1
|
Liu G, Wu J, Wang Y, Xu Y, Xu C, Fang G, Li X, Chen J. The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis. Bioengineering (Basel) 2025; 12:58. [PMID: 39851332 PMCID: PMC11761566 DOI: 10.3390/bioengineering12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
GRP78/BiP, a stress-induced protein and autoantigen in rheumatoid arthritis (RA), exhibits different expressions in various biological fluids and tissues, including blood, synovial fluid (SF), and synovium, all of which are pertinent to the disease activity and progression of RA; however, there is a scarcity of data linking both intracellular and extracellular GRP78/Bip to disease activity and progression of RA. This study was undertaken to investigate the differential expression of GRP78/Bip in blood, SF, and synovium, and to determine their association with disease activity and progression of RA. Patients with RA, osteoarthritis (OA), and traumatic meniscal injury (TMI) without radiographic OA were consecutively recruited for the study. Among patients with RA, six different subgroups were established based on their disease activity and progression. Disease activity was measured using the DAS28 (Disease activity scores in 28 joints) criterion, while disease progression was evaluated using the Steinbrocker classification grade. The levels of GRP78/Bip, TNF-α, and IL-10 were significantly elevated in the serum, SF, and synovium of patients with RA when compared to both the control (CON, TMI Patients) and the inflammation control (iCON, OA Patients) groups (p < 0.05). In terms of disease activity status, as opposed to remission status in RA, the levels of GRP78/Bip, TNF-α, and IL-10 were all elevated in serum and synovium (p < 0.05). However, GRP78/Bip and IL-10 levels were found to be reduced in SF, while TNF-α levels remained elevated. With respect to disease progression in RA, GRP78/Bip levels exhibited a positive correlation with both the stage of RA and the levels of TNF-α and IL-10 in serum and synovium. Nonetheless, a negative correlation was observed between GRP78/Bip levels and the stage of RA in SF, while positive correlations with the levels of TNF-α and IL-10 persisted. The differential expression of GRP78/Bip in blood, SF, and synovium indicated that the potential role and function of GRP78/Bip might vary depending on its specific location within these biological fluids and tissues. The presence of intracellular and extracellular GRP78/Bip was associated with disease activity and progression of RA, suggesting the involvement of GRP78/Bip in the pathogenesis and development of this debilitating autoimmune disorder, as well as its potential as a biomarker for monitoring disease activity and progression of RA.
Collapse
Affiliation(s)
- Guoyin Liu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianping Wu
- Department of Obstetrics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Yongqiang Wang
- Department of Rehabilitation, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Yuansheng Xu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
| | - Chun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Guilin Fang
- Department of Rheumatology, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Xin Li
- Department of Orthopedics, Central Military Commission Joint Logistics Support Force 904th Hospital, Wuxi 214044, China
| | - Jianmin Chen
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
| |
Collapse
|
2
|
Cavalcanti GV, de Oliveira FR, Bannitz RF, de Paula NA, Motta ACF, Rocha EM, Chiorini J, Ricz HMA, Garcia DM, Foss-Freitas MC, de Freitas LCC. Endoplasmic reticulum stress in the salivary glands of patients with primary Sjögren's syndrome, associated Sjögren's syndrome, and non-Sjögren's sicca syndrome: a comparative analysis and the influence of chloroquine. Adv Rheumatol 2025; 65:2. [PMID: 39780265 DOI: 10.1186/s42358-024-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD). This study evaluated the expression of ERS-related genes in glandular tissue of patients with primary SD (pSD), associated SD (aSD) with other autoimmune diseases, and non-Sjögren sicca syndrome (NSS). METHODS In a cross-sectional study, minor salivary gland biopsies were obtained from 44 patients with suspected SD and 13 healthy controls (HC). Patients were classified as pSD, aSD, or NSS based on clinical, serological, and histological assessment. Histopathological analysis and mRNA expression analysis of genes associated with ERS and UPR (PERK, XBP1, ATF-6, ATF-4, CANX, CALR, CHOP, and BIP) were performed on the samples. Differences between groups (pSD, aSD, NSS, and HC) were assessed. The influence of chloroquine (CQ) on the ER was also investigated. RESULTS Twenty-eight SD patients showed increased expression of PERK (p = 0.0117) and XBP1 (p = 0.0346), and reduced expression of ATF-6 (p = 0.0003) and CHOP (p = 0.0003), compared to the HC group. Increased expression of BIP (p < 0.0001), PERK (p = 0.0003), CALR (p < 0.0001), and CANX (p = 0.0111) was also observed in the SD group compared to the NSS group (n = 16). Patients receiving CQ (n = 16) showed a significant increase in ATF-6 (p = 0.0317) compared to patients not taking the medication (n = 29). CONCLUSIONS Altogether, the results suggest a greater activation of the ERS and UPR genes in patients with SD, especially in the pSD group. Antimalarial drugs, like CQ, used to treat RAD, may affect the ER function in exocrine glands.
Collapse
Affiliation(s)
- Graziela Vieira Cavalcanti
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
- Ophthalmology, Otolaryngology, Head and Neck Surgery Department, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14.040-900, Brazil.
| | - Fabiola Reis de Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Ferraz Bannitz
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Natalia Aparecida de Paula
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina Fragoso Motta
- Department of Stomatology, Public Health and Forensic Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - John Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Hilton Marcos Alves Ricz
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Cristina Foss-Freitas
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, and Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA
| | - Luiz Carlos Conti de Freitas
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zhang W, Cao X. Unfolded protein responses in T cell immunity. Front Immunol 2025; 15:1515715. [PMID: 39845962 PMCID: PMC11750696 DOI: 10.3389/fimmu.2024.1515715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress. However, the precise mechanisms by which ER stress and the UPR regulate T cell-mediated immunity remain incompletely understood. Emerging evidence suggests that the UPR may be a potential therapeutic target for diseases characterized by T cell dysfunction, such as autoimmune disorders and cancer. Further research is needed to elucidate the complex interactions between ER stress, the UPR, and T cell immunity to develop novel therapeutic strategies for T cell-associated diseases.
