1
|
Wang S, Wu B, Zhu L, Zhang W, Zhang L, Wu W, Wu J, Hu Y, Li T, Cui X, Luo X. The chemical characteristics of different sodium iron ethylenediaminetetraacetate sources and their relative bioavailabilities for broilers fed with a conventional corn-soybean meal diet. J Anim Sci Biotechnol 2024; 15:16. [PMID: 38287436 PMCID: PMC10826250 DOI: 10.1186/s40104-023-00969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Our previous studies demonstrated that divalent organic iron (Fe) proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation (Qf) values displayed higher Fe bioavailabilities for broilers. Sodium iron ethylenediaminetetraacetate (NaFeEDTA) is a trivalent organic Fe source with the strongest chelating ligand EDTA. However, the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested. Herein, the chemical characteristics of 12 NaFeEDTA products were determined. Of these, one feed grade NaFeEDTA (Qf = 2.07 × 108), one food grade NaFeEDTA (Qf = 3.31 × 108), and one Fe proteinate with an extremely strong chelation strength (Fe-Prot ES, Qf value = 8,590) were selected. Their bioavailabilities relative to Fe sulfate (FeSO4·7H2O) for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance, hematological indices, Fe contents, activities and gene expressions of Fe-containing enzymes in various tissues of broilers. RESULTS NaFeEDTA sources varied greatly in their chemical characteristics. Plasma Fe concentration (PI), transferrin saturation (TS), liver Fe content, succinate dehydrogenase (SDH) activities in liver, heart, and kidney, catalase (CAT) activity in liver, and SDH mRNA expressions in liver and kidney increased linearly (P < 0.05) with increasing levels of Fe supplementation. However, differences among Fe sources were detected (P < 0.05) only for PI, liver Fe content, CAT activity in liver, SDH activities in heart and kidney, and SDH mRNA expressions in liver and kidney. Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake, the average bioavailabilities of Fe-Prot ES, feed grade NaFeEDTA, and food grade NaFeEDTA relative to the inorganic FeSO4·7H2O (100%) for broilers were 139%, 155%, and 166%, respectively. CONCLUSIONS The bioavailabilities of organic Fe sources relative to FeSO4·7H2O were closely related to their Qf values, and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Bingxin Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Ling Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Weiyun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - We Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jiaqi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|
2
|
de Oya IG, Jiménez-Gutiérrez E, Gaillard H, Molina M, Martín H, Wellinger RE. Manganese Stress Tolerance Depends on Yap1 and Stress-Activated MAP Kinases. Int J Mol Sci 2022; 23:ijms232415706. [PMID: 36555348 PMCID: PMC9779322 DOI: 10.3390/ijms232415706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding which intracellular signaling pathways are activated by manganese stress is crucial to decipher how metal overload compromise cellular integrity. Here, we unveil a role for oxidative and cell wall stress signaling in the response to manganese stress in yeast. We find that the oxidative stress transcription factor Yap1 protects cells against manganese toxicity. Conversely, extracellular manganese addition causes a rapid decay in Yap1 protein levels. In addition, manganese stress activates the MAPKs Hog1 and Slt2 (Mpk1) and leads to an up-regulation of the Slt2 downstream transcription factor target Rlm1. Importantly, Yap1 and Slt2 are both required to protect cells from oxidative stress in mutants impaired in manganese detoxification. Under such circumstances, Slt2 activation is enhanced upon Yap1 depletion suggesting an interplay between different stress signaling nodes to optimize cellular stress responses and manganese tolerance.
Collapse
Affiliation(s)
- Inés G. de Oya
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Elena Jiménez-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
3
|
Khoshbin MR, Vakili R, Tahmasbi A. Manganese-methionine chelate improves antioxidant activity, immune system and egg manganese enrichment in the aged laying hens. Vet Med Sci 2022; 9:217-225. [PMID: 36409287 PMCID: PMC9857133 DOI: 10.1002/vms3.1008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND It has been reported that supplementation of manganese (Mn) could alleviate the negative effects of age on egg quality in laying hens. However, limited information is available on compensatory ways in order to reduce the adverse effects of hen age on health and Mn deposition in the body. OBJECTIVES The objectives were to investigate the effect of organic and inorganic sources of Mn on antioxidant activity, immune system, liver enzymes, shell quality and Mn deposition in the tissues of older laying hens. METHODS A total of 250, 80-week-old Leghorn laying hens (w36) were allocated into five treatment groups with five replications in a completely randomised design. Treatments were control (without Mn supplementation), 100% Mn sulphate, 75% Mn sulphate + 25% organic Mn chelate, 50% Mn sulphate + 50% organic Mn chelate and 25% Mn sulphate + 75% organic Mn chelate. RESULTS The groups fed 50 and 75% organic Mn chelate exhibited the lowest feed conversion ratio, as well as the maximum laying percentage, and egg weight and mass. Except to those fed 75% Mn sulphate, the hens received Mn supplements either as organic or inorganic, had higher immunoglobulin G and M compared with the control (p < 0.05). A significant elevation in the values of superoxide dismutase was observed in the hens receiving 50 and 75% organic Mn chelate when compared with the other treatments. The ALP activity decreased with increasing organic Mn chelate. Mn supplementation, either as organic or inorganic, increased Mn deposition in bone, egg yolk and shell, serum and liver. CONCLUSION Dietary supplementation with 50-75% Mn-methionine has the potential to replace Mn-sulphate in laying hens' diet for improving eggshell quality, Mn deposition in the eggshell, antioxidant capacity and immune response, as well as improving laying performance, egg weight and feed conversion ratio.
Collapse
Affiliation(s)
| | - Reza Vakili
- Department of Animal Science, Kashmar BranchIslamic Azad UniversityKashmarIran
| | | |
Collapse
|
4
|
Xia WH, Tang L, Wang ZY, Wang L. Effects of Inorganic and Organic Manganese Supplementation on Growth Performance, Tibia Development, and Oxidative Stress in Broiler Chickens. Biol Trace Elem Res 2022; 200:4453-4464. [PMID: 34851493 DOI: 10.1007/s12011-021-03041-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Manganese (Mn) is an essential trace element for broiler chickens; its deficiency causes tibial dyschondroplasia (TD) characterized by lameness and growth retardation. Inorganic and organic manganese sources are used in global poultry production, but there is a lack of systematic investigations to compare the bioavailability among them. In this study, 120 1-day-old Arbor Acres (AA) broilers were randomly divided into four groups (n = 30), i.e., control group (Mn sulfate, 60 mg/kg), Mn-D group (Mn deficiency, 22 mg/kg), Mn-Gly group (Mn glycinate, 60 mg/kg), and Mn-Pro group (Mn proteinate, 60 mg/kg). During the 42-day experiment, growth performance, tibial bone parameters, pathological index changes, serum biochemical changes, and oxidative stress indicators were evaluated. These results not only suggested that Mn plays a crucial role in the normal development of tibia and the maintenance of redox homeostasis in broilers, but also proved that organic Mn supplementation, especially Mn proteinate, improved the tibia development and the absorption efficiency, as well as overall oxidative stress status of broilers, suggesting that it had greater bioavailability than inorganic Mn. Thus, application of organic Mn source may be an effective way to reduce economic losses and resolve animal welfare concerns due to TD in commercial poultry farming.
Collapse
Affiliation(s)
- Wei-Hao Xia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China
| | - Liang Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
| |
Collapse
|
5
|
Byrne L, Murphy RA. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals (Basel) 2022; 12:1981. [PMID: 35953970 PMCID: PMC9367456 DOI: 10.3390/ani12151981] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of dietary supplementation of animal feeds with trace minerals is irrefutable, with various forms of both organic and inorganic products commercially available. With advances in research techniques, and data obtained from both in-vitro and in-vivo studies in recent years, differences between inorganic and organic trace minerals have become more apparent. Furthermore, differences between specific organic mineral types can now be identified. Adhering to PRISMA guidelines for systematic reviews, we carried out an extensive literature search on previously published studies detailing performance responses to trace minerals, in addition to their corresponding relative bioavailability values. This review covers four of the main trace minerals included in feed: copper, iron, manganese and zinc, and encompasses the different types of organic and inorganic products commercially available. Their impact from environmental, economic, and nutritional perspectives are discussed, along with the biological availability of various mineral forms in production animals. Species-specific sections cover ruminants, poultry, and swine. Extensive relative bioavailability tables cover values for all trace mineral products commercially available, including those not previously reviewed in earlier studies, thereby providing a comprehensive industry reference guide. Additionally, we examine reasons for variance in reported relative bioavailability values, with an emphasis on accounting for data misinterpretation.
