1
|
Ye J, Miao B, Xiong Y, Guan Y, Lu Y, Jia Z, Wu Y, Sun X, Guan C, He R, Xiong X, Jia H, Jiang H, Liu Z, Zhang Y, Wei Y, Lin W, Wang A, Wang Y, Meng H, Xu W, Yuan G, Peng J. 3D printed porous magnesium metal scaffolds with bioactive coating for bone defect repair: enhancing angiogenesis and osteogenesis. J Nanobiotechnology 2025; 23:160. [PMID: 40033312 PMCID: PMC11874660 DOI: 10.1186/s12951-025-03222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
In orthopedics, the effective treatment of bone defects remains a major challenge. Magnesium (Mg) metals, with their excellent biocompatibility and favorable osteoconductivity, osteoinductivity, and osseointegration properties, hold great promise for addressing this issue. However, the rapid degradation rate of magnesium restricts its clinical application. In this study, a triply periodic minimal surface (TPMS)-structured porous magnesium alloy (Mg-Nd-Zn-Zr, JDBM) was fabricated using the laser powder bed fusion (LPBF) process. Strontium-doped octacalcium phosphate (SrOCP) and strontium hydrogen phosphate biphasic composite coatings were applied to the surface of the scaffolds. The results showed that the TPMS structure exhibited porous biomimetic characteristics that resemble cancellous bone, promoting vascular ingrowth and new bone formation. Additionally, the SrOCP coating significantly increased the surface roughness and hydrophilicity of the scaffold, which enhanced cell adhesion and osteogenic differentiation. The SrOCP coating also markedly reduced the degradation rate of the JDBM scaffolds while ensuring the sustained release of bioactive ions (Mg²⁺, Zn²⁺, Sr²⁺, and Ca²⁺), thus maintaining the scaffolds' biofunctional activity. Compared to JDBM scaffolds, JDBM/SrOCP scaffolds exhibited better biocompatibility and stronger vascularization and bone regeneration capabilities both in vitro and in vivo. Overall, this study presents a novel strategy for the repair of bone defects using magnesium-based biomaterials, providing new insights for future clinical applications.
Collapse
Affiliation(s)
- Jianting Ye
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Bozun Miao
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingjie Xiong
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yanjun Guan
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yuzheng Lu
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Spine Surgery, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road,Haidian District, Beijing, 100038, PR China
| | - Zhibo Jia
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Hebei North University, Zhangjiakou, 075051, PR China
| | - Yanbin Wu
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Xiaohan Sun
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Congcong Guan
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Ruichao He
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Xing Xiong
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Huihui Jia
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Hongyu Jiang
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Zexian Liu
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yuxuan Zhang
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Yu Wei
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Wancheng Lin
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Spine Surgery, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road,Haidian District, Beijing, 100038, PR China
| | - Aiyuan Wang
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yu Wang
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Haoye Meng
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Wenjing Xu
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiang Peng
- Institute of Orthopedics,The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China.
| |
Collapse
|
2
|
Ma K, Ma Z, Cheng L, Zhao D. Progress in the Application of Porous Tantalum Metal in Hip Joint Surgery. Orthop Surg 2024; 16:2877-2886. [PMID: 39412173 PMCID: PMC11608769 DOI: 10.1111/os.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
Porous tantalum metal is a new orthopedic implant material made of tantalum metal that has been processed by porous treatment. This material has various advantages, including high hardness, good ductility, good biocompatibility, and strong bone integration ability. Porous tantalum metal has performed well in clinical application, demonstrating excellent medium- to long-term curative effects. The use of implant products made of porous tantalum metal, such as porous tantalum rods, porous tantalum hip prostheses, and porous tantalum augments (MAs), is gradually increasing in the clinical application of hip surgery, and these products have achieved excellent therapeutic effects in the middle and late stages of various hip diseases. In recent years, the combined application of porous tantalum metal and three-dimenional (3D) printing technology to create personalized 3D-printed porous tantalum metal has led to new development directions for the treatment of complex hip joint surgical diseases. This review presents a summary of the application of porous tantalum metal in hip surgery in recent years, including clinical treatment effects and existing problems. In addition, the prospect of progress in this field is promoted.
