FOXM1 axis and arrested the cell cycle at the G1/S phase, resulting in the apoptosis of cancer cells. Hence, this study establishes a novel, promising strategy for overcoming acquired resistance to erlotinib through the FOXO3a/FOXM1 axis by arresting the cell cycle at the G1/S phase.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Pengchen Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Qiushuang Wu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Ka Weng Leong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Kin Iong Chan
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
4
|
Understanding and Modulating Antibody Fine Specificity: Lessons from Combinatorial Biology. Antibodies (Basel) 2022; 11:antib11030048. [PMID: 35892708 PMCID: PMC9326607 DOI: 10.3390/antib11030048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Combinatorial biology methods such as phage and yeast display, suitable for the generation and screening of huge numbers of protein fragments and mutated variants, have been useful when dissecting the molecular details of the interactions between antibodies and their target antigens (mainly those of protein nature). The relevance of these studies goes far beyond the mere description of binding interfaces, as the information obtained has implications for the understanding of the chemistry of antibody–antigen binding reactions and the biological effects of antibodies. Further modification of the interactions through combinatorial methods to manipulate the key properties of antibodies (affinity and fine specificity) can result in the emergence of novel research tools and optimized therapeutics.
Collapse
|
5
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
6
|
Reed SG, Ager A. Immune Responses to IAV Infection and the Roles of L-Selectin and ADAM17 in Lymphocyte Homing. Pathogens 2022; 11:pathogens11020150. [PMID: 35215094 PMCID: PMC8878872 DOI: 10.3390/pathogens11020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus (IAV) infection is a global public health burden causing up to 650,000 deaths per year. Yearly vaccination programmes and anti-viral drugs currently have limited benefits; therefore, research into IAV is fundamental. Leukocyte trafficking is a crucial process which orchestrates the immune response to infection to protect the host. It involves several homing molecules and receptors on both blood vessels and leukocytes. A key mediator of this process is the transmembrane glycoprotein L-selectin, which binds to vascular addressins on blood vessel endothelial cells. L-selectin classically mediates homing of naïve and central memory lymphocytes to lymph nodes via high endothelial venules (HEVs). Recent studies have found that L-selectin is essential for homing of activated CD8+ T cells to influenza-infected lungs and reduction in virus load. A disintegrin and metalloproteinase 17 (ADAM17) is the primary regulator of cell surface levels of L-selectin. Understanding the mechanisms that regulate these two proteins are central to comprehending recruitment of T cells to sites of IAV infection. This review summarises the immune response to IAV infection in humans and mice and discusses the roles of L-selectin and ADAM17 in T lymphocyte homing during IAV infection.
Collapse
Affiliation(s)
| | - Ann Ager
- Correspondence: (S.G.R.); (A.A.)
| |
Collapse
|
7
|
Bienstein M, Minond D, Schwaneberg U, Davari MD, Yildiz D. In Silico and Experimental ADAM17 Kinetic Modeling as Basis for Future Screening System for Modulators. Int J Mol Sci 2022; 23:1368. [PMID: 35163294 PMCID: PMC8835787 DOI: 10.3390/ijms23031368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms of modulators' action on enzymes is crucial for optimizing and designing pharmaceutical substances. The acute inflammatory response, in particular, is regulated mainly by a disintegrin and metalloproteinase (ADAM) 17. ADAM17 processes several disease mediators such as TNFα and APP, releasing their soluble ectodomains (shedding). A malfunction of this process leads to a disturbed inflammatory response. Chemical protease inhibitors such as TAPI-1 were used in the past to inhibit ADAM17 proteolytic activity. However, due to ADAM17's broad expression and activity profile, the development of active-site-directed ADAM17 inhibitor was discontinued. New 'exosite' (secondary substrate binding site) inhibitors with substrate selectivity raised the hope of a substrate-selective modulation as a promising approach for inflammatory disease therapy. This work aimed to develop a high-throughput screen for potential ADAM17 modulators as therapeutic drugs. By combining experimental and in silico methods (structural modeling and docking), we modeled the kinetics of ADAM17 inhibitor. The results explain ADAM17 inhibition mechanisms and give a methodology for studying selective inhibition towards the design of pharmaceutical substances with higher selectivity.
Collapse
Affiliation(s)
- Marian Bienstein
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (M.B.); (U.S.)
| | - Dmitriy Minond
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (M.B.); (U.S.)
