1
|
Kariuki R, Bryant SJ, Shepherd TP, Meftahi N, Bryant G, Conn CE, Christofferson AJ, Elbourne A. Single-particle adsorption of ultra-small gold nanoparticles at the biomembrane phase boundary. Colloids Surf B Biointerfaces 2025; 253:114734. [PMID: 40318394 DOI: 10.1016/j.colsurfb.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Nanomaterials are revolutionizing biomedical research by enabling the development of novel therapies, with applications ranging from drug delivery and diagnostics to the modulation of specific biological processes. Current research focuses on tasks such as enhancing cellular uptake of materials while preserving their functionality. However, the mechanisms governing interactions between nanomaterials and biological systems-particularly cellular membranes-remain challenging to elucidate due to the complex, dynamic nature of the lipid bilayer environment. This complexity arises from factors such as coexisting lipid domains (conserved regions of lipids) or lipid rafts, as well as cellular behaviors that induce state changes. The heterogeneous membrane landscape may offer unique adsorption properties and other functional effects, making it crucial to understand these interactions for greater biological control in nanotherapeutics. In this work, we systematically expose a phase-separated phospholipid-supported lipid bilayer (SLB)-specifically, a fluid-gel DOPC:DPPC bilayer-to low concentrations of citrate-capped 5 nm gold nanoparticles (AuNPs) to observe the adsorption process of individual AuNPs at the molecular scale. Using atomic force microscopy (AFM), we experimentally detect the adsorption of some AuNPs at the phase boundary. Complementary molecular dynamics (MD) simulations further elucidate the mechanism of single AuNP adsorption at lipid phase boundaries. Our findings indicate that the AuNP preferentially incorporates into the fluid-phase DOPC lipids while maintaining partial association with the gel-phase DPPC lipids due to diffusion effects. During adsorption, the AuNP disrupts lipid organization by increasing lateral lipid mixing across the phase boundary. This disruption to lipid molecular ordering is further evident upon AuNP incorporation into the bilayer. The ability to modulate the spatial organization and structure of lipid molecules has significant implications for therapeutics that leverage lipid diffusion pathways for alternative drug delivery mechanisms or to induce specific lipid behaviors.
Collapse
Affiliation(s)
- Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Tilly P Shepherd
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Nastaran Meftahi
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia; ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
2
|
Huang Y, Zhang F, Zhang Y, Chen R, Lü X. Combination of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion cytotoxicity and the underlying mechanism. Regen Biomater 2024; 11:rbae079. [PMID: 39022125 PMCID: PMC11254314 DOI: 10.1093/rb/rbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Biomarkers have been applied for toxicity assessment of biomaterials due to their advantages. However, research on biomarkers for biomaterials is still in its early stages. There is a lack of integrated analysis in biomarker research based on multiomics studies. Herein, we report a new approach for combining of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion (Ni2+) cytotoxicity and the underlying mechanism. Firstly, differentially expressed genes and proteins were compared to screen gene/protein pairs exhibiting consistent differential expression within the same Ni2+-treated groups. Next, metabolic pathway analysis was carried out to reveal pathways in which gene/protein pairs and metabolites showed upstream and downstream relationships. Important networks composed of gene/protein pairs, metabolites and metabolic pathways and candidate biomarkers were subsequently identified. Through expression level and function validation, the gene/protein/metabolite biomarkers were confirmed, and the underlying mechanism was revealed: Ni2+ influenced the expression of the Rrm2 gene biomarker, which subsequently affected the expression of the RRM2 protein biomarker. These changes in turn impacted the levels of uric acid and uridine metabolite biomarkers, ultimately inhibiting DNA synthesis, suppressing cell proliferation, increasing intracellular ROS levels and reducing ATP content.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fudan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yajing Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