Collapse
Affiliation(s)
- Kaiming Ma
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| | - Zhijie Ma
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| | - Liangliang Cheng
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| | - Dewei Zhao
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| |
Collapse
|
3
|
Lin S, Zhuang Y, Chen K, Lu J, Wang K, Han L, Li M, Li X, Zhu X, Yang M, Yin G, Lin J, Zhang X. Osteoinductive biomaterials: Machine learning for prediction and interpretation. Acta Biomater 2024; 187:422-433. [PMID: 39178926 DOI: 10.1016/j.actbio.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Biomaterials with osteoinductivity are widely used for bone defect repair due to their unique structures and functions. Machine learning (ML) is pivotal in analyzing osteoinductivity and accelerating new material design. However, challenges include creating a comprehensive database of osteoinductive materials and dealing with low-quality, disparate data. As a standard for evaluating the osteoinductivity of biomaterials, ectopic ossification has been used. This paper compiles research findings from the past thirty years, resulting in a robust database validated by experts. To tackle issues of limited data samples, missing data, and high-dimensional sparsity, a data enhancement strategy is developed. This approach achieved an area under the curve (AUC) of 0.921, a precision of 0.839, and a recall of 0.833. Model interpretation identified key factors such as porosity, bone morphogenetic protein-2 (BMP-2), and hydroxyapatite (HA) proportion as crucial determinants of outcomes. Optimizing pore structure and material composition through partial dependence plot (PDP) analysis led to a new bone area ratio of 14.7 ± 7 % in animal experiments, surpassing the database average of 10.97 %. This highlights the significant potential of ML in the development and design of osteoinductive materials. STATEMENT OF SIGNIFICANCE: This study leverages machine learning to analyze osteoinductive biomaterials, addressing challenges in database creation and data quality. Our data enhancement strategy significantly improved model performance. By optimizing pore structure and material composition, we increased new bone formation rates, showcasing the vast potential of machine learning in biomaterial design.
Collapse
Affiliation(s)
- Sicong Lin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yan Zhuang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Ke Chen
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Jian Lu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Kefeng Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Lin Han
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Mufei Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Xiangfeng Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Xiangdong Zhu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Mingli Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Jiangli Lin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China.
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China; National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Zheng P, Deng J, Jiang L, Ni N, Huang X, Zhao Z, Hu X, Cen X, Chen J, Wang R. Polyacrylic acid-reinforced organic-inorganic composite bone adhesives with enhanced mechanical properties and controlled degradability. J Mater Chem B 2024; 12:8321-8334. [PMID: 39099557 DOI: 10.1039/d4tb00857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Bone adhesives, as alternatives to traditional bone fracture treatment methods, have great benefits in achieving effective fixation and healing of fractured bones. However, current available bone adhesives have limitations in terms of weak mechanical properties, low adhesion strength, and inappropriate degradability, hindering their clinical applications. The development of bone adhesives with strong mechanical properties, adhesion strength, and appropriate degradability remains a great challenge. In this study, polyacrylic acid was incorporated with tetracalcium phosphate and O-phospho-L-serine to form a new bone adhesive via coordination and ionic interactions to achieve exceptional mechanical properties, adhesion strength, and degradability. The bone adhesive could achieve an initial adhesion strength of approximately 3.26 MPa and 0.86 MPa on titanium alloys and bones after 15 min of curing, respectively, and it increased to 5.59 MPa and 2.73 MPa, after 24 h of incubation in water or simulated body fluid (SBF). The compressive strength of the adhesive increased from 10.06 MPa to 72.64 MPa over two weeks, which provided sufficient support for the fractured bone. Importantly, the adhesive started to degrade after 6 to 8 weeks of incubation in SBF, which is beneficial to cell ingrowth and the bone healing process. In addition, the bone adhesives exhibited favorable mineralization capability, biocompatibility, and osteogenic activity. In vivo experiments showed that it has a better bone-healing effect compared with the traditional polymethyl methacrylate bone cement. These results demonstrate that the bone adhesive has great potential in the treatment of bone fractures.