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Center for Human and Molecular Biology (ZHMB), University of Saarland, Kirrbergerstr., 66421 Homburg, Germany
| |
Collapse
|
8
|
ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119141. [PMID: 34610348 DOI: 10.1016/j.bbamcr.2021.119141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.
Collapse
|
9
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
10
|
Yeung L, Anderson JML, Wee JL, Demaria MC, Finsterbusch M, Liu YS, Hall P, Smith BC, Dankers W, Elgass KD, Wicks IP, Kwok HF, Wright MD, Hickey MJ. Leukocyte Tetraspanin CD53 Restrains α 3 Integrin Mobilization and Facilitates Cytoskeletal Remodeling and Transmigration in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:521-532. [PMID: 32532837 DOI: 10.4049/jimmunol.1901054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
The importance of tetraspanin proteins in regulating migration has been demonstrated in many diverse cellular systems. However, the function of the leukocyte-restricted tetraspanin CD53 remains obscure. We therefore hypothesized that CD53 plays a role in regulating leukocyte recruitment and tested this hypothesis by examining responses of CD53-deficient mice to a range of inflammatory stimuli. Deletion of CD53 significantly reduced neutrophil recruitment to the acutely inflamed peritoneal cavity. Intravital microscopy revealed that in response to several inflammatory and chemotactic stimuli, absence of CD53 had only minor effects on leukocyte rolling and adhesion in postcapillary venules. In contrast, Cd53-/- mice showed a defect in leukocyte transmigration induced by TNF, CXCL1 and CCL2, and a reduced capacity for leukocyte retention on the endothelial surface under shear flow. Comparison of adhesion molecule expression in wild-type and Cd53-/- neutrophils revealed no alteration in expression of β2 integrins, whereas L-selectin was almost completely absent from Cd53-/- neutrophils. In addition, Cd53-/- neutrophils showed defects in activation-induced cytoskeletal remodeling and translocation to the cell periphery, responses necessary for efficient transendothelial migration, as well as increased α3 integrin expression. These alterations were associated with effects on inflammation, so that in Cd53-/- mice, the onset of neutrophil-dependent serum-induced arthritis was delayed. Together, these findings demonstrate a role for tetraspanin CD53 in promotion of neutrophil transendothelial migration and inflammation, associated with CD53-mediated regulation of L-selectin expression, attachment to the endothelial surface, integrin expression and trafficking, and cytoskeletal function.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.,Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Jeremy M L Anderson
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Janet L Wee
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.,Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Maria C Demaria
- Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Michaela Finsterbusch
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Yuxin S Liu
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Brodie C Smith
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Wendy Dankers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3050, Australia.,Department of Rheumatology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; and
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region, China
| | - Mark D Wright
- Department of Immunology, Monash University, Alfred Research Alliance, Melbourne, Victoria 3004, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia;
| |
Collapse
|
11
|
Demaria MC, Yeung L, Peeters R, Wee JL, Mihaljcic M, Jones EL, Nasa Z, Alderuccio F, Hall P, Smith BC, Binger KJ, Hammerling G, Kwok HF, Newman A, Ager A, van Spriel A, Hickey MJ, Wright MD. Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression. iScience 2020; 23:101104. [PMID: 32428859 PMCID: PMC7232089 DOI: 10.1016/j.isci.2020.101104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Tetraspanins regulate key processes in immune cells; however, the function of the leukocyte-restricted tetraspanin CD53 is unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53-/- mice were smaller than those of wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53-/- B and T cells to efficiently home to lymph nodes, due to the near absence of L-selectin from Cd53-/- B cells and reduced stability of L-selectin on Cd53-/- T cells. Further analyses, including on human lymphocytes, showed that CD53 stabilizes L-selectin surface expression and may restrain L-selectin shedding via both ADAM17-dependent and ADAM17-independent mechanisms. The disruption in lymphocyte recirculation in Cd53-/- mice led to impaired immune responses dependent on antigen delivery to lymph nodes. Together these findings demonstrate an essential role for CD53 in lymphocyte trafficking and immunity.
