1
|
Hu J, Song L, Ning M, Niu X, Han M, Gao C, Feng X, Cai H, Li T, Li F, Li H, Gong D, Song W, Liu L, Pu J, Liu J, Smith J, Sun H, Huang Y. A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. BMC Biol 2024; 22:31. [PMID: 38317190 PMCID: PMC10845735 DOI: 10.1186/s12915-024-01817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A virus (IAV), harbors almost all subtypes of IAVs and resists to many IAVs which cause extreme virulence in chicken and human. However, the response of duck's adaptive immune system to IAV infection is poorly characterized due to lack of a detailed gene map of the major histocompatibility complex (MHC). RESULTS We herein reported a chromosome-scale Beijing duck assembly by integrating Nanopore, Bionano, and Hi-C data. This new reference genome SKLA1.0 covers 40 chromosomes, improves the contig N50 of the previous duck assembly with highest contiguity (ZJU1.0) of more than a 5.79-fold, surpasses the chicken and zebra finch references in sequence contiguity and contains a complete genomic map of the MHC. Our 3D MHC genomic map demonstrated that gene family arrangement in this region was primordial; however, families such as AnplMHCI, AnplMHCIIβ, AnplDMB, NKRL (NK cell receptor-like genes) and BTN underwent gene expansion events making this area complex. These gene families are distributed in two TADs and genes sharing the same TAD may work in a co-regulated model. CONCLUSIONS These observations supported the hypothesis that duck's adaptive immunity had been optimized with expanded and diversified key immune genes which might help duck to combat influenza virus. This work provided a high-quality Beijing duck genome for biological research and shed light on new strategies for AIV control.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xinyu Niu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengying Han
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Chuze Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xingwei Feng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Han Cai
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Fangtao Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
2
|
Rocos NIE, Coulter FJ, Tan TCJ, Kaufman J. The minor chicken class I gene BF1 is deleted between short imperfect direct repeats in the B14 and typical B15 major histocompatibility complex (MHC) haplotypes. Immunogenetics 2023; 75:455-464. [PMID: 37405420 PMCID: PMC10514180 DOI: 10.1007/s00251-023-01313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
The chicken major histocompatibility complex (MHC, also known as the BF-BL region of the B locus) is notably small and simple with few genes, most of which are involved in antigen processing and presentation. There are two classical class I genes, of which only BF2 is well and systemically expressed as the major ligand for cytotoxic T lymphocytes (CTLs). The other class I gene, BF1, is believed to be primarily a natural killer (NK) cell ligand. Among most standard chicken MHC haplotypes examined in detail, BF1 is expressed tenfold less than BF2 at the RNA level due to defects in the promoter or in a splice site. However, in the B14 and typical B15 haplotypes, BF1 RNA was not detected, and here, we show that a deletion between imperfect 32 nucleotide direct repeats has removed the BF1 gene entirely. The phenotypic effects of not having a BF1 gene (particularly on resistance to infectious pathogens) have not been systematically explored, but such deletions between short direct repeats are also found in some BF1 promoters and in the 5' untranslated region (5'UTR) of some BG genes found in the BG region of the B locus. Despite the opposite transcriptional orientation of homologous genes in the chicken MHC, which might prevent the loss of key genes from a minimal essential MHC, it appears that small direct repeats can still lead to deletion.