Collapse
Affiliation(s)
- Pianpian Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Lei Jiang
- Ningbo No. 6 Hospital, Ningbo, 315042, P. R. China.
| | - Ning Ni
- Ningbo No. 6 Hospital, Ningbo, 315042, P. R. China.
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Xiaodong Hu
- Health Science Center, Ningbo University, Ningbo, 315211, P. R. China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| | | | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
5
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
6
|
Yu H, Xu M, Duan Q, Li Y, Liu Y, Song L, Cheng L, Ying J, Zhao D. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater 2024; 19:042002. [PMID: 38697199 DOI: 10.1088/1748-605x/ad46d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Porous tantalum scaffolds offer a high degree of biocompatibility and have a low friction coefficient. In addition, their biomimetic porous structure and mechanical properties, which closely resemble human bone tissue, make them a popular area of research in the field of bone defect repair. With the rapid advancement of additive manufacturing, 3D-printed porous tantalum scaffolds have increasingly emerged in recent years, offering exceptional design flexibility, as well as facilitating the fabrication of intricate geometries and complex pore structures that similar to human anatomy. This review provides a comprehensive description of the techniques, procedures, and specific parameters involved in the 3D printing of porous tantalum scaffolds. Concurrently, the review provides a summary of the mechanical properties, osteogenesis and antibacterial properties of porous tantalum scaffolds. The use of surface modification techniques and the drug carriers can enhance the characteristics of porous tantalum scaffolds. Accordingly, the review discusses the application of these porous tantalum materials in clinical settings. Multiple studies have demonstrated that 3D-printed porous tantalum scaffolds exhibit exceptional corrosion resistance, biocompatibility, and osteogenic properties. As a result, they are considered highly suitable biomaterials for repairing bone defects. Despite the rapid development of 3D-printed porous tantalum scaffolds, they still encounter challenges and issues when used as bone defect implants in clinical applications. Ultimately, a concise overview of the primary challenges faced by 3D-printed porous tantalum scaffolds is offered, and corresponding insights to promote further exploration and advancement in this domain are presented.
Collapse
Affiliation(s)
- Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Minghao Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Qida Duan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yada Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yuchen Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| |
Collapse
|
7
|
Kennedy SM, Vasanthanathan A, Jeen Robert RB, Vignesh Moorthi Pandian A. Impact of mechanical engineering innovations in biomedical advancements. IN VITRO MODELS 2024; 3:5-18. [PMID: 39872067 PMCID: PMC11756506 DOI: 10.1007/s44164-024-00065-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2025]
Abstract
Abstract The principal objective of the present paper is to meticulously review the family of biomaterials used in implants. A spectrum of applications of biomaterials in the perspective of prosthesis is also presented. This paper also emphasises on the review of the recent advancements in the field of biomedical implants with respect to mechanical engineering perspective. The latest technologies such as finite element modelling of prosthetic implants, additive manufacturing of implants and certain experimental methods adopted in the field of prosthesis are discussed. Moreover, various models were modelled using SOLIDWORKS® 2022 modelling software and analysed using ANSYS® 2021 R2 finite element analysing software and implant models were additive manufactured to make this review more interesting and for better understanding. Overall, the latest technology in the field of mechanical engineering that fuels its impact in life-saving biomedical engineering has been discussed briefly. Graphical abstract
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, 626005 India
| | - A Vasanthanathan
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005 India
| | - RB Jeen Robert
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, Tamil Nadu 641042 India
| | - A Vignesh Moorthi Pandian
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, 626005 India
| |
Collapse
|
8
|