Collapse
Affiliation(s)
- Maria C Demaria
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Louisa Yeung
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Rens Peeters
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janet L Wee
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Masa Mihaljcic
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Eleanor L Jones
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Zeyad Nasa
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Frank Alderuccio
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Brodie C Smith
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Katrina J Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Gunther Hammerling
- Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Andrew Newman
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ann Ager
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Annemiek van Spriel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia.
| |
Collapse
|
12
|
Murumkar PR, Ghuge RB, Chauhan M, Barot RR, Sorathiya S, Choudhary KM, Joshi KD, Yadav MR. Recent developments and strategies for the discovery of TACE inhibitors. Expert Opin Drug Discov 2020; 15:779-801. [PMID: 32281878 DOI: 10.1080/17460441.2020.1744559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION TNF-α plays a central role in certain autoimmune diseases as well as in inflammation. The current strategy for excluding TNF-α from circulation is to selectively inhibit TNF-α converting enzyme (TACE), an enzyme that cleaves mTNF-α to active TNF-α. Various TACE inhibitors have been discovered by using different strategies to control inflammatory diseases, cancer, and cardiac hypertrophy. AREAS COVERED The present article summarizes the design and discovery of novel TACE inhibitors that have been reported in the literature since 2012 onwards. It also includes some reports concerning the new role that TACE plays in cancer and cardiac hypertrophy. EXPERT OPINION So far, undertaken studies that have looked to design and develop small TACE inhibitors have been discouraging due to the failure of any TACE inhibitors to hit the market. However, some of the latest developments, such as with tartrate-based inhibitors, has given hope to the potentiality of a viable novel selective TACE inhibitor therapeutic in the future. Indeed, some of the novel peptidomimetics and monoclonal antibodies have great potential to pave the way for an effective and safe therapy by selectively inhibiting TACE enzyme.
Collapse
Affiliation(s)
- Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Rahul B Ghuge
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Monica Chauhan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Rahul R Barot
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Sharmishtha Sorathiya
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Kailash M Choudhary
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Karan D Joshi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| |
Collapse
|
13
|
Yang Z, Chan KI, Kwok HF, Tam KY. Novel Therapeutic Anti-ADAM17 Antibody A9(B8) Enhances EGFR-TKI-Mediated Anticancer Activity in NSCLC. Transl Oncol 2019; 12:1516-1524. [PMID: 31450127 PMCID: PMC6717059 DOI: 10.1016/j.tranon.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations were found in 30%-40% of non-small cell lung cancer (NSCLC) patients, who often responded well to EGFR tyrosine kinase inhibitors (EGFR-TKIs) as exemplified by erlotinib and gefitinib in the past decades. However, EGFR mutation-led drug resistance usually occurred upon prolonged treatment with EGFR-TKI. Herein, we study the anticancer effects of EGFR-TKI in combination with a newly developed antibody, A9(B8), to target a disintegrin and metalloprotease (ADAM) 17 that was overexpressed in NSCLC patients. NSCLC cell lines with different EGFR mutations were used to evaluate the drug combination. We have found that the EGFR-TKI-A9(B8) combination exhibited enhanced anticancer effects in NCI-H1975 cells harboring L858R and T790M mutations, which were due to simultaneous suppression of extracellular signal-regulated kinases phosphorylation. Our results suggested that targeting ADAM17 could potentiate the anticancer effects of EGFR-TKI against NSCLC and overcome drug resistance due to EGFR mutations.
Collapse
Affiliation(s)
- Zheng Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| | - Kin Iong Chan
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China; Department of Pathology, Kiang Wu Hospital, Macau SAR, PR China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China.
| | - Kin Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China.
| |
Collapse
|
14
|
Wu J, Mishra HK, Walcheck B. Role of ADAM17 as a regulatory checkpoint of CD16A in NK cells and as a potential target for cancer immunotherapy. J Leukoc Biol 2019; 105:1297-1303. [PMID: 30786043 PMCID: PMC6792391 DOI: 10.1002/jlb.2mr1218-501r] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/11/2023] Open
Abstract