Collapse
Affiliation(s)
- Laurann Byrne
- Alltech Bioscience Centre, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| | | |
Collapse
|
6
|
Lu L, Dong X, Ma X, Zhang L, Li S, Luo X, Liao X. Metabolic utilization of intravenously injected iron from different iron sources in target tissues of broiler chickens. ANIMAL NUTRITION 2022; 9:74-83. [PMID: 35949984 PMCID: PMC9344292 DOI: 10.1016/j.aninu.2021.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
No information is available regarding the utilization of iron (Fe) from different Fe sources at a target tissue level. To detect differences in Fe metabolic utilization among Fe sources, the effect of intravenously injected Fe on growth performance, hematological indices, tissue Fe concentrations and Fe-containing enzyme activities and gene expressions of Fe-containing enzymes or protein in broilers was investigated. On d 22 post-hatching, a total of 432 male chickens were randomly allotted to 1 of 9 treatments in a completely randomized design. Chickens were injected with either a 0.9% (wt/vol) NaCl solution (control) or a 0.9% NaCl solution supplemented with Fe sulphate or 1 of 3 organic Fe sources. The 3 organic Fe sources were Fe chelates with weak (Fe-MetW), moderate (Fe-ProtM) or extremely strong (Fe-ProtES) chelation strength. The 2 Fe dosages were calculated according to the Fe absorbabilities of 10% and 20% every 2 d for a duration of 20 d. Iron injection did not affect (P > 0.05) ADFI, ADG or FCR during either 1 to 10 d or 11 to 20 d after injections. Hematocrit and Fe concentrations in the liver and kidney on d 10 after Fe injections, and Fe concentrations in the liver or pancreas and ferritin heavy-chain (FTH1) protein expression level in the liver or spleen on d 20 after Fe injections increased (P ≤ 0.05) as injected Fe dosages increased. When the injected Fe level was high at 20% Fe absorbability, the chickens injected with Fe-ProtES had lower (P < 0.001) liver or kidney Fe concentrations and spleen FTH1 protein levels than those injected with Fe-MetW or Fe-ProtM on d 20 after injections. And they had lower (P < 0.05) liver cytochrome C oxidase mRNA levels on d 20 after injections than those injected with Fe-MetW or Fe sulphate. The results from this study indicate that intravenously injected Fe from Fe-ProtES was the least utilizable and functioned in the sensitive target tissue less effectively than Fe from Fe sulfate, Fe-MetW or Fe-ProtM.
Collapse
Affiliation(s)
- Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueyu Dong
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xuelian Ma
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
- Corresponding authors.
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Corresponding authors.
| |
Collapse
|
7
|
Geng Y, Sun X, Lu L, Lin X, Liao X, Zhang L, Wang R, Luo X. Effect of in ovo manganese injection on the embryonic development, antioxidation, hatchability and performances of offspring broilers under normal and high temperatures. Poult Sci 2022; 101:101936. [PMID: 35689999 PMCID: PMC9192813 DOI: 10.1016/j.psj.2022.101936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Two experiments were carried out to study the effect of in ovo manganese (Mn) injection on the embryonic development, antioxidation, hatchability, and performances of offspring broilers under normal temperature (NT) and high temperature (HT). Experiment 1 was conducted to investigate the effect of in ovo Mn injection on the embryonic hatchability of Arbor Acres broiler breeders. On D 9 of incubation, a total of 684 fertilized eggs were randomly allocated to 6 treatments: the non-injected positive control (niPC) and treatments injected with 0 (the negative control, iNC), 6.25, 12.5, 25.0, or 50.0 μg Mn/egg as Mn sulfate. Experiment 2 was conducted to investigate the effect of in ovo Mn injection on the embryonic development, antioxidation and performance of offspring broilers under NT and HT. A total of 792 fertilized eggs were randomly allocated to 6 treatments in a 1 (niPC) + 1 (iNC) + 2 (injected Mn sources: Mn sulfate and Mn proteinate) × 2 (injected Mn levels: 12.5 and 25.0 μg/egg) factorial arrangement during the embryonic stage and D1 to 28 at NT. Then, 288 birds were allotted to 12 treatments in a 6 (the above embryonic treatments) × 2 (environmental temperatures: NT-22℃ vs HT-34℃) factorial arrangement from D 29 to 42. The results showed that Mn injection affected (P < 0.03) the hatchability and the maximum level of in ovo injected Mn was 25.0 μg Mn/egg. The Mn injection upregulated (P < 0.05) Mn-containing superoxide dismutase mRNA expression in the embryonic heart compared to the iNC. Hyperthermia decreased (P < 0.05) ADG and ADFI, breast muscle percentage, plsma alkaline phosphatase activity, and red color values of breast and thigh muscles, but increased (P < 0.05) F/G, plasma aspartate aminotransferase and lactic dehydrogenase activities, total cholesterol, uric acid and triiodothyronine contents, abdominal fat, light values of breast and thigh muscles of offspring broilers. The results suggest that in ovo Mn injection can enhance antioxidant ability in the chick embryonic heart.
Collapse
|
8
|
Hernández RB, de Souza-Pinto NC, Kleinjans J, van Herwijnen M, Piepers J, Moteshareie H, Burnside D, Golshani A. Manganese-Induced Neurotoxicity through Impairment of Cross-Talk Pathways in Human Neuroblastoma Cell Line SH-SY5Y Differentiated with Retinoic Acid. TOXICS 2021; 9:toxics9120348. [PMID: 34941782 PMCID: PMC8704659 DOI: 10.3390/toxics9120348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Abstract
Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology—LABITA, Department of Chemistry, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema 09972-270, SP, Brazil
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
- Correspondence: ; Tel.: +55-11-3385-4137 (ext. 3522)
| | - Nadja C. de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-900, SP, Brazil;
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Jolanda Piepers
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Houman Moteshareie
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Daniel Burnside
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Ashkan Golshani
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| |
Collapse
|
9
|
Shokri P, Ghazanfari S, Honarbakhsh S. Effects of different sources and contents of dietary manganese on the performance, meat quality, immune response, and tibia characteristics of broiler chickens. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Optimal Level of Supplemental Manganese for Yellow-Feathered Broilers during the Growth Phase. Animals (Basel) 2021; 11:ani11051389. [PMID: 34068258 PMCID: PMC8153165 DOI: 10.3390/ani11051389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023] Open
Abstract
This experiment investigated the effect of an optimized supplemental dietary manganese (Mn) on growth performance, tibial characteristics, immune function and meat quality, of yellow-feathered broilers. In three rearing periods, birds were fed for 21-d periods, from d 1 (starter), d 22 (grower) and d 43 (finisher), respectively, with basal diets (containing 16, 17, and 14 mg/kg analyzed Mn, respectively) supplemented with 0, 20, 40, 60, 80, 100, 120 and 140 mg/kg Mn. For starter phase broilers, supplemental manganese affected feed to gain ratio (F/G), and the minimum value was observed with 120 mg/kg manganese. During the grower phase, ADG increased quadratically (p < 0.05) with supplemental Mn and was maximal with 54 mg/kg additional manganese estimated using the regression equation. There was no influence of supplemental manganese on growth performance of broilers during the finisher phase (p > 0.05). The thymic relative weight of broilers were linearly (p < 0.05) and quadratically (p < 0.05) increased with supplemental Mn and maxima were obtained with 95 and 110 mg/kg additional Mn at 42 d and 63 d. The bone density of the tibia in broilers at d 21, 42 and 63 were increased quadratically (p < 0.05) by supplemental Mn, and optimal supplementation for the three phases was 52, 60 and 68 mg/kg, respectively. The weight, diameter, breaking strength and bone density of the tibia of 63-d broilers were influenced (p < 0.05) by supplemental manganese. The lightness (L*) value (linear, p < 0.05) and yellowness (b*) value (p < 0.05) of the breast muscle were decreased by dietary manganese supplementation, and the optimal supplementation, based on L*, was 86 mg/kg. In conclusion, supplemental Mn affected the growth performance, thymic relative weight, tibial characteristics, and the meat color of yellow-feathered broilers. From the quadratic regressions, the optimal supplementation of yellow-feathered broilers at the starter, grower and finisher phases to achieve the best performance was 52, 60, and 68 mg/kg, respectively.
Collapse
|
11
|
Silva NC, Poetini MR, Bianchini MC, Almeida FP, Dahle MMM, Araujo SM, Bortolotto VC, Musachio EAS, Ramborger BP, Novo DLR, Roehrs R, Mesko MF, Prigol M, Puntel RL. Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17519-17531. [PMID: 33403631 DOI: 10.1007/s11356-020-11848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 μM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.
Collapse
Affiliation(s)
- Neicí Cáceres Silva
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Márcia Rósula Poetini
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Matheus Chimelo Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Polet Almeida
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Mustafá Munir Mustafa Dahle
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
12
|
Meng T, Gao L, Xie C, Xiang Y, Huang Y, Zhang Y, Wu X. Manganese methionine hydroxy analog chelated affects growth performance, trace element deposition and expression of related transporters of broilers. ACTA ACUST UNITED AC 2021; 7:481-487. [PMID: 34258436 PMCID: PMC8245798 DOI: 10.1016/j.aninu.2020.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022]
Abstract
The present study aimed to evaluate the effects of manganese methionine hydroxyl analog chelated (Mn-MHAC) as a manganese (Mn) source on growth performance and trace element deposition in broilers. A total of 432 Arbor Acres commercial female broilers were fed a basal corn-soybean diet containing Mn at 25.64 mg/kg diet for 10 d. They were then randomly assigned to 6 groups, including a control group (the basal diet), a Mn sulfate group (the basal diet supplemented with Mn at 100 mg/kg diet), and 4 Mn-MHAC groups (the basal diet supplemented with Mn-MHAC at 25, 50, 75 and 100 mg Mn/kg diet, respectively). The results showed that compared with the control group, groups supplemented with Mn-MHAC had a positive effect on BW (quadratic, P = 0.017) and ADG (quadratic, P = 0.017). Moreover, the Mn-MHAC (50 mg Mn/kg diet) group had significantly greater BW and ADG (P < 0.05) compared with the other Mn-MHAC groups. Trace element deposition results also showed that tibial Mn increased (linear or quadratic, P = 0.002 and 0.009, respectively) in groups fed diets with increased levels of Mn-MHAC. In contrast, Fe deposition decreased both in the heart (linear, P = 0.020) and tibia (P < 0.05). In addition, the Mn-MHAC supplement noticeably lowered serum Mn-SOD activity (linear or quadratic, P = 0.048 and 0.019, respectively). The relative mRNA levels of divalent metal transporter 1 (DMT1) (P = 0.024), ferroportin 1 (FPN1) (P = 0.049), and Cu transporter-1(CTR1) (P < 0.001) in the duodenum, as well as CTR1 in the jejunum and ileum (P = 0.040 and 0.011, respectively) were higher in the Mn-supplemented group than in the control group. Furthermore, the relative mRNA level of DMT1 in the jejunum and ileum of broilers in the Mn-MHAC group (50 mg Mn/kg diet) did not differ from those in the control group, but was lower than those in the Mn sulfate group (P < 0.05). In conclusion, Mn-MHAC dietary supplementation improved the growth performance and trace element deposition in broilers. From this study, we recommend the optimum Mn-MHAC level to meet the Mn requirement of broilers is 50 to 75 mg Mn/kg diet.