Collapse
Affiliation(s)
- Nicolas I. E. Rocos
- Institute of Immunology and Infection Research, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL UK
| | - Felicity J. Coulter
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Current Address: Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Thomas C. J. Tan
- Institute of Immunology and Infection Research, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL UK
- Current Address: Wellcome Centre for Cell Biology, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Jim Kaufman
- Institute of Immunology and Infection Research, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| |
Collapse
|
3
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
4
|
Halabi S, Kaufman J. New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system. Front Immunol 2022; 13:886672. [PMID: 35967451 PMCID: PMC9372762 DOI: 10.3389/fimmu.2022.886672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
The functions of a wide variety of molecules with structures similar to the classical class I and class II molecules encoded by the major histocompatibility complex (MHC) have been studied by biochemical and structural studies over decades, with many aspects for humans and mice now enshrined in textbooks as dogma. However, there is much variation of the MHC and MHC molecules among the other jawed vertebrates, understood in the most detail for the domestic chicken. Among the many unexpected features in chickens is the co-evolution between polymorphic TAP and tapasin genes with a dominantly-expressed class I gene based on a different genomic arrangement compared to typical mammals. Another important discovery was the hierarchy of class I alleles for a suite of properties including size of peptide repertoire, stability and cell surface expression level, which is also found in humans although not as extreme, and which led to the concept of generalists and specialists in response to infectious pathogens. Structural studies of chicken class I molecules have provided molecular explanations for the differences in peptide binding compared to typical mammals. These unexpected phenomena include the stringent binding with three anchor residues and acidic residues at the peptide C-terminus for fastidious alleles, and the remodelling binding sites, relaxed binding of anchor residues in broad hydrophobic pockets and extension at the peptide C-terminus for promiscuous alleles. The first few studies for chicken class II molecules have already uncovered unanticipated structural features, including an allele that binds peptides by a decamer core. It seems likely that the understanding of how MHC molecules bind and present peptides to lymphocytes will broaden considerably with further unexpected discoveries through biochemical and structural studies for chickens and other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Samer Halabi
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Jim Kaufman,
| |
Collapse
|
5
|
Yuan Y, Zhang H, Yi G, You Z, Zhao C, Yuan H, Wang K, Li J, Yang N, Lian L. Genetic Diversity of MHC B-F/B-L Region in 21 Chicken Populations. Front Genet 2021; 12:710770. [PMID: 34484301 PMCID: PMC8414643 DOI: 10.3389/fgene.2021.710770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
The chicken major histocompatibility complex (MHC) on chromosome 16 is the most polymorphic region across the whole genome, and also an ideal model for genetic diversity investigation. The MHC B-F/B-L region is 92 kb in length with high GC content consisting of 18 genes and one pseudogene (Blec4), which plays important roles in immune response. To evaluate polymorphism of the Chinese indigenous chickens as well as to analyze the effect of selection to genetic diversity, we used WaferGen platform to identify sequence variants of the B-F/B-L region in 21 chicken populations, including the Red Jungle Fowl (RJF), Cornish (CS), White Leghorns (WLs), 16 Chinese domestic breeds, and two well-known inbred lines 63 and 72. A total of 3,319 single nucleotide polymorphism (SNPs) and 181 INDELs in the B-F/B-L region were identified among 21 populations, of which 2,057 SNPs (62%) and 159 INDELs (88%) were novel. Most of the variants were within the intron and the flanking regions. The average variation density was 36 SNPs and 2 INDELs per kb, indicating dramatical high diversity of this region. Furthermore, BF2 was identified as the hypervariable genes with 67 SNPs per kb. Chinese domestic populations showed higher diversity than the WLs and CS. The indigenous breeds, Nandan Yao (NY), Xishuangbanna Game (XG), Gushi (GS), and Xiayan (XY) chickens, were the top four with the highest density of SNPs and INDELs. The highly inbred lines 63 and 72 have the lowest diversity, which might be resulted from a long-term intense selection for decades. Collectively, we refined the genetic map of chicken MHC B-F/B-L region, and illustrated genetic diversity of 21 chicken populations. Abundant genetic variants were identified, which not only strikingly expanded the current Ensembl SNP database, but also provided comprehensive data for researchers to further investigate association between variants in MHC and immune traits.