Human NK cell antitumor activities involve Ab-dependent cell-mediated cytotoxicity (ADCC), which is a key mechanism of action for several clinically successful tumor-targeting therapeutic mAbs. Human NK cells exclusively recognize these Abs by the Fcγ receptor CD16A (FcγRIIIA), one of their most potent activating receptors. Unlike other activating receptors on NK cells, CD16A undergoes a rapid down-regulation in expression by a proteolytic process following NK cell activation with various stimuli. In this review, the role of a disintegrin and metalloproteinase-17 (ADAM17) in CD16A cleavage and as a regulatory checkpoint is discussed. Several studies have examined the effects of inhibiting ADAM17 or CD16A cleavage directly during NK cell engagement of Ab-coated tumor cells, which resulted in strengthened Ab tethering, decreased tumor cell detachment, and enhanced CD16A signaling and cytokine production. However, the effects of either manipulation on ADCC have varied between studies, which may be due to dissimilar assays and the contribution of different killing processes by NK cells. Of importance is that NK cells under various circumstances, including in the tumor microenvironment of patients, down-regulate CD16A and this appears to impair their function. Considerable progress has been made in the development of ADAM17 inhibitors, including human mAbs that have advantages of high specificity and increased half-life in vivo. These inhibitors may provide a therapeutic means of increasing ADCC potency and/or antitumor cytokine production by NK cells in an immunosuppressive tumor microenvironment, and if used in combination with tumor-targeting Abs or NK cell-based adoptive immunotherapies may improve their efficacy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
15
|
Kato T, Hagiyama M, Ito A. Renal ADAM10 and 17: Their Physiological and Medical Meanings. Front Cell Dev Biol 2018; 6:153. [PMID: 30460232 PMCID: PMC6232257 DOI: 10.3389/fcell.2018.00153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) are a Zn2+-dependent transmembrane and secreted metalloprotease superfamily, so-called “molecular scissors,” and they consist of an N-terminal signal sequence, a prodomain, zinc-binding metalloprotease domain, disintegrin domain, cysteine-rich domain, transmembrane domain and cytoplasmic tail. ADAMs perform proteolytic processing of the ectodomains of diverse transmembrane molecules into bioactive mediators. This review summarizes on their most well-known members, ADAM10 and 17, focusing on the kidneys. ADAM10 is expressed in renal tubular cells and affects the expression of specific brush border genes, and its activation is involved in some renal diseases. ADAM17 is weakly expressed in normal kidneys, but its expression is markedly induced in the tubules, capillaries, glomeruli, and mesangium, and it is involved in interstitial fibrosis and tubular atrophy. So far, the various substrates have been identified in the kidneys. Shedding fragments become released ligands, such as Notch and EGFR ligands, and act as the chemoattractant factors including CXCL16. Their ectodomain shedding is closely correlated with pathological factors, which include inflammation, interstitial fibrosis, and renal injury. Also, the substrates of both ADAMs contain the molecules that play important roles at the plasma membrane, such as meaprin, E-cadherin, Klotho, and CADM1. By being released into urine, the shedding products could be useful for biomarkers of renal diseases, but ADAM10 and 17 per se are also notable as biomarkers. Furthermore, ADAM10 and/or 17 inhibitions based on various strategies such as small molecules, antibodies, and their recombinant prodomains are valuable, because they potentially protect renal tissues and promote renal regeneration. Although temporal and spatial regulations of inhibitors are problems to be solved, their inhibitors could be useful for renal diseases.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Man Hagiyama
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Japan
| |
Collapse
|
16
|
Mishra HK, Pore N, Michelotti EF, Walcheck B. Anti-ADAM17 monoclonal antibody MEDI3622 increases IFNγ production by human NK cells in the presence of antibody-bound tumor cells. Cancer Immunol Immunother 2018; 67:1407-1416. [PMID: 29978334 PMCID: PMC6126979 DOI: 10.1007/s00262-018-2193-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/29/2018] [Indexed: 01/11/2023]
Abstract
Several clinically successful tumor-targeting mAbs induce NK cell effector functions. Human NK cells exclusively recognize tumor-bound IgG by the FcR CD16A (FcγRIIIA). Unlike other NK cell activating receptors, the cell surface density of CD16A can be rapidly downregulated in a cis manner by the metalloproteinase ADAM17 following NK cell stimulation in various manners. CD16A downregulation takes place in cancer patients and this may affect the efficacy of tumor-targeting mAbs. We examined the effects of MEDI3622, a human mAb and potent ADAM17 inhibitor, on NK cell activation by antibody-bound tumor cells. MEDI3622 effectively blocked ADAM17 function in NK cells and caused a marked increase in their production of IFNγ. This was observed for NK cells exposed to different tumor cell lines and therapeutic antibodies, and over a range of effector/target ratios. The augmented release of IFNγ by NK cells was reversed by a function-blocking CD16A mAb. In addition, NK92 cells, a human NK cell line that lacks endogenous FcγRs, expressing a recombinant non-cleavable version of CD16A released significantly higher levels of IFNγ than NK92 cells expressing equivalent levels of wildtype CD16A. Taken together, our data show that MEDI3622 enhances the release of IFNγ by NK cells engaging antibody-bound tumor cells by blocking the shedding of CD16A. These findings support ADAM17 as a dynamic inhibitory checkpoint of the potent activating receptor CD16A, which can be targeted by MEDI3622 to potentially increase the efficacy of anti-tumor therapeutic antibodies.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 295B AS/VM Bldg., 1988 Fitch Avenue, St. Paul, MN, 55108, USA
| | - Nabendu Pore
- Oncology Research, MedImmune, LLC, Gaithersburg, USA
| | - Emil F Michelotti
- Oncology Research, MedImmune, LLC, Gaithersburg, USA
- NIC, NIH, Bethesda, MD, 20892, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 295B AS/VM Bldg., 1988 Fitch Avenue, St. Paul, MN, 55108, USA.