Collapse
Affiliation(s)
- Tiantian Meng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China.,Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lumin Gao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China
| | - Chunyan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yangkui Xiang
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., 410300, Changsha, China
| | - Yiqiang Huang
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., 410300, Changsha, China
| | - Yawei Zhang
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., 410300, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China.,Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
13
|
Cho HM, Hong JS, Kim YB, Nawarathne SR, Choi I, Yi YJ, Wu D, Lee H, Han SE, Nam KT, Seoung EI, Heo JM. Responses in growth performance and nutrient digestibility to a multi-protease supplementation in amino acid-deficient broiler diets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:840-853. [PMID: 33987564 PMCID: PMC7721581 DOI: 10.5187/jast.2020.62.6.840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022]
Abstract
The present study was conducted to investigate the effect of a multi-protease on
production indicators of broiler chickens fed a crude protein and amino acid
deficient-diets for 35 days immediately after hatch. A total of 448 one-day-old
Ross 308 male broiler chicks were allocated in a completely randomized design
into one of eight dietary treatments (positive control [PC], negative control
[NC: minus 0.5% from PC, and minus 2% of lysine, methionine, threonine and
methionine plus cysteine], extreme negative control [ENC: minus 1% from PC,
minus 4% of lysine, methionine, threonine and methionine plus cysteine], and
plus multi-protease 150 or 300 g per ton [e. g., PC-150]; PC, PC-150, NC,
NC-150, NC-300, ENC, ENC-150, ENC-300) to give eight replicates with seven birds
in a battery cage. Body weight, average daily gain, average daily feed intake,
feed conversion ratio, and mortality were measured every week. Carcass traits,
proximate analysis of breast meat, and ileum digestibility were analyzed on day
21 and 35. Feeding a multi-protease (i.e., more than 150 g/ton) for 35 days
immediately after hatching improved feed efficiency and ileum digestibility
(i.e., dry matter, crude protein, and energy) compared to their counterparts
(i.e., diets without multi-protease: PC, NC, and ENC). In conclusion, our
results indicated that broiler chickens fed nutrients deficient-diet (i.e.,
crude protein and amino acids) supplemented a multi-protease had an ability to
compensate and (or) improve their growth performance commensurate with increased
ileal digestibility for 35 days immediately after hatch.
Collapse
Affiliation(s)
- Hyun Min Cho
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jun Sun Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Yu Bin Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Shan Randima Nawarathne
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Inchul Choi
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Di Wu
- Kemin Industries, Inc., 12 Senoko Drive 758200, Singapore
| | - Hans Lee
- Kemin Industries, Inc., 12 Senoko Drive 758200, Singapore
| | - Seung Eun Han
- Kemin Industries, Inc., 12 Senoko Drive 758200, Singapore
| | - Ki Taeg Nam
- Department of Animal Science and Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Eun Il Seoung
- Department of Animal Science and Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Bai S, Peng J, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Bai J, Xuan Y, Su Z. Effects of Dietary Iron Concentration on Manganese Utilization in Broilers Fed with Manganese-Lysine Chelate-Supplemented Diet. Biol Trace Elem Res 2020; 198:231-242. [PMID: 31933278 DOI: 10.1007/s12011-020-02035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Dietary iron (Fe) influences manganese (Mn) utilization in chickens fed with inorganic Mn-supplemented diet. This study aimed to determine if dietary Fe levels affect Mn utilization in broilers fed with organic Mn-supplemented diet. Nine hundred 8-day-old broilers were randomly assigned to 1 of 6 treatments in a 3 (Fe level) × 2 (Mn source) factorial arrangement after feeding Mn- and Fe-unsupplemented diets for 7 days. The broilers were fed the basal diets (approximately 28 mg Mn/kg and 60 mg Fe/kg) supplemented with 0, 80, or 160 mg/kg Fe (L-Fe, M-Fe, or H-Fe), and 100 mg/kg Mn from Mn sulfate (MnSO4) or manganese-lysine chelate (MnLys) for 35 days. The H-Fe diet decreased (P < 0.05) body weight gain and feed intake as compared with L-Fe and M-Fe diets regardless of dietary Mn sources. Dietary Fe levels did not influence (P > 0.10) serum Mn concentration in MnLys-treated broilers, but serum Mn concentration decreased (P < 0.05) with dietary Fe increasing in MnSO4-treated broilers. The Mn concentration in the duodenum and tibia decreased (P < 0.05) with increasing dietary Fe levels regardless of dietary Mn sources, and MnLys increased (P < 0.04) these indices as compared with MnSO4. Dietary Fe levels did not significantly influence (P > 0.11) Mn concentration and activity and mRNA abundance of manganese-containing superoxide dismutase (MnSOD) in the heart of MnLys-treaded broilers, but the H-Fe diet decreased (P < 0.05) these indices in MnSO4-treated broilers as compared with M-Fe and L-Fe diets. The L-Fe diet increased (P < 0.001) duodenal divalent metal transporter 1 mRNA abundance when compared with the M-Fe and H-Fe diets on day 42, regardless of dietary Mn sources. The M-Fe and H-Fe diets decreased (P < 0.001) duodenal ferroportin 1 (FPN1) mRNA level when compared with the L-Fe diet in MnSO4-treated broilers, while dietary Fe levels did not significantly influence (P > 0.40) duodenal FPN1 mRNA abundance in MnLys-treated broilers. These results indicated dietary Fe levels decreased Mn utilization in MnSO4-treated broilers, but did not influence Mn utilization in MnLys-treated broilers evaluated by Mn concentrations in the serum and heart, and the activity and mRNA expression of heart MnSOD.
Collapse
Affiliation(s)
- Shiping Bai
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Jialong Peng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jie Bai
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zuowei Su
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| |
Collapse
|
15
|
Hernández RB, Carrascal M, Abian J, Michalke B, Farina M, Gonzalez YR, Iyirhiaro GO, Moteshareie H, Burnside D, Golshani A, Suñol C. Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics 2020; 12:1656-1678. [PMID: 33206086 DOI: 10.1039/d0mt00085j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 μM), which was higher than that of MnCl2 (LC50∼ 27 μM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 μM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, CEP 09972-270, Diadema, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang YN, Wang S, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Abouelezz KFM, Zheng CT. Estimation of dietary manganese requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, and serum biochemical and antioxidant indices. Poult Sci 2020; 99:5752-5762. [PMID: 33142493 PMCID: PMC7647759 DOI: 10.1016/j.psj.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
This study was aimed at estimating the dietary manganese (Mn) requirement for laying duck breeders. A total of 504 Longyan duck breeders (body weight: 1.20 ± 0.02 kg) aged 17 wk were randomly allocated to 6 treatments. The birds were fed with a basal diet (Mn, 17.5 mg/kg) or diets supplemented with 20, 40, 80, 120, or 160 mg/kg of Mn (as MnSO4·H2O) for 18 wk. Each treatment had 6 replicates of 14 ducks each. As a result of this study, dietary Mn supplementation did not affect the productive performance of laying duck breeders in the early laying period (17–18 wk), but affected egg production, egg mass, and feed conversion ratio (FCR) from 19 to 34 wk (P < 0.05), and there was a linear and quadratic effect of supplement level (P < 0.05). The proportion of preovulatory ovarian follicles increased (P < 0.01) linearly and quadratically, and atretic follicles (weight and percentage) decreased (P < 0.05) quadratically with dietary Mn supplementation. The density and breaking strength of tibias increased (quadratic; P < 0.05), the calcium content of tibias decreased (linear, quadratic; P < 0.01), and Mn content increased (linear, quadratic; P < 0.001) with increase in Mn. The addition of Mn had a quadratic effect on serum contents of estradiol, prolactin, progesterone, luteinizing hormone, and follicle-stimulating hormone (P < 0.001). Dietary Mn supplementation decreased serum contents of total protein (linear, P < 0.05), glucose (quadratic, P < 0.05), total bilirubin, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and calcium (linear, quadratic; P < 0.05). The serum total antioxidant capacity and total and Mn-containing superoxide dismutase activities increased (linear, quadratic; P < 0.001), and malondialdehyde content decreased (linear, quadratic; P < 0.001) in response to Mn supplemental levels. The dietary Mn requirements, in milligram per kilogram for a basal diet containing 17.5 mg/kg of Mn, for Longyan duck breeders from 19 to 34 wk of age were estimated to be 84.2 for optimizing egg production, 85.8 for egg mass, and 95.0 for FCR. Overall, dietary Mn supplementation, up to 160 mg/kg of feed, affected productive performance, tibial characteristics, and serum biochemical and antioxidant status of layer duck breeders. Supplementing this basal diet (17.5 mg/kg of Mn) with 85 to 95 mg/kg of additional Mn was adequate for laying duck breeders during the laying period.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
17
|
Han Q, Guo Y, Zhang B, Nie W. Effects of Dietary Zinc on Performance, Zinc Transporters Expression, and Immune Response of Aged Laying Hens. Biol Trace Elem Res 2020; 196:231-242. [PMID: 31773485 DOI: 10.1007/s12011-019-01916-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
Abstract
This study was to investigate the effects of dietary zinc (Zn) supplementation on performance, zinc transporter gene expression, and immune function in aged laying hens. In experiment 1, twenty 31-week-old hens (young) and twenty 60-week-old hens (old) with the same genetic background were fed with the same diet for 4 weeks. In experiment 2, a basal diet supplemented with zinc sulfate (ZnS) and zinc glycine chelate (ZnG) at 30, 60, 90, and 120 mg Zn/kg to constitute nine experimental diets. Eight hundred and ten 60-week-old layers were distributed in a completely randomized experimental design with 9 treatments, 6 replicates of 15 birds each, and birds were fed for 10 weeks. In experiment 1, results showed that zinc and metallothionein (MT) concentration in the shell gland of old hens was significantly lower than young layers (P < 0.05). Zinc transporters ZnT1, 4, 5, 6, and 7 messenger RNA (mRNA) abundance in old layers were significantly lower versus the young (P < 0.05). In experiment 2, results indicated that dietary zinc supplementation did not significantly affect the laying rate, average feed intake, egg weight, feed conversion efficiency, broken egg rate, or mortality (P > 0.05). Supplemental ZnG significantly improved eggshell breaking strength than ZnS, with a higher alkaline phosphatase (ALP) activity and more abundant ZnT4 expression in shell gland versus ZnS (P < 0.05). ZnG supplementation at 90 mg Zn/kg affected the duodenal mucus by significantly increasing ZnT1, 6, 7, ZIP13, and MT-4 mRNA level (P < 0.05). Zinc level significantly increased bovine serum albumin (BSA) antibody concentration on 14 day after BSA injection (P < 0.05). Supplementation of ZnG improved eggshell quality of aged layers by upgrading zinc transporter expression in the shell gland and intestine also enhanced humoral immunity.