Collapse
Affiliation(s)
- Yiming Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhen You
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunfang Zhao
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haixu Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Kaufman J. From Chickens to Humans: The Importance of Peptide Repertoires for MHC Class I Alleles. Front Immunol 2020; 11:601089. [PMID: 33381122 PMCID: PMC7767893 DOI: 10.3389/fimmu.2020.601089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
In humans, killer immunoglobulin-like receptors (KIRs), expressed on natural killer (NK) and thymus-derived (T) cells, and their ligands, primarily the classical class I molecules of the major histocompatibility complex (MHC) expressed on nearly all cells, are both polymorphic. The variation of this receptor-ligand interaction, based on which alleles have been inherited, is known to play crucial roles in resistance to infectious disease, autoimmunity, and reproduction in humans. However, not all the variation in response is inherited, since KIR binding can be affected by a portion of the peptide bound to the class I molecules, with the particular peptide presented affecting the NK response. The extent to which the large multigene family of chicken immunoglobulin-like receptors (ChIRs) is involved in functions similar to KIRs is suspected but not proven. However, much is understood about the two MHC-I molecules encoded in the chicken MHC. The BF2 molecule is expressed at a high level and is thought to be the predominant ligand of cytotoxic T lymphocytes (CTLs), while the BF1 molecule is expressed at a much lower level if at all and is thought to be primarily a ligand for NK cells. Recently, a hierarchy of BF2 alleles with a suite of correlated properties has been defined, from those expressed at a high level on the cell surface but with a narrow range of bound peptides to those expressed at a lower level on the cell surface but with a very wide repertoire of bound peptides. Interestingly, there is a similar hierarchy for human class I alleles, although the hierarchy is not as wide. It is a question whether KIRs and ChIRs recognize class I molecules with bound peptide in a similar way, and whether fastidious to promiscuous hierarchy of class I molecules affect both T and NK cell function. Such effects might be different from those predicted by the similarities of peptide-binding based on peptide motifs, as enshrined in the idea of supertypes. Since the size of peptide repertoire can be very different for alleles with similar peptide motifs from the same supertype, the relative importance of these two properties may be testable.
Collapse
Affiliation(s)
- Jim Kaufman
- School of Biological Sciences, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Potts ND, Bichet C, Merat L, Guitton E, Krupa AP, Burke TA, Kennedy LJ, Sorci G, Kaufman J. Development and optimization of a hybridization technique to type the classical class I and class II B genes of the chicken MHC. Immunogenetics 2019; 71:647-663. [PMID: 31761978 PMCID: PMC6900278 DOI: 10.1007/s00251-019-01149-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/17/2019] [Indexed: 01/02/2023]
Abstract
The classical class I and class II molecules of the major histocompatibility complex (MHC) play crucial roles in immune responses to infectious pathogens and vaccines as well as being important for autoimmunity, allergy, cancer and reproduction. These classical MHC genes are the most polymorphic known, with roughly 10,000 alleles in humans. In chickens, the MHC (also known as the BF-BL region) determines decisive resistance and susceptibility to infectious pathogens, but relatively few MHC alleles and haplotypes have been described in any detail. We describe a typing protocol for classical chicken class I (BF) and class II B (BLB) genes based on a hybridization method called reference strand-mediated conformational analysis (RSCA). We optimize the various steps, validate the analysis using well-characterized chicken MHC haplotypes, apply the system to type some experimental lines and discover a new chicken class I allele. This work establishes a basis for typing the MHC genes of chickens worldwide and provides an opportunity to correlate with microsatellite and with single nucleotide polymorphism (SNP) typing for approaches involving imputation.
Collapse
Affiliation(s)
- Nicola D Potts
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,LGC Ltd., Newmarket Road, Fordham, Ely, CB7 5WW, UK
| | - Coraline Bichet
- BioGéoSciences, CNRS UMR 5561, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.,Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Laurence Merat
- Plate-Forme d'Infectiologie Expérimentale (PFIE), UE-1277, INRA Centre Val de Loire, 37380, Nouzilly, France
| | - Edouard Guitton
- Plate-Forme d'Infectiologie Expérimentale (PFIE), UE-1277, INRA Centre Val de Loire, 37380, Nouzilly, France
| | - Andrew P Krupa
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK
| | - Terry A Burke
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK
| | - Lorna J Kennedy
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Gabriele Sorci
- BioGéoSciences, CNRS UMR 5561, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
8
|
Afrache H, Tregaskes CA, Kaufman J. A potential nomenclature for the Immuno Polymorphism Database (IPD) of chicken MHC genes: progress and problems. Immunogenetics 2019; 72:9-24. [PMID: 31741010 PMCID: PMC6971145 DOI: 10.1007/s00251-019-01145-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
Among the genes with the highest allelic polymorphism and sequence diversity are those encoding the classical class I and class II molecules of the major histocompatibility complex (MHC). Although many thousands of MHC sequences have been deposited in general sequence databases like GenBank, the availability of curated MHC sequences with agreed nomenclature has been enormously beneficial. Along with the Immuno Polymorphism Database-IMunoGeneTics/human leukocyte antigen (IPD-IMGT/HLA) database, a collection of databases for curated sequences of immune importance has been developed. A recent addition is an IPD-MHC database for chickens. For many years, the nomenclature system for chicken MHC genes has been based on a list of standard, presumed to be stable, haplotypes. However, these standard haplotypes give different names to identical sequences. Moreover, the discovery of new recombinants between haplotypes and a rapid increase in newly discovered alleles leaves the old system untenable. In this review, a new nomenclature is considered, for which alleles of different loci are given names based on the system used for other MHCs, and then haplotypes are named according to the alleles present. The new nomenclature system is trialled, first with standard haplotypes and then with validated sequences from the scientific literature. In the trial, some class II B sequences were found in both class II loci, presumably by gene conversion or inversion, so that identical sequences would receive different names. This situation prompts further suggestions to the new nomenclature system. In summary, there has been progress, but also problems, with the new IPD-MHC system for chickens.