4
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Functionalized Gold Nanoparticles Suppress the Proliferation of Human Lung Alveolar Adenocarcinoma Cells by Deubiquitinating Enzymes Inhibition. ACS OMEGA 2023; 8:40622-40638. [PMID: 37929120 PMCID: PMC10620884 DOI: 10.1021/acsomega.3c05452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Functionalized gold nanoparticles (AuNPs) are widely used in therapeutic applications, but little is known regarding the impact of their surface functionalization in the process of toxicity against cancer cells. This study investigates the anticancer effects of 5 nm spherical AuNPs functionalized with tannate, citrate, and PVP on deubiquitinating enzymes (DUBs) in human lung alveolar adenocarcinoma (A549) cells. Our findings show that functionalized AuNPs reduce the cell viability in a concentration- and time-dependent manner as measured by modified lactate dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. An increased generation of intracellular reactive oxygen species (ROS) and depletion of glutathione (GSH/GSSG) ratio was observed with the highest AuNP concentration of 10 μg/mL. The expression of DUBs such as ubiquitin specific proteases (USP7, USP8, and USP10) was slightly inhibited when treated with concentrations above 2.5 μg/mL. Moreover, functionalized AuNPs showed an inhibitory effect on protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and wingless-related integration site (Wnt) signaling proteins, and this could further trigger mitochondrial related-apoptosis by the upregulation of caspase-3, caspase-9, and PARP in A549 cells. Furthermore, our study shows a mechanistic understanding of how functionalized AuNPs inhibit the DUBs, consequently suppressing cell proliferation, and can be modulated as an approach toward anticancer therapy. The study also warrants the need for future work to investigate the effect of functionalized AuNPs on DUB on other cancer cell lines both in vitro and in vivo.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Taiwo Hassan Akere
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Swaroop Chakraborty
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Eugenia Valsami-Jones
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Hanene Ali-Boucetta
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
5
|
Lopez-Ayuso CA, Garcia-Contreras R, Manisekaran R, Figueroa M, Arenas-Arrocena MC, Hernandez-Padron G, Pozos-Guillén A, Acosta-Torres LS. Evaluation of the biological responses of silver nanoparticles synthesized using Pelargonium x hortorum extract. RSC Adv 2023; 13:29784-29800. [PMID: 37829709 PMCID: PMC10565737 DOI: 10.1039/d3ra00201b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Silver nanoparticles (AgNPs) are one of the widely studied nanomaterials for diverse biomedical applications, in particular, as antimicrobial agents to kill bacteria, fungi, and viruses. In this report, AgNPs were synthesized using a geranium (Pelargonium x hortorum) leaves extract and tested for their antimicrobial and cytotoxic activity and reactive oxygen species (ROS) production. Using green biosynthesis, the leaves extract was employed as a reducing and stabilizing agent. Synthesis parameters like reaction time and precursor (silver nitrate AgNO3) volume final were modified, and the products were tested against Streptococcus mutans. For the first time, the metabolomic analysis of extract, we have identified more than 50 metabolites. The UV-Vis analysis showed a peak ranging from 410-430 nm, and TEM confirmed their nearly spherical morphology for all NPs. The antimicrobial activity of the NPs revealed a minimum inhibitory concentration (MIC) of 10 μg mL-1. Concerning cytotoxicity, a dose-time-dependent effect was observed with a 50% cellular cytotoxicity concentration (CC50) of 4.51 μg mL-1 at 24 h. Interestingly, the cell nuclei were visualized using fluorescence microscopy, and no significant changes were observed. These results suggest that synthesized spherical AgNPs are promising potential candidates for medical applications.