Collapse
Affiliation(s)
- Qiqi Han
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuming Guo
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bingkun Zhang
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Nie
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
18
|
Bai S, Peng J, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Bai J, Xuan Y, Su Z. Effects of Dietary Iron on Manganese Utilization in Broilers Fed with Corn-Soybean Meal Diet. Biol Trace Elem Res 2020; 194:514-524. [PMID: 31230207 DOI: 10.1007/s12011-019-01780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 01/22/2023]
Abstract
To investigate the effects of dietary iron (Fe) levels on manganese (Mn) utilization, 900 8-day-old broilers were randomly assigned to 1 of 6 treatments in a 3 (Fe level) × 2 (Mn level) factorial arrangement after feeding Mn- and Fe-unsupplemented diet for 7 days. The broilers were then fed with basal corn-soybean meal diets (approximately 28 mg Mn/kg and 60 mg Fe/kg) added with 0, 80, or 160 mg/kg Fe (L-Fe, M-Fe, or H-Fe), and 0 or 100 mg/kg Mn for 35 days. Body weight gain was lower for H-Fe broilers than that for L-Fe and M-Fe broilers. On day 42, H-Fe broilers had lower serum Mn concentration as compared with L-Fe and M-Fe broilers, and tibia Mn concentration decreased as dietary Fe increased. In Mn-supplemented broilers, liver Mn was lower in L-Fe and H-Fe treatments than that in M-Fe treatment. H-Fe treatment decreased Mn concentration and manganese-containing superoxide dismutase (MnSOD) activity in the heart when compared with L-Fe and M-Fe treatments. Dietary Fe did not significantly influence Mn concentrations in the liver and heart, and heart MnSOD activity in Mn-unsupplemented broilers. In the duodenum, L-Fe treatment decreased divalent metal transporter 1 (DMT1) mRNA abundance when compared with M-Fe and H-Fe treatments, and ferroportin 1 (FPN1) mRNA level was higher in M-Fe treatment than that in L-Fe and H-Fe treatments. These results suggested H-Fe diet decreased Mn status in broilers evaluated by Mn concentrations in serum and heart, and heart MnSOD activity. Dietary Fe influenced Mn absorption possibly through effects on duodenal DMT1 and FPN1 expression.
Collapse
Affiliation(s)
- Shiping Bai
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Jialong Peng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Keying Zhang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qiufeng Zeng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Huanwei Peng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jie Bai
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yue Xuan
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zuowei Su
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| |
Collapse
|
19
|
Mirzavandi Chegeni M, Mottaghitalab M, Hosseini Moghaddam SH, Golshekan M. Broiler intestine DMT1 gene expression and bone characteristics, as affected by in ovo injection of different forms of manganese. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1646106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Majid Mottaghitalab
- Department of Animal Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | | | - Mostafa Golshekan
- Institute of Medical Advanced Technologies, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
20
|
Liao X, Zhu Y, Lu L, Li W, Zhang L, Ji C, Lin X, Luo X. Maternal manganese activates anti-apoptotic-related gene expressions via miR-1551 and miR-34c in embryonic hearts from maternal heat stress (Gallus gallus). J Therm Biol 2019; 84:190-199. [PMID: 31466753 DOI: 10.1016/j.jtherbio.2019.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) expressions are altered by maternal stresses and nutritional status. Our previous study has demonstrated that maternal manganese (Mn) addition could protect chick embryos against maternal heat stress via enhancing anti-apoptotic ability in embryonic hearts. The objective of this study was to investigate whether this protective effect could be achieved via miRNA mechanisms, and also be sustained in offspring broilers. A completely randomized design with a 2 (maternal normal and high temperatures: 21 and 32 °C) × 2 (maternal control basal diet and the basal diet + 120 mg Mn/kg) factorial arrangement of treatments was adopted. Totally 96 broiler breeder hens were allotted to 4 treatments with 6 replicates. Subsequently, 24 hatched chicks from each maternal treatment were divided into 6 replicates. Maternal supplemental 120 mg Mn/kg reduced the increased expressions of miR-1551 and miR-34c in hearts of offspring embryos but not broilers under maternal heat stress. B-cell CLL/lymphoma 2 (BCL2) and NF-κB-inducing kinase (NIK) genes related to anti-apoptotic ability were identified as direct targets for miR-1551 and miR-34c, respectively. Under maternal heat stress, maternal supplemental 120 mg Mn/kg activated target BCL2 expression and NIK-dependent NF-κB pathway via mediating miR-1551 and miR-34c expressions in hearts of offspring embryos rather than broilers.
Collapse
Affiliation(s)
- Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cheng Ji
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
21
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
22
|
Mwangi S, Timmons J, Ao T, Paul M, Macalintal L, Pescatore A, Cantor A, Dawson KA. Effect of manganese preconditioning and replacing inorganic manganese with organic manganese on performance of male broiler chicks. Poult Sci 2019; 98:2105-2113. [PMID: 30590788 PMCID: PMC6448132 DOI: 10.3382/ps/pey564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/05/2018] [Indexed: 02/03/2023] Open
Abstract
The effects of manganese (Mn) preconditioning, 96 h post-hatch followed by the replacement of inorganic Mn with different levels of organic Mn (5 to 21 D), on growth, tissue excreta Mn content, gene expression, and enzyme activity were evaluated. A total of 420 day-old male Cobb 500 broilers were divided into 2 groups. One group was fed a corn-soybean meal basal diet containing 17 mg of Mn/kg (preconditioning diet, MnPD); the second group was fed the non-preconditioning diet (NPCD), which was the MnPD supplemented with 60 mg of Mn/kg from manganese sulfate (MnSO4). On day 5, each group was divided into 5 subgroups and were randomly assigned to dietary treatments consisting of MnPD alone or MnPD supplemented with 12 or 60 mg Mn/kg Mn as MnSO4 or Mn proteinate (6 replicate cages of 6 birds). Broiler chicks that were fed the MnPD had lower (P ≤ 0.05) body weight gain (BWG) and G:F ratio when compared to those that were fed the NPCD for 4 D. Birds that were fed MnPD (1 to 4 D) and switched to MnPD supplemented with 60 mg/kg Mn (5 to 21 D) had lower (P ≤ 0.05) BWG compared to those that were fed NPCD (1 to 4 D) and switched to MnPD supplemented with 60 mg/kg Mn for 21 D. Excreta, tibia ash, liver, and heart Mn levels were increased (P ≤ 0.05) by supplemental Mn. The expression of jejunum divalent metal transporter-1 mRNA levels, as well as activities of plasma total super oxide dismutase and liver alanine transaminase, was not affected by MnPD or Mn source and levels. These results confirmed that feeding marginally deficient Mn diets to broiler chicks post-hatch does affect growth rate and tissue Mn concentration.