Collapse
Affiliation(s)
- Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Bleck D, Loacker-Schöch K, Classen T, Jose J, Schneider M, Pongratz G. Fibroblast-like synoviocytes preferentially induce terminal differentiation of IgD + memory B cells instead of naïve B cells. Immunology 2024; 173:520-535. [PMID: 39054787 DOI: 10.1111/imm.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease driven by highly active autoantibody-producing B cells. Activation of B cells is maintained within ectopic germinal centres found in affected joints. Fibroblast-like synoviocytes (FLS) present in inflamed joints support B-cell survival, activation, and differentiation. CD27+ memory B cells and naive B cells show very different responses to activation, particularly by CD40 ligand (CD40L). We show that FLS-dependent activation of human B cells is dependent on interleukin-6 (IL-6) and CD40L. FLS have been shown to activate both naive and memory B cells. Whether the activating potential of FLS is different for naive and memory B cells has not been investigated. Our results suggest that FLS-induced activation of B cells is dependent on IL-6 and CD40L. While FLS are able to induce plasma cell differentiation, isotype switching, and antibody production in memory B cells, the ability of FLS to activate naive B cells is significantly lower.
Collapse
Affiliation(s)
- Dennis Bleck
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Klara Loacker-Schöch
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tim Classen
- Clinic of Orthopedics/Orthopedic Rheumatology, St. Elisabeth-Hospital Meerbusch-Lank, Meerbusch, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Muenster, Germany
| | - Matthias Schneider
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Georg Pongratz
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Rheumatology, Barmherzige Brueder Hospital Regensburg, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Eggleton P, De Alba J, Weinreich M, Calias P, Foulkes R, Corrigall VM. The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J Cell Mol Med 2023; 27:322-339. [PMID: 36651415 PMCID: PMC9889696 DOI: 10.1111/jcmm.17669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an 'eat-me' signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.
Collapse
Affiliation(s)
- Paul Eggleton
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,University of Exeter Medical SchoolExeterUK
| | | | | | | | | | - Valerie M. Corrigall
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,Centre for Inflammation Biology and Cancer Immunology, King's College London, New Hunts HouseGuy' HospitalLondonUK
| |
Collapse
|
6
|
Martínez-Puente DH, Garza-Morales R, Pérez-Trujillo JJ, Bernabé-Acosta F, Villanueva-Olivo A, García-García A, Zavala-Flores LM, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Enhanced antitumor activity induced by a DNA vaccine encoding E7 antigen fused to an ERAD-targeting sequence. J Drug Target 2023; 31:100-108. [PMID: 35896308 DOI: 10.1080/1061186x.2022.2107651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle in cell homeostasis and cell health through antigen presentation to immune cells. Thus, the ER has become a therapeutic target to induce cellular immune responses. We previously reported the antitumor effect of a DNA vaccine that expresses the E7 antigen fused to the cyclooxygenase-2 (COX-2) protein. This inflammation-related enzyme contains a degradation cassette associated with the endoplasmic reticulum-associated degradation (ERAD) pathway. To avoid the use of full-length COX-2 and any risk of adverse effects due to the activity of its catalytic site, we designed new versions of the fusion protein. These new constructs encode the E7 antigen fused to the signal peptide and the ERAD sequence of COX-2 with or without the membrane-binding domain (MBD) as well as deletion of the catalytic site. We evaluated the antigen-specific antitumor effect of these DNA constructs in murine prophylactic and therapeutic cancer models. These assays showed that the ERAD cassette is the minimum sequence in the COX-2 protein that induces an antitumor effect when fused to the E7 antigen with the advantage of eliminating any potential adverse effects from the use of full-length COX-2.
Collapse
Affiliation(s)
| | - Rodolfo Garza-Morales
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Federico Bernabé-Acosta
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey, México
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, México City, México
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | | |
Collapse
|
7
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
8
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
9
|
Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2022; 36:389-409. [PMID: 33906423 PMCID: PMC8982126 DOI: 10.1089/ars.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Significance: The production of antibodies to posttranslationally modified antigens is a hallmark in rheumatoid arthritis (RA). In particular, the presence of citrullination-associated antibodies, targeting both citrullinating enzymes (the peptidylarginine deiminases [PADs]) and citrullinated antigens (anticitrullinated protein antibodies [ACPAs]), has suggested that dysregulated citrullination is relevant for disease pathogenesis. Antibodies to other protein modifications with physicochemical similarities to citrulline, such as carbamylated-lysine and acetylated-lysine, have also gained interest in RA, but their mechanistic relation to ACPAs remains unclear. Recent Advances: Recent studies using RA-derived monoclonal antibodies have found that ACPAs are cross-reactive to carbamylated and acetylated peptides, challenging our understanding of the implications of such cross-reactivity. Critical Issues: Analogous to the classic antibody response to chemically modified proteins, we examine the possibility that antibodies to modified proteins in RA are more likely to resemble antihapten antibodies rather than autoantibodies. This potential shift in the autoantibody paradigm in RA offers the opportunity to explore new mechanisms involved in the origin and cross-reactivity of pathogenic antibodies in RA. In contrast to citrullination, carbamylation is a chemical modification associated with oxidative stress, it is highly immunogenic, and is considered in the group of posttranslational modification-derived products. We discuss the possibility that carbamylated proteins are antigenic drivers of cross-reacting antihapten antibodies that further create the ACPA response, and that ACPAs may direct the production of antibodies to PAD enzymes. Future Directions: Understanding the complexity of autoantibodies in RA is critical to develop tools to clearly define their origin, identify drivers of disease propagation, and develop novel therapeutics. Antioxid. Redox Signal. 36, 389-409.