Collapse
Affiliation(s)
- Christian Andrea Lopez-Ayuso
- Programa de Doctorado en Ciencias Odontológicas, Universidad Nacional Autónoma de México (UNAM) Mexico
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | | | - Ma Concepción Arenas-Arrocena
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Genoveva Hernandez-Padron
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Departamento de Nanotecnología, Universidad Nacional Autónoma de México Campus Juriquilla Juriquilla 76230 Mexico
| | - Amaury Pozos-Guillén
- Basic Science Laboratory, Faculty of Stomatology, San Luis Potosí University Av. Dr. Manuel Nava #2, Zona Universitaria 78290 San Luis Potosí SLP Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| |
Collapse
|
6
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
7
|
Zhang ZD, Tao Q, Bai LX, Qin Z, Liu XW, Li SH, Yang YJ, Ge WB, Li JY. The Transport and Uptake of Resveratrol Mediated via Glucose Transporter 1 and Its Antioxidant Effect in Caco-2 Cells. Molecules 2023; 28:4569. [PMID: 37375124 DOI: 10.3390/molecules28124569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 μM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 μM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
8
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
9
|
Soares S, Pereira C, Sousa AP, Oliveira AC, Sales MG, Correa-Duarte MA, Guerreiro SG, Fernandes R. Metabolic Disruption of Gold Nanospheres, Nanostars and Nanorods in Human Metastatic Prostate Cancer Cells. Cells 2023; 12:cells12050787. [PMID: 36899923 PMCID: PMC10001383 DOI: 10.3390/cells12050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Nanomaterials offer a broad spectrum of applications in biomedicine. The shapes of gold nanoparticles could modulate tumor cell behavior. Spherical (AuNPsp), stars (AuNPst) and rods (AuNPr) shapes of polyethylene glycol coated-gold nanoparticles (AuNPs-PEG) were synthesized. Metabolic activity, cellular proliferation, and reactive oxygen species (ROS) were measured and the impact of AuNPs-PEG in metabolic enzymes function was evaluated by RT-qPCR in PC3, DU145, and LNCaP prostate cancer cells. All AuNPs were internalized, and the different morphologies of AuNPs showed to be an essential modulator of metabolic activity. For PC3 and DU145, the metabolic activity of AuNPs was found to rank in the following order from lowest to highest: AuNPsp-PEG, AuNPst-PEG, and AuNPr-PEG. Regarding LNCaP cells, the AuNPst-PEG were less toxic, followed by AuNPsp-PEG and AuNPr-PEG, but it seems not to be dose-dependent. The proliferation was lower in AuNPr-PEG in PC3 and DU145 cells but was stimulated around 10% in most conditions (0.001-0.1 mM) in LNCaP cells (not statistically significant). For 1 mM, LNCaP cells showed a significant decrease in proliferation only for AuNPr-PEG. The outcomes of the current study demonstrated that different AuNPs conformations influence cell behavior, and the correct size and shape must be chosen considering its final application in the field of nanomedicine.
Collapse
Affiliation(s)
- Sílvia Soares
- BioMark@ISEP/CEB, Center of Biological Engineering of Minho University, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
- FP-I3ID, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
- Faculty of Chemistry, University of Vigo, 36310 Vigo, Spain
- CEB—Centre of Biological Engineering of Minho University, 4710-057 Braga, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Pereira
- FP-I3ID, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
- Faculty of Health Sciences (FCS) & Hosptal Escola Fernando Pessoa (HEFP), University Fernando Pessoa (UFP), 4249-004 Porto, Portugal
| | - André P. Sousa
- FP-I3ID, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Ana Catarina Oliveira
- FP-I3ID, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Maria Goreti Sales
- BioMark@ISEP/CEB, Center of Biological Engineering of Minho University, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
- CEB—Centre of Biological Engineering of Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB, Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| | - Miguel A. Correa-Duarte
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Susana G. Guerreiro
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto—IPATIMUP, 4200-465 Porto, Portugal
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (S.G.G.); (R.F.)
| | - Rúben Fernandes
- FP-I3ID, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
- Faculty of Health Sciences (FCS) & Hosptal Escola Fernando Pessoa (HEFP), University Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- Correspondence: (S.G.G.); (R.F.)