Collapse
Affiliation(s)
- S Mwangi
- Food Science and Technology Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - J Timmons
- Food Science and Technology Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - T Ao
- Alltech-University of Kentucky Nutrition Research Alliance, Lexington, Kentucky 40546
| | - M Paul
- Alltech-University of Kentucky Nutrition Research Alliance, Lexington, Kentucky 40546
| | - L Macalintal
- Alltech-University of Kentucky Nutrition Research Alliance, Lexington, Kentucky 40546
| | - A Pescatore
- Alltech-University of Kentucky Nutrition Research Alliance, Lexington, Kentucky 40546
| | - A Cantor
- Alltech-University of Kentucky Nutrition Research Alliance, Lexington, Kentucky 40546
| | - K A Dawson
- Alltech-University of Kentucky Nutrition Research Alliance, Lexington, Kentucky 40546
| |
Collapse
|
23
|
Zhao F, He C, Peng H, Zhang K, Ding X, Wang J, Zeng Q, Xuan Y, Bai S, Yu C. Relative bioavailability of humate-manganese complex for broilers fed a corn-soya bean meal diet. J Anim Physiol Anim Nutr (Berl) 2019; 103:108-115. [PMID: 30353582 DOI: 10.1111/jpn.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/01/2022]
Abstract
The experiment was conducted to investigate the bioavailability of manganese (Mn) from humate-Mn complex relative to Mn sulphate for the starter broilers fed a conventional corn-soya bean meal diet. A total of 560 1-day-old Arbor Acres male broiler chicks were randomly allotted to one of eight replicate cages (10 chicks per cage) for each of seven treatments in a completely randomized design involving a 2 × 3 factorial arrangement of treatments with two Mn sources (humate-Mn and Mn sulphate) and three levels of added Mn (60, 120 or 180 mg Mn/kg) plus a Mn-unsupplemented control diet containing 27.23 mg Mn/kg by analysis. At 14 days of age, the blood, liver, heart and tibia were collected for Mn analyses, and the activity and mRNA abundance of heart manganese superoxide dismutase (MnSOD). The results showed that humate-Mn supplementation decreased feed intake from day 1 to day 14, whereas it did not influence (p > 0.20) body weight at day 14 as compared to Mn sulphate. The Mn source did not influence Mn concentration in the liver, heart and tibia, and the activity and mRNA abundance of heart MnSOD, while humate-Mn decreased plasma Mn as compared to Mn sulphate. The Mn concentration in the plasma and heart, and the activity and mRNA abundance of heart MnSOD increased linearly as dietary Mn concentration increased. Based on slope ratios from multiple linear regressions of Mn concentrations in the plasma and heart, and the activity and mRNA abundance of heart MnSOD on daily intake amount of dietary analysed Mn, the bioavailability of humate-Mn complex relative to Mn sulphate (100%) was 82.8, 90.4, 82.8 and 81.9 respectively. These results indicated that the Mn from humate-Mn complex was just as bioavailable as the Mn from Mn sulphate for the starter broilers (day 1-14).
Collapse
Affiliation(s)
- Fengli Zhao
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chao He
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yue Xuan
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | | |
Collapse
|
24
|
|
25
|
Manganese influences the expression of fatty acid synthase and malic enzyme in cultured primary chicken hepatocytes. Br J Nutr 2017; 118:881-888. [PMID: 29173220 DOI: 10.1017/s0007114517002987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two experiments were designed to investigate the effects of Mn source and concentration on the mRNA expression and enzymatic activities of fatty acid synthase (FAS) and malic enzyme (ME) in cultured primary broiler hepatocytes. In Expt 1, primary broiler hepatocytes were treated with 0 (control), 0·25, 0·50 or 0·75 mmol/l of Mn as inorganic manganese chloride (MnCl2.4H2O) for 24 and 48 h. In Expt 2, primary broiler hepatocytes were incubated with 0 (control), 0·25 or 0·50 mmol/l of Mn as either manganese chloride or Mn-amino acid chelate for 48 h. The mRNA levels and activities of FAS and ME in the hepatocytes were measured in Expts 1 and 2. The results in Expt 1 showed that only at 48 h mRNA expression levels of FAS and ME in the hepatocytes decreased linearly (P0·33) on any of the measured cellular parameters. The results suggested that Mn might reduce cell damage and regulate FAS and ME expression at a transcriptional level in primary cultured broiler hepatocytes.
Collapse
|
26
|
Liao X, Ma C, Lu L, Zhang L, Luo X. Determination of dietary iron requirements by full expression of iron-containing cytochrome c oxidase in the heart of broilers from 22 to 42 d of age. Br J Nutr 2017; 118:493-499. [PMID: 28946930 DOI: 10.1017/s0007114517002458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was carried out to determine dietary Fe requirements for the full expression of Fe-containing enzyme in broilers chicks from 22 to 42 d of age. At 22 d of age, 288 Arbor Acres male chicks were randomly assigned to one of six treatments with six replicates and fed a basal maize-soyabean-meal diet (control, containing 47·0 mg Fe/kg) or the basal diet supplemented with 20, 40, 60, 80 or 100 mg Fe/kg from FeSO4.7H2O for 21 d. Regression analysis was performed to estimate the optimal dietary Fe level using quadratic models. Liver cytochrome c oxidase (Cox), heart Cox and kidney succinate dehydrogenase mRNA levels as well as heart COX activity were affected (P<0·08) by dietary Fe level, and COX mRNA level and activity in heart of broilers increased quadratically (P<0·03) as dietary Fe level increased. The estimates of dietary Fe requirements were 110 and 104 mg/kg for the full expression of Cox mRNA and for its activity in the heart of broilers, respectively. The results from this study indicate that COX mRNA level and activity in the heart are new and sensitive criteria to evaluate the dietary Fe requirements of broilers, and the dietary Fe requirements would be 104-110 mg/kg to support the full expression of COX in the heart of broiler chicks from 22 to 42 d of age, which are higher than the current National Research Council Fe requirement (80 mg/kg) of broiler chicks from 1 to 21 d or 22 to 42 d of age.
Collapse
Affiliation(s)
- Xiudong Liao
- State Key Laboratory of Animal Nutrition,Mineral Nutrition Research Division,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,People's Republic of China
| | - Chunyan Ma
- State Key Laboratory of Animal Nutrition,Mineral Nutrition Research Division,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,People's Republic of China
| | - Lin Lu
- State Key Laboratory of Animal Nutrition,Mineral Nutrition Research Division,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,People's Republic of China
| | - Liyang Zhang
- State Key Laboratory of Animal Nutrition,Mineral Nutrition Research Division,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,People's Republic of China
| | - Xugang Luo
- State Key Laboratory of Animal Nutrition,Mineral Nutrition Research Division,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,People's Republic of China
| |
Collapse
|
27
|
Zhang LY, Li XF, Liao XD, Zhang LY, Lu L, Luo XG. Effect of iron source on iron absorption and gene expression of iron transporters in the ligated duodenal loops of broilers. J Anim Sci 2017; 95:1587-1597. [PMID: 28464091 DOI: 10.2527/jas.2016.1147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This experiment was conducted to investigate the effect of iron source on Fe absorption and the gene expression of divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) in the ligated duodenal loops of broilers. The in situ ligated duodenal loops from Fe-deficient broiler chicks (28-d-old) were perfused with Fe solutions containing 0 to 14.33 mmol Fe/L from 1 of the following: Fe sulfate (FeSO∙7HO), Fe methionine with weak chelation strength (Fe-Met W; chelation strength is expressed as quotient of formation [Q] value, Q = 1.37), Fe proteinate with moderate chelation strength (Fe-Prot M; Q = 43.6), and Fe proteinate with extremely strong chelation strength (Fe-Prot ES; Q = 8,590) for up to 30 min. The gene expression of DMT1 and FPN1 in the duodenal loops from the control group and the groups treated with 3.58 mmol Fe/L from 1 of 4 Fe sources was analyzed. The absorption kinetics of Fe from different Fe sources in the duodenum followed a saturated carrier-dependent transport process. The maximum transport rate (J) values in the duodenum were greater ( < 0.03) for Fe-Prot ES and Fe-Prot M than for Fe-Met W and FeSO∙7HO. The Fe perfusion inhibited ( < 0.05) the mRNA expression of but enhanced ( < 0.0008) the mRNA expression of in the duodenum and had no effect ( > 0.14) on the protein expression levels of the 2 transporters. These results indicated that organic Fe sources with greater Q values showed higher Fe absorption; however, all Fe sources followed the same saturated carrier-dependent transport process in the duodenum, and DMT1 and FPN1 might participate in Fe absorption in the duodenum of broilers regardless of Fe source.
Collapse
|
28
|
Zhu Y, Lu L, Liao X, Li W, Zhang L, Ji C, Lin X, Liu HC, Odle J, Luo X. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities. Oncotarget 2017; 8:89665-89680. [PMID: 29163779 PMCID: PMC5685700 DOI: 10.18632/oncotarget.20804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.