Collapse
Affiliation(s)
- Hassnae Afrache
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Clive A Tregaskes
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB2 0ES, UK.
| |
Collapse
|
9
|
Meziane EK, Potts ND, Viertlboeck BC, Løvlie H, Krupa AP, Burke TA, Brown S, Watson KA, Richardson DS, Pizzari T, Göbel TW, Kaufman J. Bi-Functional Chicken Immunoglobulin-Like Receptors With a Single Extracellular Domain (ChIR-AB1): Potential Framework Genes Among a Relatively Stable Number of Genes Per Haplotype. Front Immunol 2019; 10:2222. [PMID: 31620133 PMCID: PMC6760009 DOI: 10.3389/fimmu.2019.02222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
The leukocyte receptor complex (LRC) in humans encodes many receptors with immunoglobulin-like (Ig-like) extracellular domains, including the killer Ig-like receptors (KIRs) expressed on natural killer (NK) cells among others, the leukocyte Ig-like receptors (LILRs) expressed on myeloid and B cells, and an Fc receptor (FcR), all of which have important roles in the immune response. These highly-related genes encode activating receptors with positively-charged residues in the transmembrane region, inhibitory receptors with immuno-tyrosine based motifs (ITIMs) in the cytoplasmic tail, and bi-functional receptors with both. The related chicken Ig-like receptors (ChIRs) are almost all found together on a microchromosome, with over 100 activating (A), inhibitory (B), and bi-functional (AB) genes, bearing either one or two extracellular Ig-like domains, interspersed over 500-1,000 kB in the genome of an individual chicken. Sequencing studies have suggested rapid divergence and little overlap between ChIR haplotypes, so we wished to begin to understand their genetics. We chose to use a hybridization technique, reference strand-mediated conformational analysis (RSCA), to examine the ChIR-AB1 family, with a moderate number of genes dispersed across the microchromosome. Using fluorescently-labeled references (FLR), we found that RSCA and sequencing of ChIR-AB1 extracellular exon gave two groups of peaks with mobility correlated with sequence relationship to the FLR. We used this system to examine widely-used and well-characterized experimental chicken lines, finding only one or a few simple ChIR haplotypes for each line, with similar numbers of peaks overall. We found much more complicated patterns from a broiler line from a commercial breeder and a flock of red junglefowl, but trios of parents and offspring from another commercial chicken line show that the complicated patterns are due to heterozygosity, indicating a relatively stable number of peaks within haplotypes of these birds. Some ChIR-AB1 peaks were found in all individuals from the commercial lines, and some of these were shared with red junglefowl and the experimental lines derived originally from egg-laying chickens. Overall, this analysis suggests that there are some simple features underlying the apparent complexity of the ChIR locus.
Collapse
Affiliation(s)
- El Kahina Meziane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola D Potts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Birgit C Viertlboeck
- Department of Veterinary Sciences, Institute for Animal Physiology, Ludwig Maximillian University, Munich, Germany
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | - Andrew P Krupa
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, United Kingdom
| | - Terry A Burke
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, United Kingdom
| | | | - Kellie A Watson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, United Kingdom
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, University of East Anglia, Norwich, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| | - Thomas W Göbel
- Department of Veterinary Sciences, Institute for Animal Physiology, Ludwig Maximillian University, Munich, Germany
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Two class I genes of the chicken MHC have different functions: BF1 is recognized by NK cells while BF2 is recognized by CTLs. Immunogenetics 2018; 70:599-611. [DOI: 10.1007/s00251-018-1066-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
|
11
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
12
|
Fleming-Canepa X, Jensen SM, Mesa CM, Diaz-Satizabal L, Roth AJ, Parks-Dely JA, Moon DA, Wong JP, Evseev D, Gossen DA, Tetrault DG, Magor KE. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. THE JOURNAL OF IMMUNOLOGY 2016; 197:783-94. [PMID: 27342841 DOI: 10.4049/jimmunol.1502450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shawna M Jensen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Christine M Mesa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexa J Roth
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Julie A Parks-Dely
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Debra A Moon
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Janet P Wong
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danyel Evseev
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Desolie A Gossen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - David G Tetrault
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Katharine E Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
13
|
Abstract
The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC.