| |
Collapse
|
10
|
Shangguan R, Hu Z, Luo Y, Chen M, Lai X, Sun J, Chen S. Intramuscular mitochondrial and lipid metabolic changes of rats after regular high-intensity interval training (HIIT) of different training periods. Mol Biol Rep 2023; 50:2591-2601. [PMID: 36626064 DOI: 10.1007/s11033-022-08205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND High-intensity Interval Training (HIIT) is a time-efficient form of exercise and has gained popularity in recent years. However, at molecular level, the understanding about the effects of HIIT is not comprehensive, and even less is elucidated about HIIT of different training duration cycles, although different durations always lead to different post-training consequences. METHOD In this study, by training SD rats using HIIT protocols lasting for different training duration cycles, we investigated the adaptive response of intramuscular triglyceride abundance as well as mitochondrial and lipid metabolic changes after HIIT training (2, 4, 6, 8, and 10 weeks). We selected 72 h after the last session of training as the time point of sacrifice. RESULTS The suppressed activation of the cAMP-PKA pathway indicates that skeletal muscle was in the recovery phase at this time point. Intramuscular triglyceride abundance was significantly elevated after 2, 4, and 10 weeks of HIIT. However, the lipid metabolism-related proteins inconsistently changed in a chaotic trend (see Table 1). The expression levels of PGC1-α and COX IV decreased after 2 and 4 weeks of training and raised after 6 and 8 weeks of training. The expression level of citrate synthase (CS) decreased after 2, 4, 8, and 10 weeks of training, and showed an upward trend after 6 weeks of training. While the activity of CS decreased after 2 and 8 weeks of training and showed an upward trend after 6 weeks of HIIT. CONCLUSION Given the abovementioned changing trends, we propose two speculations: (A) the damaged mitochondria oxidation capacity might be one of the causes of IMTG accumulation observed after 2 and 4 weeks of HIIT. This phase might be similar to the condition of type 2 diabetes. (B) after 6-week HIIT, mitochondria function and biogenesis might be improved and the IMTG contents declined to baseline. This might be explained as: mitochondrial enhancement increased the capacity of lipid oxidation and then offset the increase in IMTG achieved during the first 4 weeks. For HIIT Rat Modelling, if the aim is to observe HIIT-induced positive effects, caution should be exercised when considering 2 and 4 weeks of training under our HIIT frame. Also, implementing six-week training is at least effective for mitochondrial enhancement when using similar HIIT frame of this study.
Collapse
Affiliation(s)
- Ruonan Shangguan
- Department of Physical Education, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Zhiqiang Hu
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yuzhen Luo
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Min Chen
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Xiangdeng Lai
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jingquan Sun
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China.,Department of Physical Education, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Siyu Chen
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China.
| |
Collapse
|
11
|
Nguyen NHA, Falagan-Lotsch P. Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. Int J Mol Sci 2023; 24:4109. [PMID: 36835521 PMCID: PMC9963226 DOI: 10.3390/ijms24044109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentsk. 2, 46117 Liberec, Czech Republic
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Wang W, Yuan L, Zhou J, Zhu X, Liao Z, Yin L, Li W, Jiang HS. Inorganic carbon utilization: A target of silver nanoparticle toxicity on a submerged macrophyte. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120906. [PMID: 36549447 DOI: 10.1016/j.envpol.2022.120906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Submerged macrophytes play an important role in the global carbon cycle through diversified pathways of inorganic carbon (Ci) utilization distinct from terrestrial plants. However, the effects of silver nanoparticles (AgNPs), an emerging contaminant, were unknown on the Ci utilization of submerged macrophytes. In Ottelia alismoides, the only known submerged macrophyte with three pathways of Ci utilization, before absorption, AgNPs inhibited the external carbonic anhydrase activity thus reducing the capacity of the plant to use HCO3-. After entering the plant, AgNPs mainly aggregated at the cell wall and in the chloroplast. The internalized AgNPs inhibited ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity blocking CO2 fixation and disturbed C4 and crassulacean acid metabolism (CAM) by inhibiting phosphoenolpyruvate carboxylase (PEPC), pyruvate phosphate dikinase (PPDK), and NAD-dependent malic enzyme (NAD-ME) activities to alter intracellular malate biosynthesis and decarboxylation. Overall, our findings indicate that the Ci utilization of the submerged macrophyte is a target of AgNPs toxicity that might affect the carbon cycle in aquatic systems.