Collapse
Affiliation(s)
| | - Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
11
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun 2021; 120:102644. [PMID: 33971585 PMCID: PMC8075847 DOI: 10.1016/j.jaut.2021.102644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae. Our work provides a rich resource for studies into “long COVID” and related autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
12
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.21.432171. [PMID: 33655248 PMCID: PMC7924268 DOI: 10.1101/2021.02.21.432171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
13
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
14
|
Wang JY, Zhang W, Rho JH, Roehrl MW, Roehrl MH. A proteomic repertoire of autoantigens identified from the classic autoantibody clinical test substrate HEp-2 cells. Clin Proteomics 2020; 17:35. [PMID: 32973414 PMCID: PMC7507713 DOI: 10.1186/s12014-020-09298-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoantibodies are a hallmark of autoimmune diseases. Autoantibody screening by indirect immunofluorescence staining of HEp-2 cells with patient sera is a current standard in clinical practice. Differential diagnosis of autoimmune disorders is based on commonly recognizable nuclear and cytoplasmic staining patterns. In this study, we attempted to identify as many autoantigens as possible from HEp-2 cells using a unique proteomic DS-affinity enrichment strategy. METHODS HEp-2 cells were cultured and lysed. Total proteins were extracted from cell lysate and fractionated with DS-Sepharose resins. Proteins were eluted with salt gradients, and fractions with low to high affinity were collected and sequenced by mass spectrometry. Literature text mining was conducted to verify the autoantigenicity of each protein. Protein interaction network and pathway analyses were performed on all identified proteins. RESULTS This study identified 107 proteins from fractions with low to high DS-affinity. Of these, 78 are verified autoantigens with previous reports as targets of autoantibodies, whereas 29 might be potential autoantigens yet to be verified. Among the 107 proteins, 82 can be located to nucleus and 15 to the mitotic cell cycle, which may correspond to the dominance of nuclear and mitotic staining patterns in HEp-2 test. There are 55 vesicle-associated proteins and 12 ribonucleoprotein granule proteins, which may contribute to the diverse speckled patterns in HEp-2 stains. There are also 32 proteins related to the cytoskeleton. Protein network analysis indicates that these proteins have significantly more interactions among themselves than would be expected of a random set, with the top 3 networks being mRNA metabolic process regulation, apoptosis, and DNA conformation change. CONCLUSIONS This study provides a proteomic repertoire of confirmed and potential autoantigens for future studies, and the findings are consistent with a mechanism for autoantigenicity: how self-molecules may form molecular complexes with DS to elicit autoimmunity. Our data contribute to the molecular etiology of autoimmunity and may deepen our understanding of autoimmune diseases.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jung-hyun Rho
- MP Biomedicals New Zealand Limited, Auckland, New Zealand
| | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
15
|
Brooks-Worrell BM, Palmer JP. Setting the Stage for Islet Autoimmunity in Type 2 Diabetes: Obesity-Associated Chronic Systemic Inflammation and Endoplasmic Reticulum (ER) Stress. Diabetes Care 2019; 42:2338-2346. [PMID: 31748213 PMCID: PMC7364670 DOI: 10.2337/dc19-0475] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Islet autoimmunity has been identified as a component of both type 1 (T1D) and type 2 (T2D) diabetes, but the pathway through which islet autoimmunity develops in T1D and T2D may be different. Acknowledging the presence of islet autoimmunity in the pathophysiology of T2D, a historically nonautoimmune metabolic disease, would pave the way for important changes in classifications of and therapeutic options for T2D. In order to fully appreciate the importance of islet autoimmunity in T2D, the underlying mechanisms for immune system activation need to be explored. In this review, we focus on the potential origin of immune system activation (innate and adaptive) leading to the development of islet autoimmunity in T2D.
Collapse
Affiliation(s)
- Barbara M Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA .,Department of Medicine, DVA Puget Sound Health Care System, Seattle, WA
| | - Jerry P Palmer
- Department of Medicine, University of Washington, Seattle, WA.,Department of Medicine, DVA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
16
|
Zhang W, Rho JH, Roehrl MH, Wang JY. A comprehensive autoantigen-ome of autoimmune liver diseases identified from dermatan sulfate affinity enrichment of liver tissue proteins. BMC Immunol 2019; 20:21. [PMID: 31242852 PMCID: PMC6595630 DOI: 10.1186/s12865-019-0304-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoimmune diseases result from aberrant immune attacks by the body itself. It is mysterious how autoantigens, a large cohort of seemingly unconnected molecules expressed in different parts of the body, can induce similar autoimmune responses. We have previously found that dermatan sulfate (DS) can form complexes with molecules of apoptotic cells and stimulate autoreactive CD5+ B cells to produce autoantibodies. Hence, autoantigenic molecules share a unique biochemical property in their affinity to DS. This study sought to further test this uniform principle of autoantigenicity. RESULTS Proteomes were extracted from freshly collected mouse livers. They were loaded onto columns packed with DS-Sepharose resins. Proteins were eluted with step gradients of increasing salt strength. Proteins that bound to DS with weak, moderate, or strong affinity were eluted with 0.4, 0.6, and 1.0 M NaCl, respectively. After desalting, trypsin digestion, and gel electrophoresis, proteins were sequenced by mass spectrometry. To validate whether these proteins have been previously identified as autoantigens, an extensive literature search was conducted using the protein name or its alternative names as keywords. Of the 41 proteins identified from the strong DS-affinity fraction, 33 (80%) were verified autoantigens. Of the 46 proteins with moderate DS-affinity, 27 (59%) were verified autoantigens. Of the 125 proteins with weak DS-affinity, 44 (35%) were known autoantigens. Strikingly, these autoantigens fell into the classical autoantibody categories of autoimmune liver diseases: ANA (anti-nuclear autoantibodies), SMA (anti-smooth muscle autoantibodies), AMA (anti-mitochondrial autoantibodies), and LKM (liver-kidney microsomal autoantigens). CONCLUSIONS This study of DS-affinity enrichment of liver proteins establishes a comprehensive autoantigen-ome for autoimmune liver diseases, yielding 104 verified and 108 potential autoantigens. The liver autoantigen-ome sheds light on the molecular origins of autoimmune liver diseases and further supports the notion of a unifying biochemical principle of autoantigenicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.