Collapse
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Miller MM, Taylor RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 2016; 95:375-92. [PMID: 26740135 PMCID: PMC4988538 DOI: 10.3382/ps/pev379] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry.
Collapse
Affiliation(s)
- Marcia M Miller
- Beckman Research Institute, City of Hope, Department of Molecular and Cellular Biology, Duarte, CA 91010
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
15
|
What chickens would tell you about the evolution of antigen processing and presentation. Curr Opin Immunol 2015; 34:35-42. [DOI: 10.1016/j.coi.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 01/04/2023]
|
16
|
Global patterns of apparent copy number variation in birds revealed by cross-species comparative genomic hybridization. Chromosome Res 2014; 22:59-70. [PMID: 24570127 DOI: 10.1007/s10577-014-9405-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a growing interest in copy number variation (CNV) and the recognition of its importance in phenotype, disease, adaptation and speciation. CNV data is usually ascertained by array-CGH within-species, but similar inter-species comparisons have also been made in primates, mice and domestic mammals. Here, we conducted a broad appraisal of putative cross-species CNVs in birds, 16 species in all, using the standard array-CGH approach. Using a chicken oligonucleotide microarray, we detected 790 apparent CNVs within 135 unique regions and developed a bioinformatic tool 'CNV Analyser' for analysing and visualising cross-species data sets. We successfully addressed four hypotheses as follows: (a) Cross-species CNVs (compared to chicken) are, as suggested from preliminary evidence, smaller and fewer in number than in mammals; this 'dogma' was rejected in the light of the new evidence. (b) CNVs in birds are likely to have a functional effect through an association with genes; a large proportion of detected regions (70 %) were indeed associated with genes (suggesting functional significance), however, not necessarily more so than in mammals. (c) There are more CNVs in birds with more rearranged karyotypes; this hypothesis was rejected. Indeed, Falco species contained fewer than most with relatively standard (chicken-like) karyotypes. (d) There are more CNVs per megabase on micro-chromosomes than macrochromosomes; this hypothesis was accepted. Indeed, in species with rearranged karyotypes characterised by chromosomal fusions, the fused former microchromosomes still 'behaved' as though they were their microchromosomal ancestors. Gene ontology analysis of CNVRs revealed enrichment in immune response and antigen presentation genes and five CNVRs were perfectly correlated with the unique loss of sexual dichromatism in one Galliformes species.
Collapse
|
17
|
Hearn C, Preeyanon L, Hunt HD, York IA. An MHC class I immune evasion gene of Marek׳s disease virus. Virology 2014; 475:88-95. [PMID: 25462349 DOI: 10.1016/j.virol.2014.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022]
Abstract
Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.
Collapse
Affiliation(s)
- Cari Hearn
- Department of Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Likit Preeyanon
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Henry D Hunt
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA; United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 4279 East Mount Hope Road, East Lansing, MI 48823, USA
| | - Ian A York
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Bauer MM, Miller MM, Briles WE, Reed KM. Genetic variation at the MHC in a population of introduced wild turkeys. Anim Biotechnol 2013; 24:210-28. [PMID: 23777350 DOI: 10.1080/10495398.2013.767267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.