Collapse
Affiliation(s)
- Wanwan Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Longyi Yuan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Jingzhe Zhou
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xi Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, HaiKou, 570228, China
| | - Zuying Liao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, HaiKou, 570228, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hong Sheng Jiang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
13
|
Zhang Z, Meng C, Hou K, Wang Z, Huang Y, Lü X. The cytological and electrophysiological effects of silver nanoparticles on neuron-like PC12 cells. PLoS One 2022; 17:e0277942. [PMID: 36512588 PMCID: PMC9746933 DOI: 10.1371/journal.pone.0277942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the toxic effects and mechanism of silver nanoparticles (SNPs) on the cytological and electrophysiological properties of rat adrenal pheochromocytoma (PC12) cells. Different concentrations of SNPs (20 nm) were prepared, and the effects of different application durations on the cell viability and electrical excitability of PC12 quasi-neuronal networks were investigated. The effects of 200 μM SNPs on the neurite length, cell membrane potential (CMP) difference, intracellular Ca2+ content, mitochondrial membrane potential (MMP) difference, adenosine triphosphate (ATP) content, and reactive oxygen species (ROS) content of networks were then investigated. The results showed that 200 μM SNPs produced grade 1 cytotoxicity at 48 h of interaction, and the other concentrations of SNPs were noncytotoxic. Noncytotoxic 5 μM SNPs significantly increased electrical excitability, and noncytotoxic 100 μM SNPs led to an initial increase followed by a significant decrease in electrical excitability. Cytotoxic SNPs (200 μM) significantly decreased electrical excitability. SNPs (200 μM) led to decreases in neurite length, MMP difference and ATP content and increases in CMP difference and intracellular Ca2+ and ROS levels. The results revealed that not only cell viability but also electrophysiological properties should be considered when evaluating nanoparticle-induced neurotoxicity. The SNP-induced cytotoxicity mainly originated from its effects on ATP content, cytoskeletal structure and ROS content. The decrease in electrical excitability was mainly due to the decrease in ATP content. ATP content may thus be an important indicator of both cell viability and electrical excitability in PC12 quasi-neuronal networks.
Collapse
Affiliation(s)
- Zequn Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Chen Meng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Kun Hou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Zhigong Wang
- Institute of RF- & OE-ICs, Southeast University, Nanjing, Jiangsu Province, China
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- * E-mail: (ZW); (YH); (XL)
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
- * E-mail: (ZW); (YH); (XL)
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- * E-mail: (ZW); (YH); (XL)
| |
Collapse
|
14
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Li N, Du Q, Jing Z, Xue L, He W, Zhang X, Sun Z. Study of the effects of Au@ZIF-8 on metabolism in mouse RAW 264.7 macrophages. BIOMATERIALS ADVANCES 2022; 138:212800. [PMID: 35913225 DOI: 10.1016/j.bioadv.2022.212800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry-based metabolomics plays a vital role in discovering new markers and revealing the unpredictable biological effects of external stimuli. However, the current metabolomics research on materials is still in its infancy, and in-depth research on possible toxic mechanisms is lacking. In this study, a nanocomposite of gold nanoparticles (AuNPs)-zeolite-imidazole framework-8 (ZIF-8) (Au@ZIF-8) was designed to investigate its effects on metabolism in mouse RAW 264.7 macrophages. The successful synthesis of Au@ZIF-8 was confirmed by transmission electron microscopy (TEM) and elemental analysis. The changes in the metabolic activity of mouse RAW 264.7 macrophages at different concentrations of Au@ZIF-8 and different treatment times were investigated, and their influence on the morphological changes and behavior of RAW 264.7 cells was discussed. In addition, ultrahigh-performance liquid chromatography quadrupole-orbital high-resolution mass spectrometry (UHPLC/Q-Orbitrap HRMS) was used to study the metabolic effects of Au@ZIF-8 on RAW 264.7 cells, and the results showed different metabolites being expressed at different reaction times. After 4, 8 and 24 h of treatment, the differential expression of 14, 16, and 16 metabolites, respectively, was detected. Twenty-five candidate key metabolites were identified from the results of the expression patterns and metabolic pathways. These metabolites are related to glutamine metabolism, the tricarboxylic acid cycle and glycolytic metabolic pathways, which may provide insight into the treatment of diseases caused and progressed by glutamine metabolism. This study also indicates the effectiveness of high-resolution LC-MS in revealing the nanotoxicity mechanism of Au@ZIF-8.