| |
Collapse
|
17
|
Santamaria S, de Groot R. Monoclonal antibodies against metzincin targets. Br J Pharmacol 2018; 176:52-66. [PMID: 29488211 DOI: 10.1111/bph.14186] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
The metzincin clan of metalloproteinases includes the MMP, disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs families, which cleave extracellular targets in a wide range of (patho)physiological processes. Antibodies constitute a powerful tool to modulate the activity of these enzymes for both therapeutic and research purposes. In this review, we give an overview of monoclonal antibodies (mAbs) that have been tested in preclinical disease models, human trials and important studies of metzincin structure and function. Initial attempts to develop therapeutic small molecule inhibitors against MMPs were hampered by structural similarities between metzincin active sites and, consequently, off-target effects. Therefore, more recently, mAbs have been developed that do not bind to the active site but bind to surface-exposed loops that are poorly conserved in closely related family members. Inhibition of protease activity by these mAbs occurs through a variety of mechanisms, including (i) barring access to the active site, (ii) disruption of exosite binding, and (iii) prevention of protease activation. These different modes of inhibition are discussed in the context of the antibodies' potency, selectivity and, importantly, the effects in models of disease and clinical trials. In addition, various innovative strategies that were used to generate anti-metzincin mAbs are discussed. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
| | - Rens de Groot
- Imperial College London, Centre for Haematology, London, UK
| |
Collapse
|
18
|
Prantner AM, Yin C, Kamat K, Sharma K, Lowenthal AC, Madrid PB, Scholler N. Molecular Imaging of Mesothelin-Expressing Ovarian Cancer with a Human and Mouse Cross-Reactive Nanobody. Mol Pharm 2018; 15:1403-1411. [PMID: 29462558 DOI: 10.1021/acs.molpharmaceut.7b00789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesothelin is an epithelial marker highly expressed at the cell surface of cancer cells from diverse origins, including ovarian and pancreatic adenocarcinomas and mesotheliomas. Previously, we identified and characterized an antimesothelin nanobody (NbG3a) for in vitro diagnostic applications. The main goal of this research was to establish the potential of NbG3a as a molecular imaging agent. Site-specific biotinylated NbG3a (bNbG3a) was bound to streptavidin-conjugated reagents for in vitro and in vivo assays. Initially, we performed microscale thermophoresis to determine the binding affinity between bNbG3a and human ( Kd = 46 ± 8 nM) or mouse ( Kd = 4.8 ± 0.4 nM) mesothelin protein. The human and mouse cross-reactivity was confirmed by in vivo optical imaging using bNbG3a bound to fluorescent streptavidin. We also localized the binding site of nNbG3a on human mesothelin using overlapping peptide scan. NbG3a recognized an epitope within residues 21-65 of the mature membrane bound form of human mesothelin, which is part of the N-terminal region of mesothelin that is important for interactions between mesothelin on peritoneal cells and CA125 on tumor cells. Next, the bNbG3a in vivo half-life after intravenous injection in healthy mice was estimated by ELISA assay to be 5.3 ± 1.3 min. In tumor-bearing animals, fluorescent bNbG3a accumulated in a subcutaneous ovarian xenograft (A1847) and in two syngeneic, orthotopic ovarian tumors (intraovary and intraperitoneal ID8) within an hour of intravenous injection that peaked by 4 h and persisted up to 48 h. MRI analysis of bNbG3a-targeted streptavidin-labeled iron oxides showed that the MRI signal intensity decreased 1 h after injection for a subcutaneous xenograft model of ovarian cancer for bNbG3a-labeled iron oxides compared to unlabeled iron oxides. The signal intensity differences continued up to the final time point at 24 h post injection. Finally, in vivo immunofluorescence 24 or 48 h after bNbG3a intravenous injection showed bNbG3a diffuse distribution of both xenograft and syngeneic ovarian tumors, with local areas of high concentration throughout A1847 human tumor. The data support the use of NbG3a for continued preclinical development and translation to human applications for cancers that overexpress mesothelin.