| | | |
Collapse
|
17
|
Zhang W, Rho JH, Roehrl MW, Roehrl MH, Wang JY. A repertoire of 124 potential autoantigens for autoimmune kidney diseases identified by dermatan sulfate affinity enrichment of kidney tissue proteins. PLoS One 2019; 14:e0219018. [PMID: 31237920 PMCID: PMC6592568 DOI: 10.1371/journal.pone.0219018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Autoantigens are the molecular targets in autoimmune diseases. They are a cohort of seemingly unrelated self-molecules present in different parts of the body, yet they can trigger a similar chain of autoimmune responses such as autoantibody production. We previously reported that dermatan sulfate (DS) can bind self-molecules of dying cells to stimulate autoreactive CD5+ B cells to produce autoantibodies. The formation of autoantigen-DS complexes converts the normally non-antigenic self-molecules to none-self antigens, and thus DS-affinity represents a common underlying biochemical property for autoantigens. This study sought to apply this property to identify potential autoantigens in the kidney. Total proteins were extracted from mouse kidney tissues and loaded onto DS-Sepharose resins. Proteins without affinity were washed off the resins, whereas those with increasing DS-affinity were eluted with step gradients of increasing salt strength. Fractions with strong and moderate DS-affinity were sequenced by mass spectrometry and yielded 25 and 99 proteins, respectively. An extensive literature search was conducted to validate whether these had been previously reported as autoantigens. Of the 124 proteins, 79 were reported autoantigens, and 19 out of 25 of the strong-DS-binding ones were well-known autoantigens. Moreover, these proteins largely fell into the two most common autoantibody categories in autoimmune kidney diseases, including 40 ANA (anti-nuclear autoantibodies) and 25 GBM (glomerular basement membrane) autoantigens. In summary, this study compiles a large repertoire of potential autoantigens for autoimmune kidney diseases. This autoantigen-ome sheds light on the molecular etiology of autoimmunity and further supports our hypothesis DS-autoantigen complexes as a unifying principle of autoantigenicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
- * E-mail: (JYW); (MHR)
| | - Julia Y. Wang
- Curandis, Scarsdale, New York, United States of America
- * E-mail: (JYW); (MHR)
| |
Collapse
|
18
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
19
|
Apostolou E, Moustardas P, Iwawaki T, Tzioufas AG, Spyrou G. Ablation of the Chaperone Protein ERdj5 Results in a Sjögren's Syndrome-Like Phenotype in Mice, Consistent With an Upregulated Unfolded Protein Response in Human Patients. Front Immunol 2019; 10:506. [PMID: 30967862 PMCID: PMC6438897 DOI: 10.3389/fimmu.2019.00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Sjögren's syndrome (SS) is a chronic autoimmune disorder that affects mainly the exocrine glands. Endoplasmic reticulum (ER) stress proteins have been suggested to participate in autoimmune and inflammatory responses, either acting as autoantigens, or by modulating factors of inflammation. The chaperone protein ERdj5 is an ER-resident disulfide reductase, required for the translocation of misfolded proteins during ER-associated protein degradation. In this study we investigated the role of ERdj5 in the salivary glands (SGs), in association with inflammation and autoimmunity. Methods:In situ expression of ERdj5 and XBP1 activation were studied immunohistochemically in minor SG tissues from primary SS patients and non-SS sicca-complaining controls. We used the mouse model of ERdj5 ablation and characterized its features: Histopathological, serological (antinuclear antibodies and cytokine levels), and functional (saliva flow rate). Results: ERdj5 was highly expressed in the minor SGs of SS patients, with stain intensity correlated to inflammatory lesion severity and anti-SSA/Ro positivity. Moreover, SS patients demonstrated higher XBP1 activation within the SGs. Remarkably, ablation of ERdj5 in mice conveyed many of the cardinal features of SS, like spontaneous inflammation in SGs with infiltrating T and B lymphocytes, distinct cytokine signature, excessive cell death, reduced saliva flow, and production of anti-SSA/Ro and anti-SSB/La autoantibodies. Notably, these features were more pronounced in female mice. Conclusions: Our findings suggest a critical connection between the function of the ER chaperone protein ERdj5 and autoimmune inflammatory responses in the SGs and provide evidence for a new, potent animal model of SS.
Collapse
Affiliation(s)
- Eirini Apostolou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academic Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Moustardas
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academic Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Giannis Spyrou
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Barrera MJ, Aguilera S, Castro I, González S, Carvajal P, Molina C, Hermoso MA, González MJ. Endoplasmic reticulum stress in autoimmune diseases: Can altered protein quality control and/or unfolded protein response contribute to autoimmunity? A critical review on Sjögren's syndrome. Autoimmun Rev 2018; 17:796-808. [PMID: 29890347 DOI: 10.1016/j.autrev.2018.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
For many years, researchers in the field of autoimmunity have focused on the role of the immune components in the etiopathogenesis of autoimmune diseases. However, some studies have demonstrated the importance of target tissues in their pathogenesis and the breach of immune tolerance. The immune system as well as target tissue cells (plasmatic, β-pancreatic, fibroblast-like synoviocytes, thyroid follicular and epithelial cells of the lachrymal glands, salivary glands, intestine, bronchioles and renal tubules) share the characteristic of secretory cells with an extended endoplasmic reticulum (ER). The function of these cells depends considerably on a normal ER function and calcium homeostasis, so they can produce and secrete their main components, which include glycoproteins involved in antigenic presentation such as major histocompatibility complex (MHC) class I and II. All these proteins are synthesized and modified in the ER, and for this reason disturbances in the normal functions of this organelle such as protein folding, protein quality control, calcium homeostasis and redox balance, promote accumulation of unfolded or misfolded proteins, a condition known as ER stress. Autoimmune diseases are characterized by inflammation, which has been associated with an ER stress condition. Interestingly, patients with these diseases contain circulating auto-antibodies against chaperone proteins (such as Calnexin and GRP94), thus affecting the folding and assembly of MHC class I and II glycoproteins and their loading with peptide. The main purpose of this article is to review the involvement of the protein quality control and unfolded protein response (UPR) in the ER protein homeostasis (proteostasis) and their alterations in autoimmune diseases. In addition, we describe the interaction between ER stress and inflammation and evidences are shown of how autoimmune diseases are associated with an ER stress condition, with a special emphasis on the second most prevalent autoimmune rheumatic disease, Sjögren's syndrome.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Escuela de Postgrado, Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Grp94 in complexes with IgG is a soluble diagnostic marker of gastrointestinal tumors and displays immune-stimulating activity on peripheral blood immune cells. Oncotarget 2018; 7:72923-72940. [PMID: 27662661 PMCID: PMC5341954 DOI: 10.18632/oncotarget.12141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/12/2016] [Indexed: 02/04/2023] Open
Abstract
Glucose-regulated protein94 (Grp94), the most represented endoplasmic reticulum (ER)-resident heat shock protein (HSP), is a tumor antigen shared by different types of solid and hematological tumors. The tumor-specific feature of Grp94 is its translocation from the ER to the cell surface where it displays pro-oncogenic functions. This un-physiological location has important implications for both the tumor pathology and anti-tumor therapy. We wanted to address the question of whether Grp94 could be measured as liquid marker in cancer patients in order to make predictions of diagnostic and therapeutic relevance for the tumor. To this aim, we performed an in-depth investigation on patients with primary tumors of the gastrointestinal (GI) tract, using different methodological approaches to detect Grp94 in tumor tissues, plasma and peripheral blood mononuclear cells (PBMCs). Results indicate that Grp94 is not only the antigen highly expressed in any tumor tissue and in cells of tumor infiltrates, mostly B lymphocytes, but it is also found in the circulation. However, the only form in which Grp94 was detected in the plasma of any patients and in B lymphocytes induced to proliferate, was that of stable complexes with Immunoglobulin (Ig)G. Using a specific immune-enzyme assay to measure plasma Grp94-IgG complexes, we showed that Grp94-IgG complexes were significantly increased in cancer patients compared to healthy control subjects, serving as diagnostic tumor biomarker. Results also demonstrate that the stimulation of patient PBMCs with Grp94-IgG complexes led to an increased secretion of inflammatory cytokines that might drive a potentially beneficial anti-tumor effect.