Collapse
Affiliation(s)
- Miranda M Bauer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | | |
Collapse
|
19
|
Jin YC, Wei P, Niu BX, Li M, Yang QL. Studies on the association ofBF1/BF2 gene expression patterns with traits of genetic resistance to Marek's disease in chickens. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2013.768963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
20
|
Zhang L, Katselis GS, Moore RE, Lekpor K, Goto RM, Hunt HD, Lee TD, Miller MM. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:446-456. [PMID: 22446732 DOI: 10.1016/j.dci.2012.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/08/2012] [Accepted: 03/11/2012] [Indexed: 05/31/2023]
Abstract
Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cell-free CD8αα(+), CD3(-) cells with natural killing activity. Cell-mediated cytotoxicity assays revealed complex NK cell discrimination of MHC class I, suggesting the presence of multiple NK cell receptors. Immunophenotyping of freshly isolated and recombinant chicken interleukin-2-stimulated d14E CD8αα(+) CD3(-) splenocytes provided further evidence for population heterogeneity. Complex patterns of expression were found for CD8α, chB6 (Bu-1), CD1-1, CD56 (NCAM), KUL01, CD5, and CD44. Mass spectrometry-based proteomics revealed an array of NK cell proteins, including the NKR2B4 receptor. DAVID and KEGG analyses and additional immunophenotyping revealed NK cell activation pathways and evidence for monocytes within the splenocyte cultures. This study provides an underpinning for further investigation into the specificity and function of NK cells in birds.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen F, Pan L, Chao W, Dai Y, Yu W. Character of chicken polymorphic major histocompatibility complex class II alleles of 3 Chinese local breeds. Poult Sci 2012; 91:1097-104. [PMID: 22499866 DOI: 10.3382/ps.2011-02007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To better understand the major histocompatibility complex (MHC) genetic character of domestic birds, we sequenced and analyzed chicken MHC II (B-L) genes of 3 local chicken breeds, derived from 3 separate areas in China. We amplified cDNA sequences from 105 individuals, accounting for 35 alleles. Some of the same B-LB alleles with a high frequency were found in all samples. The putative B-L α-chain had few polymorphic sites, whereas the B-L β-chain had several polymorphic sites. Most of the mutation positions were located in the B-LB β1 domain encoded by exon 2, especially in the peptide-binding region. This indicated that the highly polymorphic peptide-binding region could potentiate binding diverse antigen epitopes. The comparison of 3-D molecule structures of chicken B-L and human HLA-DR1 revealed a distinctly structural similarity, but the chicken B-L molecule had more polymorphic sites than the human HLA-DR1 molecule, which presumably might be a mechanism to compensate for responding to a wider array of pathogens due to fewer loci for chicken. Moreover, some conserved sites in human and chicken MHC class II molecules reflected their common ancestry and similar functions. These results suggest that the chicken B-L gene showed more polymorphic sites and distinctly dominant trans-breed alleles, potentially to adapt to pathogens.
Collapse
Affiliation(s)
- F Chen
- Anhui Agricultural University, Hefei 230036, China
| | | | | | | | | |
Collapse
|
22
|
Liu LB, Wu CM, Wen J, Chen JL, Zheng MQ, Zhao GP. Association of SNPs in exon 2 of the MHC B-F gene with immune traits in two distinct chicken populations: Chinese Beijing-You and White Leghorn. ACTA AGR SCAND A-AN 2009; 59:4-11. [PMID: 27453634 PMCID: PMC4936439 DOI: 10.1080/09064700902988905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 11/09/2022]
Abstract
Antibody titers raised for vaccinations against avian influenza (AI) and Newcastle disease (ND) were higher in Chinese Beijing-You (BJY) than in White Leghorn (WL) (P < 0.001), but there was no breed difference in titers for sheep red blood cells (SRBC). Genotyping by PCR-SSCP identified seven haplotypes in WL and 17 in BJY. After sequencing PCR products (35 and 85, respectively), 43 (WL) and 47 (BJY) single nucleotide polymorphisms (SNPs) were found in the 264 bp of exon 2. In WL chickens, significant associations were found with antibody responses to AI (two SNPs), ND (six SNPs), and SRBC (one SNP), while in BJY there was association with responses to ND (two SNPs) and SRBC (two SNPs), but none with AI. These results indicate that the genomic region bearing exon 2 of the major histocompatibility complex B-F gene has significant effects on antibody responses to SRBC and vaccination against AI and ND. Different SNPs affected antibody titers for each of the antigens and they differed between these very distinct breeds.