Collapse
Affiliation(s)
- Yongwen Zhu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,College of Animal Science, South China Agricultural University, Guangzhou 510000, China.,College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Ji
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
29
|
Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age. Br J Nutr 2016; 116:1512-1518. [DOI: 10.1017/s0007114516003640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe present study was carried out to evaluate dietary Mn requirements of broilers from 22 to 42 d of age using molecular biomarkers. Chickens were fed a conventional basal maize–soyabean meal diet supplemented with Mn as Mn sulphate in graded concentrations of 20 mg Mn/kg from 0 to 140 mg Mn/kg of diet for 21 d (from 22 to 42 d of age). The Mn response curves were fitted for ten parameters including heart Mn-containing superoxide dismutase (MnSOD) mRNA and its protein expression levels and the DNA-binding activities of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Heart MnSOD mRNA and protein expression levels showed significant quadratic responses (P<0·01), and heart MnSOD activity showed a broken-line response (P<0·01), whereas Mn content and DNA-binding activities of Sp1 and AP-2 in the heart displayed linear responses (P<0·01) to dietary Mn concentrations, respectively. The estimates of dietary Mn requirements were 101, 104 and 94 mg/kg for full expressions of MnSOD mRNA level, MnSOD protein level and MnSOD activity in the heart, respectively. Our findings indicate that heart MnSOD mRNA expression level is a more reliable indicator than heart MnSOD protein expression level and its activity for the evaluation of Mn requirement of broilers, and about 100 mg Mn/kg of diet is required for the full expression of heart MnSOD in broilers fed the conventional basal maize–soyabean meal diet from 22 to 42 d of age.
Collapse
|
30
|
Effects of supplementation of manganese with or without phytase on growth performance, carcass traits, muscle and tibia composition, and immunity in broiler chickens. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Zhang LY, Lu L, Zhang LY, Luo XG. The chemical characteristics of organic iron sources and their relative bioavailabilities for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2016; 94:2378-96. [PMID: 27285914 DOI: 10.2527/jas.2016-0297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Twenty-four organic Fe sources were evaluated by polarographic analysis and via solubility in buffers (pH 5 and 2) and deionized water. Organic Fe sources included 6 Fe-Met complexes (Fe-Met), 10 Fe-Gly complexes, 1 Fe-Lys complex, 4 Fe proteinates, and 3 Fe-AA complexes (Fe-AA). Sources varied considerably in chemical characteristics. Chelation strengths (quotient of formation [Q] values) ranged from weak (Q = 1.08) to extremely strong strength (Q = 8,590). A total of 1,170 1-d-old Arbor Acres male broilers were randomly allotted to 6 replicate cages (15 chicks/cage) for each of 13 treatments in a completely randomized design involving a 4 × 3 factorial arrangement of treatments (4 Fe sources × 3 added Fe levels) plus a control with no added Fe. Dietary treatments included a corn-soybean meal basal diet (control; 55.8 mg Fe/kg) and the basal diet supplemented with 20, 40, or 60 mg Fe/kg as iron sulfate (FeSO∙7HO); an Fe-Met with weak chelation strength (Fe-Met W; Q = 1.37; 14.7% Fe); an iron proteinate with moderate chelation strength (Fe-Prot M; Q = 43.6; 14.2% Fe); or an iron proteinate with extremely strong chelation strength (Fe-Prot ES; Q = 8,590; 10.2% Fe). The growth performance, Fe concentrations, hematological indices, and activities and gene expressions of 2 Fe-containing enzymes in tissues of broilers at 7, 14, and 21 d of age were determined in the present study. Transferrin saturation in plasma on 14 d; bone Fe on d 7 and 14; liver Fe on d 7, 14, and 21; kidney Fe on d 14; succinate dehydrogenase activities in the liver on d 21 and in the kidney on d 7 and 21; mRNA levels in the kidney and heart on d 14; and mRNA levels in the liver and kidney on d 21 linearly increased ( < 0.05) as added Fe levels increased. However, differences in bioavailabilities among Fe sources were detected ( < 0.05) only for the mRNA levels in the liver and kidney on d 21. Based on slope ratios from the multiple linear regression of mRNA level in the liver or kidney of broilers on d 21 on daily dietary analyzed Fe intake, the bioavailabilities of Fe-Met W, Fe-Prot M, and Fe-Prot ES relative to iron sulfate (100%) were 129 ( = 0.18), 164 ( < 0.003), and 174% ( < 0.001) or 102 ( = 0.95), 143 ( = 0.09), and 174% ( < 0.004), respectively. These results indicated that the relative bioavailabilities of organic Fe sources were closely related to their Q values and organic Fe sources with greater Q values showed higher Fe bioavailabilities.
Collapse
|
32
|
Yang W, Chen Y, Cheng Y, Li X, Zhang R, Wen C, Zhou Y. An evaluation of zinc bearing palygorskite inclusion on the growth performance, mineral content, meat quality, and antioxidant status of broilers. Poult Sci 2016; 95:878-85. [DOI: 10.3382/ps/pev445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
|
33
|
Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals 2016; 29:265-74. [PMID: 26857738 DOI: 10.1007/s10534-016-9913-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/30/2016] [Indexed: 02/05/2023]
Abstract
Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.
Collapse
|
34
|
Zhu YW, Lu L, Li WX, Zhang LY, Ji C, Lin X, Liu HC, Odle J, Luo XG. Effects of maternal dietary manganese and incubation temperature on hatchability, antioxidant status, and expression of heat shock proteins in chick embryos1. J Anim Sci 2015; 93:5725-34. [DOI: 10.2527/jas.2015-9610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
35
|
Hernández RB, Nishita MI, Espósito BP, Scholz S, Michalke B. The role of chemical speciation, chemical fractionation and calcium disruption in manganese-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Trace Elem Med Biol 2015; 32:209-17. [PMID: 26302931 DOI: 10.1016/j.jtemb.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is an essential nutrient that can be toxic in excess concentrations, especially during early development stages. The mechanisms of Mn toxicity is still unclear, and little information is available regarding the role of Mn speciation and fractionation in toxicology. We aimed to investigate the toxic effects of several chemical forms of Mn in embryos of Danio rerio exposed during different development stages, between 2 and 122h post fertilization. We found a stage-specific increase of lethality associated with hatching and removal of the chorion. Mn(II), ([Mn(H2O)6](2+)) appeared to be the most toxic species to embryos exposed for 48h, and Mn(II) citrate was most toxic to embryos exposed for 72 and/or 120h. Manganese toxicity was associated with calcium disruption, manganese speciation and metal fractionation, including bioaccumulation in tissue, granule fractions, organelles and denaturated proteins.
Collapse
Affiliation(s)
- R B Hernández
- Federal University of São Paulo - Unifesp Campus Diadema, Deparment of Exact and Earth Sciences, Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Rua Prof. Artur Riedel, 275, CEP: 09972-270, Diadema, SP, Brazil.
| | - M I Nishita
- Federal University of São Paulo - Unifesp Campus Diadema, Deparment of Exact and Earth Sciences, Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Rua Prof. Artur Riedel, 275, CEP: 09972-270, Diadema, SP, Brazil
| | - B P Espósito
- University of São Paulo, Institute of Chemistry, Av. Lineu Prestes 748, CEP: 05508-000, São Paulo, SP, Brazil
| | - S Scholz
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - B Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
36
|
Zhu YW, Xie JJ, Li WX, Lu L, Zhang LY, Ji C, Lin X, Liu HC, Odle J, Luo XG. Effects of environmental temperature and dietary manganese on egg production performance, egg quality, and some plasma biochemical traits of broiler breeders. J Anim Sci 2015; 93:3431-40. [PMID: 26440012 DOI: 10.2527/jas.2015-8956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
An experiment was conducted to investigate the effects of environmental temperature and dietary Mn on egg production performance, egg quality, and some plasma biochemical traits of broiler breeders. A completely randomized factorial design involved 2 environmental temperatures (a normal temperature, 21 ± 1°C, and a high temperature, 32 ± 1°C) × 3 dietary Mn treatments (a Mn-unsupplemented corn–soybean meal basal diet or the basal diet supplemented with 120 mg of Mn/kg of diet as either MnSO4·H2O or manganese proteinate). There were 6 treatments with 6 replicates (4 birds per replicate). High temperature decreased egg weight (P < 0.0001), laying rate (P < 0.0001), egg yield (P < 0.0001), feed intake (P < 0.0001), egg:feed ratio (P < 0.0001), eggshell strength (P < 0.05) and thickness (P < 0.0001), plasma triiodothyronine level (P < 0.05), and alkaline phosphatase activity (P < 0.04) whereas it increased rectal temperature (P < 0.0001); plasma malondialdehyde level (P < 0.02); and activities (P < 0.002) of lactic dehydrogenase, aspartate aminotransferase, and creatine kinase. Broiler breeders fed the diets supplemented with Mn regardless of source had greater (P < 0.05) eggshell strength and lower (P ≤ 0.05) plasma triiodothyronine level and protein carbonyl content than those fed the control diet. The broiler breeders fed the diet supplemented with the organic Mn had greater (P < 0.01) eggshell thickness than those fed the control diet. There were interactions (P < 0.05) between environmental temperature and dietary Mn in laying rate, egg yield, feed intake, and egg:feed ratio. Under normal temperature, dietary Mn did not affect the above 4 parameters; however, under high temperature, broiler breeders fed the diet supplemented with the organic Mn showed greater (P < 0.03) improvements in these 4 parameters than those fed the control diet. The results from this study indicated that high temperature significantly impaired egg production performance and eggshell quality and induced lipid peroxidation and tissue damage whereas dietary supplementation of either organic or inorganic Mn improved eggshell strength and thermotolerance and reduced protein oxidation and that the organic Mn could alleviate the negative effect of high temperature on egg production performance of broiler breeders at the period of 32 to 45 wk of age.