Collapse
|
22
|
Miyagawa-Hayashino A, Yoshifuji H, Kitagori K, Ito S, Oku T, Hirayama Y, Salah A, Nakajima T, Kiso K, Yamada N, Haga H, Tsuruyama T. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther 2018; 20:13. [PMID: 29382365 PMCID: PMC5791339 DOI: 10.1186/s13075-018-1511-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which dysregulation of B cells has been recognized. Here, we searched for potential biomarkers of SLE using liquid chromatography-tandem mass spectrometry (LC-MS). Methods Lymph nodes from SLE patients and controls were analyzed by LC-MS. To validate the identified molecules, immunoblotting and immunohistochemistry were performed and B cells from SLE patients were analyzed by quantitative RT-PCR. B-cell subsets from NZB/W F1 mice, which exhibit autoimmune disease resembling human SLE, were analyzed by flow cytometry. Endoplasmic reticulum (ER) stress was induced by tunicamycin and the serum concentration of anti-dsDNA antibodies was determined by ELISA. TUNEL methods and immunoblotting were used to assess the effect of tunicamycin. Results MZB1, which comprises part of a B-cell-specific ER chaperone complex and is a key player in antibody secretion, was one of the differentially expressed proteins identified by LC-MS and confirmed by immunoblotting. Immunohistochemically, larger numbers of MZB1+ cells were located mainly in interfollicular areas and scattered in germinal centers in specimens from SLE patients compared with those from controls. MZB1 colocalized with CD138+ plasma cells and IRTA1+ marginal zone B cells. MZB1 mRNA was increased by 2.1-fold in B cells of SLE patients with active disease (SLE Disease Activity Index 2000 ≥ 6) compared with controls. In aged NZB/W F1 mice, splenic marginal zone B cells and plasma cells showed elevated MZB1 levels. Tunicamycin induced apoptosis of MZB1+ cells in target organs, resulting in decreased serum anti-dsDNA antibody levels. Additionally, MZB1+ cells were increased in synovial tissue specimens from patients with rheumatoid arthritis. Conclusions MZB1 may be a potential therapeutic target in excessive antibody-secreting cells in SLE. Electronic supplementary material The online version of this article (10.1186/s13075-018-1511-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aya Miyagawa-Hayashino
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. .,Present address: Department of Clinical Pathology, Kansai Medical University, Osaka, Japan.
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kitagori
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Bio Frontier Platform, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuma Oku
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Research Portfolio & Science, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Research Portfolio & Science, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Adeeb Salah
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Toshiki Nakajima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaori Kiso
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norishige Yamada
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Nakken B, Papp G, Bosnes V, Zeher M, Nagy G, Szodoray P. Biomarkers for rheumatoid arthritis: From molecular processes to diagnostic applications-current concepts and future perspectives. Immunol Lett 2017; 189:13-18. [DOI: 10.1016/j.imlet.2017.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
24
|
Sun P, Wang W, Chen L, Li N, Meng X, Bian J, Yang J, Wang X, Zhu W, Ming L. Diagnostic value of autoantibodies combined detection for rheumatoid arthritis. J Clin Lab Anal 2017; 31:e22086. [PMID: 27800636 PMCID: PMC6816999 DOI: 10.1002/jcla.22086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/05/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic, inflammatory and autoimmune disease, there are many autoantibodies produced during disease progression in the patients' serum, and this work is to select a best detection scheme for RA diagnosis. METHODS Autoantibody levels including rheumatoid factor (RF), anti-cyclic citrullinated peptide (CCP), mutated citrullinated vimentin (MCV), anti-keratin antibodies(AKA), anti-perinuclear factor (APF), and Ig heavy chain binding protein (BIP), were measured, and the sensitivity, specificity, predictive values, accuracy, and Youden's index of different combining forms were all calculated in RA patients, disease, and healthy control group. The differences in the positive rates of the three groups were compared between any two of them. RESULTS Generally speaking, the sensitivity of the autoantibodies detected in parallel combination was higher than that in tandem, which was more specific. The sensitivity of anti-MCV and RF calculated in parallel (87.61%) was obviously better than that of anyone autoantibody (P<.05), and only increased slightly even if more autoantibodies were tested in parallel (P>.05). The specificity of anti-CCP and BIP measured in tandem (95.92%) was obviously higher than that of anyone autoantibody (P<.05). While increasing the detected number of autoantibody from two kinds to three or more, the specificity was improved insignificantly (P>.05). CONCLUSION Anti-BIP and CCP antibodies detected in tandem combination can obtain higher specificity, and have good clinical value for the differential diagnosis of RA.
Collapse
Affiliation(s)
- Pingping Sun
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Wanhai Wang
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Ling Chen
- Laboratory of Jiangyou People's HospitalSichuanChina
| | - Nan Li
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Xianchun Meng
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jing Bian
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jingjing Yang
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Xu'na Wang
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Weitao Zhu
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Liang Ming
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| |
Collapse
|
25
|
Kheitan S, Minuchehr Z, Soheili ZS. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration. PLoS One 2017; 12:e0181667. [PMID: 28742151 PMCID: PMC5524348 DOI: 10.1371/journal.pone.0181667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.
Collapse
Affiliation(s)
- Samira Kheitan
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail:
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
26
|
Clark AL, Urano F. Endoplasmic reticulum stress in beta cells and autoimmune diabetes. Curr Opin Immunol 2016; 43:60-66. [PMID: 27718448 DOI: 10.1016/j.coi.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes results from the autoimmune destruction of pancreatic β cells, leading to insulin deficiency and hyperglycemia. Although multiple attempts have been made to slow the autoimmune process using immunosuppressive or immunomodulatory agents, there are still no effective treatments that can delay or reverse the progression of type 1 diabetes in humans. Recent studies support endoplasmic reticulum (ER) as a novel target for preventing the initiation of the autoimmune reaction, propagation of inflammation, and β cell death in type 1 diabetes. This review highlights recent findings on ER stress in β cells and development of type 1 diabetes and introduces potential new treatments targeting the ER to combat this disorder.