Collapse
Affiliation(s)
- Andrew M Prantner
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| | - Catherine Yin
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| | - Kalika Kamat
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| | - Khushboo Sharma
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| | - Andrew C Lowenthal
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| | - Peter B Madrid
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| | - Nathalie Scholler
- Biosciences Division , SRI International , 333 Ravenswood Avenue , Menlo Park , California 94025 , United States
| |
Collapse
|
19
|
Botkjaer KA, Kwok HF, Terp MG, Karatt-Vellatt A, Santamaria S, McCafferty J, Andreasen PA, Itoh Y, Ditzel HJ, Murphy G. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo. Oncotarget 2017; 7:16773-92. [PMID: 26934448 PMCID: PMC4941350 DOI: 10.18632/oncotarget.7780] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332-fold with the ability to interfere with cell-surface MT1-MMP functions, displaying IC50 values down to 5 nM. Importantly, the new inhibitors were able to inhibit collagen invasion by tumor-cells in vitro and in vivo primary tumor growth and metastasis of MDA-MB-231 cells in a mouse orthotopic xenograft model. Herein is the first demonstration that an inhibitory antibody targeting sites outside the catalytic cleft of MT1-MMP can effectively abrogate its in vivo activity during tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Kenneth A Botkjaer
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, U.K
| | - Hang Fai Kwok
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, U.K.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Salvatore Santamaria
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, U.K
| | | | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, U.K
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Gillian Murphy
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, U.K
| |
Collapse
|
20
|
Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017; 2017:9673537. [PMID: 29230082 PMCID: PMC5688260 DOI: 10.1155/2017/9673537] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since its discovery, ADAM17, also known as TNFα converting enzyme or TACE, is now known to process over 80 different substrates. Many of these substrates are mediators of cancer and inflammation. The field of ADAM metalloproteinases is at a crossroad with many of the new potential therapeutic agents for ADAM17 advancing into the clinic. Researchers have now developed potential drugs for ADAM17 that are selective and do not have the side effects which were seen in earlier chemical entities that targeted this enzyme. ADAM17 inhibitors have broad therapeutic potential, with properties ranging from tumor immunosurveillance and overcoming drug and radiation resistance in cancer, as treatments for cardiac hypertrophy and inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. This review focuses on substrates and inhibitors identified more recently for ADAM17 and their role in cancer and inflammation.
Collapse
|
21
|
Kawai T, Takayanagi T, Forrester SJ, Preston KJ, Obama T, Tsuji T, Kobayashi T, Boyer MJ, Cooper HA, Kwok HF, Hashimoto T, Scalia R, Rizzo V, Eguchi S. Vascular ADAM17 (a Disintegrin and Metalloproteinase Domain 17) Is Required for Angiotensin II/β-Aminopropionitrile-Induced Abdominal Aortic Aneurysm. Hypertension 2017; 70:959-963. [PMID: 28947615 DOI: 10.1161/hypertensionaha.117.09822] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
Abstract
Angiotensin II (AngII)-activated epidermal growth factor receptor has been implicated in abdominal aortic aneurysm (AAA) development. In vascular smooth muscle cells (VSMCs), AngII activates epidermal growth factor receptor via a metalloproteinase, ADAM17 (a disintegrin and metalloproteinase domain 17). We hypothesized that AngII-dependent AAA development would be prevented in mice lacking ADAM17 in VSMCs. To test this concept, control and VSMC ADAM17-deficient mice were cotreated with AngII and a lysyl oxidase inhibitor, β-aminopropionitrile, to induce AAA. We found that 52.4% of control mice did not survive because of aortic rupture. All other surviving control mice developed AAA and demonstrated enhanced expression of ADAM17 in the AAA lesions. In contrast, all AngII and β-aminopropionitrile-treated VSMC ADAM17-deficient mice survived and showed reduction in external/internal diameters (51%/28%, respectively). VSMC ADAM17 deficiency was associated with lack of epidermal growth factor receptor activation, interleukin-6 induction, endoplasmic reticulum/oxidative stress, and matrix deposition in the abdominal aorta of treated mice. However, both VSMC ADAM17-deficient and control mice treated with AngII and β-aminopropionitrile developed comparable levels of hypertension. Treatment of C57Bl/6 mice with an ADAM17 inhibitory antibody but not with control IgG also prevented AAA development. In conclusion, VSMC ADAM17 silencing or systemic ADAM17 inhibition seems to protect mice from AAA formation. The mechanism seems to involve suppression of epidermal growth factor receptor activation.