He T, Wang Y, Wang R, Yang H, Hu X, Pu Y, Yang B, Zhang J, Li J, Huang C, Jin R, Nie Y, Zhang X. Fibrous topology promoted pBMP2-activated matrix on titanium implants boost osseointegration. Regen Biomater 2023; 11:rbad111. [PMID: 38173764 PMCID: PMC10761207 DOI: 10.1093/rb/rbad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Titanium (Ti) implants have been extensively used after surgical operations. Its surface bioactivity is of importance to facilitate integration with surrounding bone tissue, and ultimately ensure stability and long-term functionality of the implant. The plasmid DNA-activated matrix (DAM) coating on the surface could benefit osseointegration but is still trapped by poor transfection for further application, especially on the bone marrow mesenchymal stem cells (BMSCs) in vivo practical conditions. Herein, we constructed a DAM on the surface of fibrous-grained titanium (FG Ti) composed of phase-transition lysozyme (P) as adhesive, cationic arginine-rich lipid (RLS) as the transfection agent and plasmid DNA (pDNA) for bone morphology protein 2 (BMP2) expression. The cationic lipid RLS improved up to 30-fold higher transfection than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) on MSC. And importantly, Ti surface topology not only promotes the DAM to achieve high transfection efficiency (∼75.7% positive cells) on MSC due to the favorable combination but also reserves its contact induction effect for osteoblasts. Upon further exploration, the fibrous topology on FG Ti could boost pDNA uptake for gene transfection, and cell migration in MSC through cytoskeleton remodeling and induce contact guidance for enhanced osteointegration. At the same time, the cationic RLS together with adhesive P were both antibacterial, showing up to 90% inhibition rate against Escherichia coli and Staphylococcus aureus with reduced adherent microorganisms and disrupted bacteria. Finally, the FG Ti-P/pBMP2 implant achieved accelerated bone healing capacities through highly efficient gene delivery, aligned surface topological structure and increased antimicrobial properties in a rat femoral condylar defect model.
Collapse
Affiliation(s)
- Ting He
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yichun Wang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ruohan Wang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Huan Yang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xueyi Hu
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of the Affiliated Stomatological Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Jingyuan Zhang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610064, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Deering J, Mahmoud D, Rier E, Lin Y, do Nascimento Pereira AC, Titotto S, Fang Q, Wohl GR, Deng F, Grandfield K, Elbestawi MA, Chen J. Osseointegration of functionally graded Ti6Al4V porous implants: Histology of the pore network. BIOMATERIALS ADVANCES 2023; 155:213697. [PMID: 37979439 DOI: 10.1016/j.bioadv.2023.213697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
The additive manufacturing of titanium into porous geometries offers a means to generate low-stiffness endosseous implants with a greater surface area available for osseointegration. In this work, selective laser melting was used to produce gyroid-based scaffolds with a uniform pore size of 300 μm or functionally graded pore size from 600 μm to 300 μm. Initial in vitro assessment with Saos-2 cells showed favourable cell proliferation at pore sizes of 300 and 600 μm. Following implantation into rabbit tibiae, early histological observations at four weeks indicated some residual inflammation alongside neovessel infiltration into the scaffold interior and some early apposition of mineralized bone tissue. At twelve weeks, both scaffolds were filled with a mixture of adipocyte-rich marrow, micro-capillaries, and mineralized bone tissue. X-ray microcomputed tomography showed a higher bone volume fraction (BV/TV) and percentage of bone-implant contact (BIC) in the implants with 300 μm pores than in the functionally graded specimens. In functionally graded specimens, localized BV/TV measurement was observed to be higher in the innermost region containing smaller pores (estimated at 300-400 μm) than in larger pores at the implant exterior. The unit cell topology of the porous implant was also observed to guide the direction of bone ingrowth by conducting along the implant struts. These results suggest that in vivo experimentation is necessary alongside parametric optimization of functionally graded porous implants to predict short-term and long-term bone apposition.
Collapse
Affiliation(s)
- Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Dalia Mahmoud
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada; Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Elyse Rier
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Yujing Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Anna Cecilia do Nascimento Pereira
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, Brazil; 4D Printing and Biomimetics' (4DB) Research Group, Federal University of ABC (UFABC), Santo André, Brazil
| | - Silvia Titotto
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, Brazil; 4D Printing and Biomimetics' (4DB) Research Group, Federal University of ABC (UFABC), Santo André, Brazil
| | - Qiyin Fang
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| | - Gregory R Wohl
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | - Feilong Deng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada.
| | - Mohamed A Elbestawi
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| | - Jianyu Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|