Collapse
Affiliation(s)
- L B Liu
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100094, China
| | - C M Wu
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100094, China
| | - J Wen
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100094, China
| | - J L Chen
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100094, China
| | - M Q Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100094, China
| | - G P Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100094, China
| |
Collapse
|
23
|
Rogers SL, Kaufman J. High allelic polymorphism, moderate sequence diversity and diversifying selection for B-NK but not B-lec, the pair of lectin-like receptor genes in the chicken MHC. Immunogenetics 2008; 60:461-75. [PMID: 18574582 DOI: 10.1007/s00251-008-0307-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/16/2008] [Indexed: 11/25/2022]
Abstract
We previously characterised the C-type lectin-like receptor genes B-NK and B-lec, located next to each other in opposite orientations in the chicken major histocompatibility complex (MHC). We showed that B-NK is an inhibitory receptor expressed on natural killer cells, whereas B-lec is an activation-induced receptor with a broader expression pattern. It is interesting to note that the chicken MHC has been linked with resistance or susceptibility to Marek's disease virus (MDV), an oncogenic herpes virus. Recent reports show that the C-type lectin-like receptors in mouse and rat (Ly49H, NKR-P1 and Clr) are associated with resistance to another herpesvirus, cytomegalovirus (CMV). Therefore, B-NK and B-lec are potential candidate genes for the MHC-mediated resistance to MDV. In this paper, we report that both genes encode glycosylated type II membrane proteins that form disulphide-linked homodimers. The gene sequences from nine lines of domestic chicken representing seven haplotypes show that B-lec is well conserved between the different haplotypes, apparently under purifying selection. In contrast, B-NK has high allelic polymorphism and moderate sequence diversity, with 21 nucleotide changes in the complementary deoxyribonucleic acids (cDNAs) resulting in 20 amino acid substitutions. The allelic variations include substitutions, an indel and loss/gain of three predicted N-linked glycosylation sites. Strikingly, there is as much as 7% divergence between protein sequences of B-NK from different haplotypes, greater than the difference observed between the highly polymorphic human KIR NK receptors. Analysis of ds and dn reveal evidence of strong positive selection for B-NK to be polymorphic at the protein level, and modelling demonstrates significant variation between haplotypes in the predicted ligand binding face of B-NK.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Chickens/genetics
- Chickens/immunology
- Chickens/metabolism
- DNA, Complementary/genetics
- Flow Cytometry
- Genetic Variation
- Haplotypes/genetics
- Humans
- Killer Cells, Natural/immunology
- Lectins, C-Type/genetics
- Models, Immunological
- Molecular Sequence Data
- Polymorphism, Genetic/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Mitogen/genetics
- Selection, Genetic
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Sally L Rogers
- Immunology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | |
Collapse
|
24
|
Yan RQ, Li XS, Yang TY, Xia C. Characterization of BF2 and β2m in three Chinese chicken lines. Vet Immunol Immunopathol 2005; 108:417-25. [PMID: 16039723 DOI: 10.1016/j.vetimm.2005.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Revised: 05/16/2005] [Accepted: 06/09/2005] [Indexed: 12/20/2022]
Abstract
Twenty-four BF2 genes and 10 beta(2)m genes from Chinese Sanhuang (SH), Wuji (WJ), and Zhenzhu (ZZ) chicken lines were cloned, and the amino acid replacement rates of the BF2 polypeptide binding domain were investigated. For this purpose, 13 BF2 genes from the SH-chicken line (BF2*01sh-BF2*13sh), six BF2 genes from the WJ-chicken line (BF2*01wj-BF2*06wj), and five BF2 genes from the ZZ-chicken line (BF2*01zz-BF2*05zz) were analyzed. The overall conservation of BF2 alleles could be observed within the sequences, and relative conservation was also displayed in the peptide-binding domain, CD8(+) interaction sites, and beta(2)m contact sites. Based on the amino acid similarity, BF2 from the three chicken lines could be divided into eleven gene groups, and five novel gene groups were observed. Although the amino acid similarity among the different alleles was 75.7-99.2%, within an allelic group the members shared >91% amino acid identity with each other. In addition, beta(2)m genes from the three Chinese chicken lines were also clustered into two gene groups: I and II. Between groups I and II, the amino acid identical ratio was much lower (81.9-84.0%). Group I is close to that of the reported chicken beta(2)m, whereas group II represents a new allelic group. The results suggest that five new BF2 groups and a new beta(2)m group exist in the three Chinese chicken lines.
Collapse
Affiliation(s)
- Ruo Qian Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China
| | | | | | | |
Collapse
|