Collapse
Affiliation(s)
- Tatsuo Kawai
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Takehiko Takayanagi
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Steven J Forrester
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Kyle J Preston
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Takashi Obama
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Toshiyuki Tsuji
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Tomonori Kobayashi
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Michael J Boyer
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Hannah A Cooper
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Hang Fai Kwok
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Tomoki Hashimoto
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Rosario Scalia
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Victor Rizzo
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.).
| | - Satoru Eguchi
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.).
| |
Collapse
|
22
|
Amar S, Minond D, Fields GB. Clinical Implications of Compounds Designed to Inhibit ECM-Modifying Metalloproteinases. Proteomics 2017; 17. [PMID: 28613012 DOI: 10.1002/pmic.201600389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Remodeling of the extracellular matrix (ECM) is crucial in development and homeostasis, but also has a significant role in disease progression. Two metalloproteinase families, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteases (ADAMs), participate in the remodeling of the ECM, either directly or through the liberation of growth factors and cell surface receptors. The correlation of MMP and ADAM activity to a variety of diseases has instigated numerous drug development programs. However, broad-based and Zn2+ -chelating MMP and ADAM inhibitors have fared poorly in the clinic. Selective MMP and ADAM inhibitors have been described recently based on (a) antibodies or antibody fragments or (b) small molecules designed to take advantage of protease secondary binding sites (exosites) or allosteric sites. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
23
|
Ye J, Yuen SM, Murphy G, Xie R, Kwok HF. Anti-tumor effects of a 'human & mouse cross-reactive' anti-ADAM17 antibody in a pancreatic cancer model in vivo. Eur J Pharm Sci 2017; 110:62-69. [PMID: 28554668 DOI: 10.1016/j.ejps.2017.05.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumor amongst all human cancers due to late diagnosis and resistant to treatment with chemotherapy and radiation. Preclinical and clinical studies have revealed that ErbB family for example epidermal growth factor receptor (EGFR) is a validated molecular target for pancreatic cancer prevention and therapy. The ErbB signaling cascade is regulated by a member of the ADAM (a disintegrin and metalloprotease) family, namely ADAM17, by enzymatic cleavage of precursor ligands into soluble cytokines and growth factors. Mouse genetic studies have demonstrated that ADAM17 is required for PDAC development. In this study, we evaluated the anti-tumor effects of A9(B8) IgG - the first specific 'human and mouse cross-reactive' ADAM17 inhibitory antibody on pancreatic malignant transformation. We found that inhibition of ADAM17 with A9(B8) IgG efficiently suppressed the shedding of ADAM17 substrates both in vivo and in vitro. Furthermore, we demonstrated that administration of A9(B8) IgG significantly suppressed motility in human pancreatic cancer cells and also significantly delayed tumorigenesis in the Pdx1Cre;KrasG12D;Trp53fl/+PDAC mouse model. Inhibition of ADAM17 with A9(B8) IgG particularly affected the progression of pre-invasive pancreatic lesions to advanced PDAC in mice. Taken together, the preclinical data presented here will provide a starting point for clinical applications of ADAM17 targeted therapy.
Collapse
Affiliation(s)
- Jie Ye
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau
| | - Shun Ming Yuen
- Histopathology Core, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau
| | - Gillian Murphy
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ruiyu Xie
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau; Histopathology Core, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau.
| |
Collapse
|
24
|
Peng L, Cook K, Xu L, Cheng L, Damschroder M, Gao C, Wu H, Dall'Acqua WF. Molecular basis for the mechanism of action of an anti-TACE antibody. MAbs 2016; 8:1598-1605. [PMID: 27610476 PMCID: PMC5098442 DOI: 10.1080/19420862.2016.1226716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Inhibitors of tumor necrosis factor-α converting enzyme (TACE) have potential as therapeutics for various diseases. Many small molecule inhibitors, however, exhibit poor specificity profiles because they target the highly conserved catalytic cleft of TACE. We report for the first time the molecular interaction of a highly specific anti-TACE antagonistic antibody (MEDI3622). We characterized the binding of MEDI3622 using mutagenesis, as well as structural modeling and docking approaches. We show that MEDI3622 recognizes a unique surface loop of sIVa-sIVb β-hairpin on TACE M-domain, but does not interact with the conserved catalytic cleft or its nearby regions. The exquisite specificity of MEDI3622 is mediated by this distinct structural feature on the TACE M-domain. These findings may aid the design of antibody therapies against TACE.