Collapse
|
37
|
Xiao JF, Wu SG, Zhang HJ, Yue HY, Wang J, Ji F, Qi GH. Bioefficacy comparison of organic manganese with inorganic manganese for eggshell quality in Hy-Line Brown laying hens. Poult Sci 2015; 94:1871-8. [PMID: 26047673 DOI: 10.3382/ps/pev138] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/16/2015] [Indexed: 11/20/2022] Open
Abstract
This study was aimed at investigating the bioefficacy of organic compared with inorganic manganese (Mn) for eggshell quality. An amino acid-Mn complex or Mn sulfate monohydrate was used as the organic or inorganic Mn source. A total of six hundred forty-eight 50-wk-old layers (Hy-Line Brown) were divided into 9 groups; each group consisted of 6 replicates with 12 layers each. The feeding trial lasted 12 wk. During the first 4 wk of the feeding trial, the groups were fed a basal diet, which met the nutrient requirements of the layers, except for Mn. During the following 8 wk, 9 levels of Mn (inorganic Mn: 0, 25, 50, 100, and 200 mg/kg; organic Mn: 25, 50, 100, and 200 mg/kg) were used to supplement, respectively, in the basal diet on an equimolar basis. An exponential regression model was applied to calculate the bioefficacy of organic Mn compared with the inorganic Mn. Dietary supplementation with either organic or inorganic Mn did not influence egg production and feed efficiency of (P > 0.05), and eggshell quality did not exhibit a significant response to dietary supplementation with Mn sources at 56 and 58 wk (P > 0.05). Dietary supplementation with either organic Mn or inorganic Mn significantly enhanced the thickness, breaking strength, and elastic modulus of the eggshells compared with the control group at the end of 62 wk (P < 0.05). At the end of 62 wk, the bioefficacy of organic Mn was 357% (shell thickness), 406% (breaking strength), 458% (elastic modulus), and 470% (eggshell Mn), as efficacious as inorganic Mn at equimolar levels. This study suggests that organic Mn enhances eggshell quality in aged laying hens compared with inorganic Mn.
Collapse
Affiliation(s)
- J F Xiao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - S G Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - H J Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - H Y Yue
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - J Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - F Ji
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - G H Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
38
|
Suo H, Lu L, Zhang L, Zhang X, Li H, Lu Y, Luo X. Relative bioavailability of zinc-methionine chelate for broilers fed a conventional corn-soybean meal diet. Biol Trace Elem Res 2015; 165:206-13. [PMID: 25663477 DOI: 10.1007/s12011-015-0252-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
Abstract
An experiment was carried out to determine the bioavailability of the organic Zn-methionine chelate relative to inorganic Zn source (ZnSO4•7H2O) for broiler chicks fed a conventional corn-soybean meal diet. A total of 504 1-day-old Arbor Acres commercial male broiler chicks were randomly allotted to one of seven treatments in a completely randomized design involving a 2 × 3 factorial arrangement with three levels of added Zn (30, 60, or 90 mg of Zn/kg) and two Zn sources (Zn-methionine chelate and Zn sulfate) plus a Zn-unsupplemented control diet containing 29.2 mg of Zn/kg by analysis for an experimental phase of 21 days. Bone and pancreas were collected for testing Zn concentrations and pancreas metallothionein (MT) messenger RNA (mRNA) level at 7 or 21 days of age. The results showed that bone and pancreas Zn concentrations and MT mRNA level in pancreas increased linearly (P < 0.0001) at 7 or 21 days of age as added Zn level increased. Based on slope ratios from multiple linear regressions of the pancreas, MT mRNA level at 7 days and pancreas Zn concentration at 21 days on added Zn level and the bioavailability values of the Zn-methionine chelate relative to ZnSO4•7H2O (100%) were 120 and 115%, respectively (P > 0.22). The results indicated that the Zn from the Zn-methionine chelate was just as bioavailable as the Zn from Zn sulfate for broilers.
Collapse
Affiliation(s)
- Haiqing Suo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Li L, Li P, Chen Y, Wen C, Zhuang S, Zhou Y. Zinc-bearing zeolite clinoptilolite improves tissue zinc accumulation in laying hens by enhancing zinc transporter gene mRNA abundance. Anim Sci J 2015; 86:782-9. [PMID: 25597922 DOI: 10.1111/asj.12358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
Abstract
A study was conducted to investigate effects of zinc-bearing zeolite clinoptilolite (ZnCP), as an alternative for zinc sulfate (ZnSO4), on laying performance, tissue Zn accumulation and Zn transporter genes expression in laying hens. Hy-Line Brown laying hens were allocated to three treatments, each of which had six replicates with 15 hens per replicate, receiving basal diet supplemented with ZnSO4 (control, 80 mg Zn/kg diet), 0.23% ZnCP (40.25 mg Zn/kg diet) and 0.46% ZnCP (80.50 mg Zn/kg diet) for 8 weeks, respectively. Compared with control, hens fed diet containing 0.23% ZnCP had similar Zn content in measured tissues (P > 0.05). A higher ZnCP inclusion (0.46%) enhanced Zn accumulation in liver (P < 0.05) and pancreas (P < 0.05). In addition, ZnCP inclusion increased blood iron (Fe) content (P < 0.05). ZnCP supplementation enhanced jejunal metallothionein-4 (MT-4) messenger RNA (mRNA) abundance (P < 0.05). ZnCP inclusion at a higher level (0.46%) increased mRNA expression of MT-4 in pancreas (P < 0.05) and zinc transporter-1 (ZnT-1) in jejunum (P < 0.05). The highest ZnT-2 mRNA abundance in jejunum was found in hens fed 0.23% ZnCP inclusion diet (P < 0.05). The results indicated that ZnCP reached a higher bioavailability as compared with ZnSO4 as evidenced by enhanced tissue Zn accumulation and Zn transporter genes expression.
Collapse
Affiliation(s)
- Linfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ping Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Su Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Ma XY, Liu SB, Lu L, Li SF, Xie JJ, Zhang LY, Zhang JH, Luo XG. Relative bioavailability of iron proteinate for broilers fed a casein-dextrose diet. Poult Sci 2014; 93:556-63. [PMID: 24604848 DOI: 10.3382/ps.2013-03296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experiment was carried out to determine the bioavailability of organic Fe as Fe proteinate (Alltech, Nicholasville, KY) relative to inorganic Fe source (FeSO4•7H2O) for broiler chicks fed a casein-dextrose diet. A total of 448 1-d-old Arbor Acres commercial male broiler chicks were randomly allotted to 1 of 8 replicate cages (8 chicks per cage) for each of 7 treatments in a completely randomized design involving a 2 × 3 factorial arrangement of treatments with 2 Fe sources (Fe proteinate and Fe sulfate) and 3 levels of added Fe (10, 20, or 40 mg of Fe/kg) plus a Fe-unsupplemented control diet containing 4.56 mg of Fe/kg by analysis. Feed and distilled-deionized water were available ad libitum for an experimental phase of 14 d. At 14 d of age, blood samples were collected for testing hemoglobin (Hb) and hematocrit, and calculating total body Hb Fe, whereas liver and kidney samples were excised for Fe analyses. The results showed that ADG, ADFI, blood Hb, hematocrit, and total body Hb Fe and Fe concentrations in liver and kidney increased linearly (P < 0.0001), whereas mortality decreased linearly (P < 0.0001) as dietary Fe level increased. However, only blood Hb concentration and total body Hb Fe differed (P < 0.004) between the 2 Fe sources. Based on slope ratios from the multiple linear regression of Hb concentration and total body Hb Fe on daily intake of analyzed dietary Fe, the bioavailability of Fe proteinate relative to FeSO4•7H2O (100%) was 117 and 114%, respectively (P < 0.009). The results indicated that blood Hb concentration and total body Hb Fe were sensitive indices in reflecting differences in bioavailability among different Fe sources, and Fe proteinate was significantly more available to broilers than inorganic Fe sulfate in enhancing Hb concentration and total body Hb Fe.
Collapse
Affiliation(s)
- X Y Ma
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu S, Li S, Lu L, Xie J, Zhang L, Wang R, Luo X. The effectiveness of zinc proteinate for chicks fed a conventional corn-soybean meal diet. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Shen SF, Wang RL, Lu L, Li SF, Liu SB, Xie JJ, Zhang LY, Wang ML, Luo XG. Effect of intravenously injected zinc on tissue zinc and metallothionein gene expression of broilers. Br Poult Sci 2013; 54:381-90. [PMID: 23705842 DOI: 10.1080/00071668.2013.787158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The effect of intravenously injected zinc (Zn) on tissue Zn concentrations and pancreas metallothionein (MT) gene expression in broilers was investigated to detect differences in the tissue utilisation of Zn from different Zn sources. 2. A total of 432 male chickens were randomly allotted on d 22 post-hatch to one of nine treatments in a completely randomised design. Chickens were injected with either a 0.9% (w/v) NaCl solution (control) or a saline solution supplemented with Zn sulphate or one of three organic Zn chelates with weak (Zn-AA W), moderate (Zn-Pro M) or strong (Zn-Pro S) chelation strengths at two injected Zn dosages calculated according to two Zn absorbability levels (6 and 12%). 3. Bone and pancreas Zn concentrations, pancreas MT mRNA levels and MT concentrations increased on d 6 and 12 after Zn injections as the injected Zn dosages increased. Chickens injected with the Zn-Pro S had lower bone Zn concentration than those injected with the Zn-Pro M or Zn-AA W on d 6 after injections. However, no differences among Zn sources were observed in bone Zn concentration on d 12 after injections, pancreas Zn concentrations, pancreas MT mRNA levels and MT concentrations on both d 6 and d 12 after injections. 4. It was concluded that the injected Zn-Pro S was the least favourable for bone Zn utilisation of broilers. The pancreas Zn concentration and pancreas MT gene expressions might not be sensitive enough to detect differences in the tissue utilisation of injected Zn in broilers between organic and inorganic Zn sources or among organic Zn sources.