Collapse
Affiliation(s)
- Amy L Clark
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Cao SS, Luo KL, Shi L. Endoplasmic Reticulum Stress Interacts With Inflammation in Human Diseases. J Cell Physiol 2016; 231:288-94. [PMID: 26201832 PMCID: PMC4659393 DOI: 10.1002/jcp.25098] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 01/28/2023]
Abstract
The endoplasmic reticulum (ER) is a critical organelle for normal cell function and homeostasis. Disturbance in the protein folding process in the ER, termed ER stress, leads to the activation of unfolded protein response (UPR) that encompasses a complex network of intracellular signaling pathways. The UPR can either restore ER homeostasis or activate pro-apoptotic pathways depending on the type of insults, intensity and duration of the stress, and cell types. ER stress and the UPR have recently been linked to inflammation in a variety of human pathologies including autoimmune, infectious, neurodegenerative, and metabolic disorders. In the cell, ER stress and inflammatory signaling share extensive regulators and effectors in a broad spectrum of biological processes. In spite of different etiologies, the two signaling pathways have been shown to form a vicious cycle in exacerbating cellular dysfunction and causing apoptosis in many cells and tissues. However, the interaction between ER stress and inflammation in many of these diseases remains poorly understood. Further understanding of the biochemistry, cell biology, and physiology may enable the development of novel therapies that spontaneously target these pathogenic pathways.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- Columbia University College of Physicians and SurgeonsNew YorkNew York
| | - Katherine L. Luo
- Columbia University College of Physicians and SurgeonsNew YorkNew York
| | - Lynn Shi
- Columbia University College of Physicians and SurgeonsNew YorkNew York
| |
Collapse
|
28
|
Shoda H, Fujio K, Sakurai K, Ishigaki K, Nagafuchi Y, Shibuya M, Sumitomo S, Okamura T, Yamamoto K. Autoantigen BiP-Derived HLA-DR4 Epitopes Differentially Recognized by Effector and Regulatory T Cells in Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1171-81. [PMID: 25778936 DOI: 10.1002/art.39054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The balance between effector and regulatory CD4+ T cells plays a key role in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to examine whether the RA autoantigen BiP has epitopes for both effector and regulatory immunities. METHODS The proliferation and cytokine secretion of peripheral blood mononuclear cells (PBMCs) from HLA-DR4-positive RA patients in response to BiP-derived peptides were examined by (3)H-thymidine uptake and enzyme-linked immunosorbent assay. As a mouse therapeutic model, a BiP-derived peptide was administered orally to mice with collagen-induced arthritis (CIA). RESULTS Among the peptides examined, BiP(336-355) induced the strongest proliferation of PBMCs from RA patients, but not from healthy donors. The proliferation of PBMCs in response to BiP(336-355) showed a correlation with clinical RA activity and serum anti-BiP/citrullinated BiP antibodies. In contrast, BiP(456-475) induced interleukin-10 (IL-10) secretion from CD25-positive PBMCs obtained from RA patients and healthy donors without inducing cell proliferation, and it actively suppressed the BiP(336-355)-induced proliferation and proinflammatory cytokine secretion by PBMCs. Oral administration of BiP(456-475) to mice with CIA reduced the severity of arthritis and T cell proliferation and increased the secretion of IL-10 from T cells as well as the number of CD4+CD25+FoxP3+ regulatory T cells. CONCLUSION Effector and regulatory T cells recognized different BiP epitopes. The deviated balance toward BiP-specific effector T cells in RA may be associated with disease activity; therefore, BiP-specific effector or regulatory T cells could be a target of new RA therapies.
Collapse
|
29
|
Watkin LB, Jessen B, Wiszniewski W, Vece T, Jan M, Sha Y, Thamsen M, Santos-Cortez RLP, Lee K, Gambin T, Forbes L, Law CS, Stray-Petersen A, Cheng MH, Mace EM, Anderson MS, Liu D, Tang LF, Nicholas SK, Nahmod K, Makedonas G, Canter D, Kwok PY, Hicks J, Jones KD, Penney S, Jhangiani SN, Rosenblum MD, Dell SD, Waterfield MR, Papa FR, Muzny DM, Zaitlen N, Leal SM, Gonzaga-Jauregui C, Boerwinkle E, Eissa NT, Gibbs RA, Lupski JR, Orange JS, Shum AK. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 2015; 47:654-60. [PMID: 25894502 PMCID: PMC4513663 DOI: 10.1038/ng.3279] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.
Collapse
Affiliation(s)
- Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Birthe Jessen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Timothy Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Max Jan
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Youbao Sha
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Maike Thamsen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | | | - Kwanghyuk Lee
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Christopher S. Law
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Asbjørg Stray-Petersen
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Mickie H. Cheng
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Emily M. Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Mark S. Anderson
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Dongfang Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Ling Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Sarah K. Nicholas
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Karen Nahmod
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - George Makedonas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX
| | - Kirk D. Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Sharon D. Dell
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Feroz R. Papa
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Noah Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - N. Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Anthony K. Shum
- Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
30
|
Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P. Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity. Front Oncol 2015; 5:7. [PMID: 25688334 PMCID: PMC4310273 DOI: 10.3389/fonc.2015.00007] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/10/2015] [Indexed: 01/12/2023] Open
Abstract
Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and isomerases) perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g., drugs, UV irradiation, and microbial stimuli. Once on the cell surface or in the extracellular space, the ER chaperones can take on immunogenic characteristics, as mostly described in the context of cancer, appearing as damage-associated molecular patterns recognized by the immune system. How ER chaperones relocate to the cell surface and interact with other intracellular proteins appears to influence whether a tumor cell is targeted for cell death. The relocation of ER proteins to the cell surface can be exploited to target cancer cells for elimination by immune mechanism. Here we evaluate the evidence for the different mechanisms of ER protein translocation and binding to the cell surface and how ER protein translocation can act as a signal for cancer cells to undergo killing by immunogenic cell death and other cell death pathways. The release of chaperones can also exacerbate underlying autoimmune conditions, such as rheumatoid arthritis and multiple sclerosis, and the immunomodulatory role of extracellular chaperones as potential cancer immunotherapies requires cautious monitoring, particularly in cancer patients with underlying autoimmune disease.