Collapse
Affiliation(s)
- Li Peng
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Kimberly Cook
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Linda Xu
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Li Cheng
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Melissa Damschroder
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Changshou Gao
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - William F Dall'Acqua
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
25
|
Takayanagi T, Forrester SJ, Kawai T, Obama T, Tsuji T, Elliott KJ, Nuti E, Rossello A, Kwok HF, Scalia R, Rizzo V, Eguchi S. Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II. Hypertension 2016; 68:949-955. [PMID: 27480833 DOI: 10.1161/hypertensionaha.116.07620] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022]
Abstract
Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications.
Collapse
Affiliation(s)
- Takehiko Takayanagi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Takashi Obama
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Toshiyuki Tsuji
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Elisa Nuti
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Armando Rossello
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Hang Fai Kwok
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia PA (T.T., S.J.F., T.K., T.O., T.T., Y.F., K.J.E., R.S., V.R., S.E.), Department of Pharmacy, University of Pisa, Pisa, Italy (E.N., A.R.), and Faculty of Health Sciences, University of Macau, Macau, China (HF.K.)
| |
Collapse
|
26
|
Dreymueller D, Ludwig A. Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 2016; 28:354-361. [PMID: 27460023 DOI: 10.1080/09537104.2016.1203396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteases of the disintegrin and metalloproteinase (ADAM) family mediate the proteolytic shedding of various surface molecules including cytokine precursors, adhesion molecules, growth factors, and receptors. Within the vasculature ADAM10 and ADAM17 regulate endothelial permeability, transendothelial leukocyte migration, and the adhesion of leukocytes and platelets. In vivo studies show that both proteases are implicated in several inflammatory pathologies, for example, edema formation, leukocyte infiltration, and thrombosis. However, both proteases also contribute to developmental and regenerative processes. Thus, although ADAMs can be regarded as valuable drug targets in many aspects, the danger of severe side effects is clearly visible. To circumvent these side effects, traditional inhibition approaches have to be improved to target ADAMs at the right time in the right place. Moreover, the inhibitors need to be more selective for the target protease and if possible also for the substrate. Antibodies recognizing the active conformation of ADAMs or small molecules blocking exosites of ADAM proteases may represent inhibitors with the desired selectivities.
Collapse
Affiliation(s)
- Daniela Dreymueller
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| | - Andreas Ludwig
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
27
|
Forrester SJ, Kawai T, O'Brien S, Thomas W, Harris RC, Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 2015; 56:627-53. [PMID: 26566153 DOI: 10.1146/annurev-pharmtox-070115-095427] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Shannon O'Brien
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter Thomas
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
28
|
Neves H, Kwok HF. Recent advances in the field of anti-cancer immunotherapy. BBA CLINICAL 2015; 3:280-8. [PMID: 26673349 PMCID: PMC4661591 DOI: 10.1016/j.bbacli.2015.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022]
Abstract
Background The main goal of anti-cancer therapy is to specifically inhibit the malignant activity of cancer cells, while leaving healthy cells unaffected. As such, for every proposed therapy, it is important to keep in mind the therapeutic index — the ratio of the toxic dose over the therapeutic dose. The use of immunotherapy has allowed a means to both specifically block protein–protein interaction and deliver cytotoxic events to a tumor-specific antigen. Review scope It is the objective of this review to give an overview on current immunotherapy treatment for cancers using monoclonal antibodies. We demonstrate three exciting targets for immunotherapy, TNF-α Converting Enzyme (TACE), Cathepsin S and Urokinase Plasmogen Activator and go over the advances made with one of the most used monoclonal antibodies in cancer therapy, Rituximab; as well as Herceptin, which is used for breast cancer therapy. Furthermore, we touch on other venues of immunotherapy, such as adaptive cell transfer, the use of nucleic acids and the use of dendritic cells. Finally, we summarize some ongoing studies that spell tentative advancements for anti-cancer immunotherapy. General significance Immunotherapy is at the forefront of anti-cancer therapies, allying both a high degree of specificity to general high effectiveness and fewer side-effects. Current monoclonal antibodies for cancer immunotherapy have a bright future. Immunotherapy presents opportunity to eliminate tumor growth that chemotherapy can't achieve. Therapeutic antibodies for cancer immunotherapy show better results without undesirable side-effects.
Collapse
Affiliation(s)
- Henrique Neves
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| |
Collapse
|
29
|
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2014; 308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|