Collapse
Affiliation(s)
- Na Li
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, School and Hospital of Stomatology of Zhengzhou University, Zhengzhou 450052, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei He
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, School and Hospital of Stomatology of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Zhang Y, Huang Y, Chen R, Chen S, Lü X. The interaction mechanism of nickel ions with L929 cells based on integrative analysis of proteomics and metabolomics data. Regen Biomater 2022; 9:rbac040. [PMID: 35812349 PMCID: PMC9258689 DOI: 10.1093/rb/rbac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The aim of this paper was to study the toxicity mechanism of nickel ions (Ni2+) on L929 cells by combining proteomics and metabolomics. First, iTRAQ-based proteomics and LC/MS metabolomics analyses were used to determine the protein and metabolite expression profiles in L929 cells after treatment with 100 μM Ni2+ for 12, 24 and 48 h. A total of 177, 2191 and 2109 proteins and 40, 60 and 74 metabolites were found to be differentially expressed. Then, the metabolic pathways in which both differentially expressed proteins and metabolites were involved were identified, and three pathways with proteins and metabolites showing upstream and downstream relationships were affected at all three time points. Furthermore, the protein-metabolite-metabolic pathway network was constructed, and two important metabolic pathways involving 4 metabolites and 17 proteins were identified. Finally, the functions of the important screened metabolic pathways, metabolites and proteins were investigated and experimentally verified. Ni2+ mainly affected the expression of upstream proteins in the glutathione metabolic pathway and the arginine and proline metabolic pathway, which further regulated the synthesis of downstream metabolites, reduced the antioxidant capacity of cells, increased the level of superoxide anions and the ratio of GSSG to GSH, led to oxidative stress, affected energy metabolism and induced apoptosis.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Shulin Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| |
Collapse
|
17
|
Huang Y, Chen R, Yang S, Chen Y, Lü X. The Mechanism of Interaction Between Gold Nanoparticles and Human Dermal Fibroblasts Based on Integrative Analysis of Transcriptomics and Metabolomics Data. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this paper was to combine transcriptomics and metabolomics to analyze the mechanism of gold nanoparticles (GNPs) on human dermal fibroblasts (HDFs). First, 20-nm GNPs were prepared, and the differentially expressed genes in HDFs were subsequently screened by transcriptome
sequencing technology after 4, 8, and 24 h of treatment with GNPs. By comparing the metabolic pathways in which the metabolites obtained in a previous study were involved, the pathways involving both genes and metabolites were filtered, and the differentially expressed genes and metabolites
with upstream and downstream relationships were screened out. The gene–metabolite–metabolic pathway network was further constructed, and the functions of metabolic pathways, genes and metabolites in the important network were analyzed and experimentally verified. The results of
transcriptome sequencing experiments showed that 1904, 1216 and 489 genes were differentially expressed in HDFs after 4, 8 and 24 h of treatment with GNPs, and these genes were involved in 270, 235 and 163 biological pathways, respectively. Through the comparison and analysis of the metabolic
pathways affected by the metabolites, 7, 3 and 2 metabolic pathways with genes and metabolites exhibiting upstream and downstream relationships were identified. Through analysis of the gene–metabolite–metabolic pathway network, 4 important metabolic pathways, 9 genes and 7 metabolites
were identified. Combined with the results of verification experiments on oxidative stress, apoptosis, the cell cycle, the cytoskeleton and cell adhesion, it was found that GNPs regulated the synthesis of downstream metabolites through upstream genes in important metabolic pathways. GNPs inhibited
oxidative stress and thus did not induce significant apoptosis, but they exerted effects on several cellular functions, including arresting the cell cycle and affecting the cytoskeleton and cell adhesion.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Shuci Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Ye Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| |
Collapse
|
18
|