Collapse
Affiliation(s)
- Valerie R. Wiersma
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marek Michalak
- University of Exeter Medical School, Exeter Devon, UK
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Edwin Bremer
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University of Exeter Medical School, Exeter Devon, UK
| | - Paul Eggleton
- University of Exeter Medical School, Exeter Devon, UK
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Lee EG, Sung MS, Yoo HG, Chae HJ, Kim HR, Yoo WH. Increased RANKL-mediated osteoclastogenesis by interleukin-1β and endoplasmic reticulum stress. Joint Bone Spine 2014; 81:520-6. [DOI: 10.1016/j.jbspin.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
|
32
|
Thaxton JE, Liu B, Zheng P, Liu Y, Li Z. Deletion of CD24 impairs development of heat shock protein gp96-driven autoimmune disease through expansion of myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5679-86. [PMID: 24808359 DOI: 10.4049/jimmunol.1302755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD24 binds to and suppresses inflammation triggered by danger-associated molecular patterns such as heat shock proteins (HSPs) and high-mobility group box 1. Paradoxically, CD24 has been shown to enhance autoimmune disease. In this study, we attempt to reconcile this paradox by deletion of CD24 (24KO) in a lupus-like disease model driven by forced expression of HSP gp96 at the cell surface (transgenic mice [tm]). As expected, tm24KO mice showed increased CD11c(+) dendritic cell activation coupled to a significant increase in dendritic cell-specific IL-12 production compared with tm mice. However, tm24KO mice showed less CD4 T cell activation and peripheral inflammatory cytokine production in comparison with tm mice. We characterized an enhanced immune suppressive milieu in tm24KO mice distinguished by increased TGF-β and greater regulatory T cell-suppressive capacity. We found greater absolute numbers of myeloid-derived suppressor cells (MDSCs) in tm24KO mice and showed that the Ly6C(+) MDSC subset had greater suppressive capacity from tm24KO mice. Deletion of CD24 in tm mice led to diminished lupus-like pathology as evidenced by anti-nuclear Ab deposition and glomerulonephritis. Finally, we show that expanded MDSC populations were mediated by increased free high-mobility group box 1 in tm24KO mice. Thus, the deletion of CD24 in an HSP-driven model of autoimmunity led to the unexpected development of regulatory T cell and MDSC populations that augmented immune tolerance. Further study of these populations as possible negative regulators of inflammation in the context of autoimmunity is warranted.
Collapse
Affiliation(s)
- Jessica E Thaxton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; and
| |
Collapse
|
33
|
Structural insights into complexes of glucose-regulated Protein94 (Grp94) with human immunoglobulin G. relevance for Grp94-IgG complexes that form in vivo in pathological conditions. PLoS One 2014; 9:e86198. [PMID: 24489700 PMCID: PMC3904872 DOI: 10.1371/journal.pone.0086198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/04/2013] [Indexed: 01/17/2023] Open
Abstract
While the mechanism by which Grp94 displays its chaperone function with client peptides in the cell has been elucidated extensively, much less is known about the nature and properties of how Grp94 can engage binding to proteins once it is exposed on the cell surface or liberated in the extra-cellular milieu, as occurs in pathological conditions. In this work, we wanted to investigate the molecular aspects and structural characteristics of complexes that Grp94 forms with human IgG, posing the attention on the influence that glycosylation of Grp94 might have on the binding capacity to IgG, and on the identification of sites involved in the binding. To this aim, we employed both native, fully glycosylated and partially glycosylated Grp94, and recombinant, non-glycosylated Grp94, as well as IgG subunits, in different experimental conditions, including the physiological setting of human plasma. Regardless of the species and type, Grp94 engages a similar, highly specific and stable binding with IgG that involves sites located in the N-terminal domain of Grp94 and the hinge region of whole IgG. Grp94 does not form stable complex with Fab, F(ab)2 or Fc. Glycosylation turns out to be an obstacle to the Grp94 binding to IgG, although this negative effect can be counteracted by ATP and spontaneously also disappears in time in a physiological setting of incubation. ATP does not affect at all the binding capacity of non-glycosylated Grp94. However, complexes that native, partially glycosylated Grp94 forms with IgG in the presence of ATP show strikingly different characteristics with respect to those formed in absence of ATP. Results have relevance for the mechanism regulating the formation of stable Grp94-IgG complexes in vivo, in the pathological conditions associated with the extra-cellular location of Grp94.
Collapse
|
34
|
Lambrecht S, Juchtmans N, Elewaut D. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins? Rheumatology (Oxford) 2013; 53:223-32. [DOI: 10.1093/rheumatology/ket277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
35
|
Huang QQ, Pope RM. The role of glycoprotein 96 in the persistent inflammation of rheumatoid arthritis. Arch Biochem Biophys 2012; 530:1-6. [PMID: 23257071 DOI: 10.1016/j.abb.2012.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 12/29/2022]
Abstract
The 96-kDa glycoprotein (gp96) is an endoplasmic reticulum (ER) resident molecular chaperone. Under physiologic conditions, gp96 facilitates the transport of toll-like receptors (TLRs) to cell or endosomal membranes. Under pathologic circumstances such as rheumatoid arthritis, gp96 translocates to the cell surface and extracellular space, serving as an endogenous danger signal promoting TLR signaling. Macrophages play a central role in regulating innate and adaptive immunity, and are the major source of proinflammatory cytokines and chemokines in rheumatoid arthritis (RA). Macrophage numbers in the sublining of RA synovial tissue correlate with clinical response. This review focuses on the recent findings that implicate gp96 induced macrophage activation mediated through TLR signaling in the pathogenesis of RA and provides insights concerning the targeting gp96 and the TLR signaling pathway as therapeutic approaches for patients with RA and possibly other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron, McGaw M220, Chicago, IL 60611, USA.
| | | |
Collapse
|
36
|
Alpini C, Lotzniker M, Valaperta S, Bottone MG, Malatesta M, Montanelli A, Merlini G. Characterization for anti-cytoplasmic antibodies specificity by morphological and molecular techniques. AUTOIMMUNITY HIGHLIGHTS 2012; 3:79-85. [PMID: 26000130 PMCID: PMC4389067 DOI: 10.1007/s13317-012-0033-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of our study was the characterization of anti-cytoplasmic antibodies by home-made morphological and biochemical techniques. Indeed, indirect immunofluorescence (IIF) on HEp-2 cell line is not always exhaustive in relation to the complexity of the antigens involved. METHODS Nine serum samples with anti-cytoplasmic antibodies (2 anti-Golgi apparatus, 3 with diffuse pattern and 4 with lysosome/endosome-like pattern) were tested with fluorescent confocal microscopy, Western blot analysis and, when necessary, with electron microscopy technique. RESULTS Confirmation of the IIF staining pattern was performed in confocal microscopy by comparison with the respective antibody marker. The anti-endoplasmatic reticulum positivity was also confirmed by electron microscopy evaluation. Both anti-lysosome/endosome and anti-endoplasmatic reticulum positivity have been definitely identified by Western blot through clear reactivity with calreticulin and LC3B, respectively. CONCLUSIONS These results do not aim at representing a standard routine laboratory procedure. Electron microscopy evaluation cannot be proposed as a routine approach, but confocal microscopy technique may be offered in centralized reference laboratories. Newer technologies, especially multiplex immunoassay, can also lead to an easier identification of these autoantibodies, without recurring to a home-made immunoblotting. Only with a complete characterization we will be able to define the clinical relevance of anti-cytoplasmic antibodies, which are still considered as "esoteric" and not as "diagnostic" antibodies.