Collapse
Affiliation(s)
- S F Shen
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences,No. 2Yuanmingyuan West Road, Haidian, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Estimation of the Relative Bioavailability of Several Zinc Sources for Broilers Fed a Conventional Corn-Soybean Meal Diet. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Conly A, Poureslami R, Koutsos E, Batal A, Jung B, Beckstead R, Peterson D. Tolerance and efficacy of tribasic manganese chloride in growing broiler chickens. Poult Sci 2012; 91:1633-40. [DOI: 10.3382/ps.2011-02056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Wang F, Lu L, Li S, Liu S, Zhang L, Yao J, Luo X. Relative bioavailability of manganese proteinate for broilers fed a conventional corn-soybean meal diet. Biol Trace Elem Res 2012; 146:181-6. [PMID: 22081403 DOI: 10.1007/s12011-011-9238-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/13/2011] [Indexed: 11/26/2022]
Abstract
An experiment was conducted to investigate the bioavailability of organic manganese proteinate (Mn) relative to inorganic Mn sulfate for broilers fed a conventional corn-soybean meal basal diet. A total of 448-day-old Arbor Acres commercial male chicks were fed the Mn-unsupplemented basal diet (control) or basal diet supplemented with 60, 120, or 180 mg Mn/kg from each Mn source. At 21 days of age, heart tissue was excised for testing DM, Mn concentration, manganese superoxide dismutase (MnSOD) activity, and MnSOD mRNA level. The Mn concentration, MnSOD activity, and MnSOD mRNA level in heart tissue increased (P < 0.01) linearly as dietary manganese concentration increased. Based on slope ratios from multiple linear regressions of the above three indices on added Mn level, there was no significant difference (P > 0.21) in bioavailability between Mn proteinate and Mn sulfate for broilers in this experiment.
Collapse
Affiliation(s)
- Funing Wang
- College of Animal Science and Technology, Northwest A and F University, Yangling 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Gao T, Wang F, Li S, Luo X, Zhang K. Manganese regulates manganese-containing superoxide dismutase (MnSOD) expression in the primary broiler myocardial cells. Biol Trace Elem Res 2011; 144:695-704. [PMID: 21671088 DOI: 10.1007/s12011-011-9093-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Previous studies showed that dietary manganese can increase the MnSOD mRNA expression in a dose-dependent manner in the heart of broilers. In order to explore the specific mechanism of the MnSOD expression induced by manganese, a model of MnSOD expression was developed with primary cultured broiler myocardial cells. The objective of the present study was to investigate whether the model was working or not and to determine how manganese affects the expression of the enzyme in broiler myocardial cells in vitro. In experiment 1, various amount of manganese (0, 0.25, 0.5, 1, 2, and 4 mM) were added into the cultures for 24-h incubation to investigate MnSOD expression and for 0-, 6-, 12-, 24-, 36-, and 48-h incubation to measure the cell viability. In experiment 2, the most suitable Mn supplementation based on the results of experiment 1 was added into cultures for 6-, 12-, 24-, and 48-h incubation. The results showed that MnSOD mRNA, MnSOD protein, and MnSOD activity were induced by manganese in dose- and time-dependent manner. Manganese regulates MnSOD expression not only at transcriptional level but also at translational and/or posttranslational levels.
Collapse
Affiliation(s)
- Tianquan Gao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625014, China
| | | | | | | | | |
Collapse
|
47
|
Li S, Lin Y, Lu L, Xi L, Wang Z, Hao S, Zhang L, Li K, Luo X. An estimation of the manganese requirement for broilers from 1 to 21 days of age. Biol Trace Elem Res 2011; 143:939-48. [PMID: 21221840 DOI: 10.1007/s12011-010-8931-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
A dose-response experiment was conducted to find the sensitive and consistent biomarker for the estimation of dietary manganese (Mn) requirement and establish the optimal Mn level for broilers fed a practical corn-soybean meal diet from 1 to 21 days of age post-hatching. A total of 480 1-day-old Arbor Acres male chicks were randomly allotted to one of eight treatments with five replicates of 12 birds each and fed diets supplemented with 0, 20, 40, 60, 80, 100, 120, or 140 mg Mn/kg from reagent grade Mn sulfate. Tissue Mn concentrations, manganese-containing superoxide dismutase (MnSOD) activity, and MnSOD mRNA concentration within heart tissue were analyzed at 7, 14, and 21 days of age. Tissue Mn concentrations and heart MnSOD activity showed significant quadratic responses, and heart MnSOD mRNA concentration showed an asymptotic response to dietary supplemental Mn level, respectively. The estimate of dietary Mn for chicks from 1 to 21 days of age was 122-128 for heart Mn concentration, 141-159 for pancreas Mn concentration, 127-138 for liver Mn concentration, and 135-156 mg/kg for heart MnSOD activity, respectively. Heart MnSOD mRNA concentration was a consistent index for the estimation of the Mn requirement of broilers. Based on this index, the estimate of dietary Mn requirement for broilers from 1 to 21 days of age post-hatching was about 130 mg/kg, which was a little more than two times of the current NRC (1994) requirement.
Collapse
Affiliation(s)
- Sufen Li
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Effect of dietary Mintrex-Zn/Mn on performance, gene expression of Zn transfer proteins, activities of Zn/Mn related enzymes and fecal mineral excretion in broiler chickens. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Li S, Lu L, Hao S, Wang Y, Zhang L, Liu S, Liu B, Li K, Luo X. Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens. J Nutr 2011; 141:189-94. [PMID: 21169227 DOI: 10.3945/jn.110.126680] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the possible mechanism(s) by which dietary manganese (Mn) levels and sources modulate the expression of the manganese-containing superoxide dismutase (MnSOD) gene at both the transcriptional and translational levels, we used 432 8-d-old male broiler chicks in a 1 plus 4 × 2 design. Chickens were given either a diet without Mn supplementation [control (C)] or diets supplemented with 100 (optimal) or 200 (high) mg Mn/kg diet from inorganic Mn sulfate (I) or 3 organic complexes of Mn and amino acids with weak (W), moderate (M), or strong (S) chelation strength up to 21 d of age. Compared with C chicks, chicks fed Mn-supplemented diets had higher (P < 0.01) Mn concentrations, specificity protein 1 (Sp1) DNA-binding activities, MnSOD mRNA levels, MnSOD mRNA-binding protein (MnSOD-BP) RNA-binding activities, MnSOD protein concentrations, and MnSOD activities within heart tissue, but lower (P < 0.01) heart activating protein-2 (AP-2) DNA-binding activities. Chicks fed M diets had higher (P < 0.05) heart Mn concentrations, MnSOD mRNA levels, and MnSOD-BP RNA-binding activities compared with those fed the I and W diets and lower (P < 0.01) AP-2 DNA-binding activities than those fed other treatment diets. These results suggest that dietary Mn could modulate the expression of the MnSOD gene in broilers by altering Sp1 and AP-2 DNA-binding activities at the transcriptional level and enhancing MnSOD-BP RNA-binding activity at the translational level. Additionally, an organic Mn source with moderate chelation strength could be more effective than other Mn sources in activating MnSOD gene expression at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- Sufen Li
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang YL, Lu L, Li SF, Luo XG, Liu B. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2009; 87:2038-46. [PMID: 19213702 DOI: 10.2527/jas.2008-1212] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
An experiment was conducted to estimate relative bioavailability of Zn in 3 organic zinc sources with different chelation strength (Q(f)) compared with ZnSO(4). A total of 1,092, 1-d-old male broiler chicks were assigned randomly to 6 replicate cages (14 chicks per cage) for each of 13 treatments. Dietary treatments included the basal corn-soybean meal diet (27.82 mg of Zn/kg of DM) supplemented with 0, 30, 60, or 90 mg of added Zn as reagent ZnSO(4), or Zn sources with Q(f) of 6.5 (11.93% Zn; Zn AA C), 30.7 (13.27% Zn; Zn Pro B), or 944.0 (18.61% Zn; Zn Pro A)/kg, which are considered as weak, moderate, or strong Q(f), respectively. Bone Zn, pancreas Zn, pancreas metallothionein (MT) concentration, and pancreas MT messenger RNA (mRNA) were analyzed at 6, 10, or 14 d of age. The results showed that bone Zn, pancreas Zn, pancreas MT concentration, and pancreas MT mRNA increased linearly (P < 0.001) as dietary Zn concentration increased at all ages. At 6 d of age, pancreas MT mRNA differed (P < 0.001) among dietary Zn sources, and the same tendency was observed at 10 (P = 0.08) or 14 d (P = 0.06) of age. The R(2) for a linear model was greater on d 6 than d 10 or 14 for all the response criteria. Based on slope ratios from the multiple linear regression of pancreas MT mRNA concentration on daily intake of dietary Zn, the bioavailability of Zn AA C, Zn Pro B, and Zn Pro A relative to ZnSO(4) (100%) were 100.0, 121.1, and 72.3%, respectively, at 6 d of age. The results indicated that MT mRNA concentration in pancreas was more sensitive in reflecting differences in bioavailability among organic Zn sources than the MT concentration in pancreas or other indices. Moreover, the bioavailability of organic Zn sources was closely related to their Q(f).
Collapse
Affiliation(s)
- Y L Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
| | | | | | | | | |
Collapse
|