Effect of fermentation by Lactobacillus acidophilus CH-2 on the enzymatic browning of pear juice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Su X, Huang Y, Chen R, Zhang Y, He M, Lü X. Metabolomics analysis of poly(l-lactic acid) nanofibers' performance on PC12 cell differentiation. Regen Biomater 2021; 8:rbab031. [PMID: 34168894 PMCID: PMC8218933 DOI: 10.1093/rb/rbab031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of this article is to reveal the influence of aligned/random poly(l-lactic acid) (PLLA) nanofibers on PC12 cell differentiation from the perspective of metabolic level. First, three materials-PLLA aligned nanofibers (PLLA AF), PLLA random nanofibers (PLLA RF) and PLLA films (control)-were prepared by electrospinning and spin coating. Their surface morphologies were characterized. Subsequently, the cell viability, cell morphology and neurite length of PC12 cells on the surface of the three materials were evaluated, indicating more neurites in the PLLA RF groups but the longer average neurite length in the PLLA AF groups. Next, the metabolite profiles of PC12 cells cultured on the surface of the three nanofibers after 12 h, 24 h and 36 h showed that, compared with the control, 51, 48 and 31 types of differential metabolites were detected at the three time points among the AF groups, respectively; and 56, 45 and 41 types among the RF groups, respectively. Furthermore, the bioinformatics analysis of differential metabolites identified two pathways and three metabolites critical to PC12 cell differentiation influenced by the nanofibers. In addition, the verification experiment on critical metabolites and metabolic pathways were performed. The integrative analysis combining cytology, metabolomics and bioinformatics approaches revealed that though both PLLA AF and RF were capable of stimulating the synthesis of neurotransmitters, the PLLA AF were more beneficial for PC12 cell differentiation, whereas the PLLA RF were less effective.
Collapse
Affiliation(s)
- Xiaoman Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Yiwen Zhang
- Department of Research, SQ Medical Device Co., Ltd, 17# Xinghuo Road, Nanjing 211500, China
| | - Meichen He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226019, China
| |
Collapse
|
20
|
Dahabiyeh LA, Mahmoud NN, Al-Natour MA, Safo L, Kim DH, Khalil EA, Abu-Dahab R. Phospholipid-Gold Nanorods Induce Energy Crisis in MCF-7 Cells: Cytotoxicity Evaluation Using LC-MS-Based Metabolomics Approach. Biomolecules 2021; 11:364. [PMID: 33673519 PMCID: PMC7997200 DOI: 10.3390/biom11030364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Phospholipid-modified gold nanorods (phospholipid-GNRs) have demonstrated drastic cytotoxicity towards MCF-7 breast cancer cells compared to polyethylene glycol-coated GNRs (PEG-GNRs). In this study, the mechanism of cytotoxicity of phospholipid-GNRs towards MCF-7 cells was investigated using mass spectrometry-based global metabolic profiling and compared to PEGylated counterparts. The results showed that when compared to PEG-GNRs, phospholipid-GNRs induced significant and more pronounced impact on the metabolic profile of MCF-7 cells. Phospholipid-GNRs significantly decreased the levels of metabolic intermediates and end-products associated with cellular energy metabolisms resulting in dysfunction in TCA cycle, a reduction in glycolytic activity, and imbalance of the redox state. Additionally, phospholipid-GNRs disrupted several metabolism pathways essential for the normal growth and proliferation of cancer cells including impairment in purine, pyrimidine, and glutathione metabolisms accompanied by lower amino acid pools. On the other hand, the effects of PEG-GNRs were limited to alteration of glycolysis and pyrimidine metabolism. The current work shed light on the importance of metabolomics as a valuable analytical approach to explore the molecular effects of GNRs with different surface chemistry on cancer cell and highlights metabolic targets that might serve as promising treatment strategy in cancer.
Collapse
Affiliation(s)
- Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Nouf N. Mahmoud
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad A. Al-Natour
- Department of Pharmaceutics and Pharmaceutical Technology, The Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Laudina Safo
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (D.-H.K.)
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (D.-H.K.)
| | - Enam A. Khalil
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Rana Abu-Dahab
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|