Collapse
Affiliation(s)
- Claudia Alpini
- Servizio Analisi Chimico Cliniche Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Milvia Lotzniker
- Laboratorio Analisi A.O. Ospedale Civile di, Legnano, Milan Italy
| | - Serenella Valaperta
- Servizio Analisi Chimico Cliniche Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Maria Grazia Bottone
- Dipartimento di Biologia e Biotecnologie “L.Spallanzani”, Laboratorio di Biologia Cellulare e Neurobiologia, Università di Pavia, Pavia, Italy
- Istituto di Genetica Molecolare del CNR, Pavia, Italy
| | - Manuela Malatesta
- Dipartimento di Biologia e Biotecnologie “L.Spallanzani”, Laboratorio di Biologia Cellulare e Neurobiologia, Università di Pavia, Pavia, Italy
| | | | - Giampaolo Merlini
- Servizio Analisi Chimico Cliniche Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
37
|
Morito D, Nagata K. ER Stress Proteins in Autoimmune and Inflammatory Diseases. Front Immunol 2012; 3:48. [PMID: 22566930 PMCID: PMC3342303 DOI: 10.3389/fimmu.2012.00048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/28/2012] [Indexed: 11/24/2022] Open
Abstract
Over the past two decades, heat shock proteins (HSPs) have been implicated in inflammatory responses and autoimmunity. HSPs were originally believed to maintain protein quality control in the cytosol. However, they also exist extracellularly and appear to act as inflammatory factors. Recently, a growing body of evidence suggested that the other class of stress proteins such as, endoplasmic reticulum (ER) stress proteins, which originally act as protein quality control factors in the secretory pathway and are induced by ER stress in inflammatory lesions, also participate in inflammation and autoimmunity. The immunoglobulin heavy-chain binding protein (Bip)/glucose-regulated protein 78 (GRP78), calnexin, calreticulin, glucose-regulated protein 94 (GRP94)/gp96, oxygen regulated protein 150 (ORP150)/glucose-regulated protein 170 (GRP170), homocysteine-induced ER protein (Herp) and heat shock protein 47 (hsp47)/Serpin H1, which are expressed not only in the ER but also occasionally at the cell surface play pathophysiological roles in autoimmune and inflammatory diseases as pro- or anti-inflammatory factors. Here we describe the accumulating evidence of the participation of ER stress proteins in autoimmunity and inflammation and discuss the critical differences between the two classes of stress proteins.
Collapse
Affiliation(s)
- Daisuke Morito
- Faculty of Life Sciences, Kyoto Sangyo University Kyoto, Japan
| | | |
Collapse
|
38
|
Shoda H, Fujio K, Yamamoto K. [Autoantigen BiP and autoimmune diseases]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2012; 35:46-50. [PMID: 22374442 DOI: 10.2177/jsci.35.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunoglobulin Binding Protein (BiP) is a member of heat shock protein 70 famaily, and is also known as an autoantigen in rheumatoid arthritis (RA) patients. Serum anti-BiP antibody is detected up to 60% of RA patients, and recent reports demonstrated that serum anti-BiP antibody is also detected in systemic lupus erythematosus patients. Notably, anti-citrullinated BiP antibody is revealed as another member of anti-citrullinated protein/peptide antibodies (ACPAs). Since ACPAs are supposed to be closely associated with RA pathogenesis, immune responses to citrullinated BiP could play an important role in RA. Indeed, immunization of citrullinated BiP exacerbated inflammatory arthritis in mice. Moreover, T cell responses to BiP were reported in human RA and mice models. In mice models, native BiP administration induced IL-4 and IL-10 producing CD4(+) T cells and regulated inflammatory arthritis. In this way, immune responses to BiP are various, and dysregulation of the balances between pro-inflammatory and regulatory responses to BiP could lead to the autoimmune responses and diseases.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Shoda H, Fujio K, Shibuya M, Okamura T, Sumitomo S, Okamoto A, Sawada T, Yamamoto K. Detection of autoantibodies to citrullinated BiP in rheumatoid arthritis patients and pro-inflammatory role of citrullinated BiP in collagen-induced arthritis. Arthritis Res Ther 2011; 13:R191. [PMID: 22108001 PMCID: PMC3334641 DOI: 10.1186/ar3520] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/20/2011] [Accepted: 11/22/2011] [Indexed: 01/10/2023] Open
Abstract
Introduction Anti-citrullinated protein/peptide antibodies (ACPAs) are highly specific to rheumatoid arthritis (RA) patients and are thought to have a close relationship with the pathogenesis of arthritis. Several proteins, including fibrinogen, vimentin, and alpha-enolase, were reported as ACPA-target antigens, and their importance in RA pathogenesis was widely proposed. We identified citrullinated immunoglobulin binding protein (citBiP) as another ACPA target in RA patients and examined its pro-inflammatory role in arthritis. Methods We measured the levels of anti-citBiP, anti-BiP, and anti-cyclic citrullinated peptide (CCP) antibodies in the serum of RA patients (n = 100), systemic lupus erythematosus (SLE) patients (n = 60), and healthy controls (n = 30) using ELISA and immunoblotting. Epitope mapping was performed using 27 citBiP-derived peptides. In the mouse study, after DBA/1J mice were immunized with BiP or citBiP, serum titers of ACPAs were measured by ELISA and immunohistochemistry. The development of collagen-induced arthritis (CIA) was observed in BiP- or citBiP-pre-immunized mice. Results The serum levels of anti-BiP and anti-citBiP antibodies were significantly increased in RA patients, although only anti-BiP antibodies were slightly increased in SLE patients. Interestingly, anti-citBiP antibody levels were higher than anti-BiP antibody levels in 72% of RA patients, whereas no significant increase in anti-citBiP antibody levels was detected in SLE patients and healthy controls. The serum levels of anti-CCP antibodies were correlated with those of anti-citBiP antibodies in RA patients (R2 = 0.41). Several citrulline residues of citBiP were determined to be major epitopes of anti-citBiP antibodies, one of which showed cross-reactivity with CCP. Immunization of DBA/1J mice with citBiP induced several kinds of ACPAs, including anti-CCP and anti-citrullinated fibrinogen antibodies. Pre-immunization with citBiP exacerbated CIA, and anti-CCP antibody levels were increased in citBiP-pre-immunized CIA mice. Conclusions CitBiP is a newly described ACPA target that may play a pro-inflammatory role in arthritis.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|