1
|
Kim SY, de Weert TAE, Vermeulen M, Ringnalda F, Kester L, Zsiros J, Eising S, Molenaar JJ, Sanders K, van de Wetering M, Clevers H. Organoid drug profiling identifies methotrexate as a therapy for SCCOHT, a rare pediatric cancer. SCIENCE ADVANCES 2025; 11:eadq1724. [PMID: 40009666 PMCID: PMC11864178 DOI: 10.1126/sciadv.adq1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and lethal tumor in adolescent and young adult patients. Now, there is no standard-of-care treatment for these patients. Reliable models that represent this disease and can be used for translational research are scarce. To model SCCOHTs, we have established eight patient-derived tumoroid lines from tumor lesions of three patients with SCCOHT. The tumoroids recapitulate genomic and transcriptomic characteristics of the corresponding patient tumors and capture intrapatient tumor heterogeneity. Organoid drug profiling using a library of 153 clinical compounds identified methotrexate as an effective and selective drug against SCCOHTs with a clinically relevant IC50 of 35 nanomolars. RNA sequencing demonstrated that methotrexate induced TP53 pathway activation and apoptosis. These data underscore that organoid technology can support the design of therapeutic strategies for rare cancers.
Collapse
Affiliation(s)
- Seok-Young Kim
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Tamar A. E. de Weert
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marijn Vermeulen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jozsef Zsiros
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pharmaceutical Sciences, University Utrecht, Utrecht, Netherlands
| | - Karin Sanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
2
|
Wang X, Chen X, Ji H, Han A, Wu C, Jiang J, Nie Y, Li C, Zhou X. Dual-Responsive Methotrexate-Human Serum Albumin Complex-Encapsulated Liposomes for Targeted and Enhanced Atherosclerosis Therapy. Int J Nanomedicine 2025; 20:2305-2322. [PMID: 40007906 PMCID: PMC11853999 DOI: 10.2147/ijn.s502850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction In plaque sites of atherosclerosis (AS), the physiological barrier caused by the thick fiber cap due to the overmigration of vascular smooth muscle cells (VSMCs) prevents efficient drug delivery to damaged macrophages. How to ensure precise targeted delivery of drugs to plaque sites and their on-demand release to dysfunctional cells under the thick fibrous cap are feasible solutions to enhance AS treatment. Methods A small complex of methotrexate (MTX)-human serum albumin (HSA) with strong, thick fibrous cap penetration ability was encapsulated in a cholesterol hemisuccinate (CHEM) prepared pH-sensitive liposome, modifying with ROS-responsive PEG2000-TK-DSPE (PTD), termed PTD/Lipo/MTX-HSA. Results PTD/Lipo/MTX-HSA can achieve precise targeting and on-demand release in response to plaques environments of AS. The designed formulation accelerated the release of the small-sized MTX-HSA complex in response to excess ROS and acidic pH conditions, and it better penetrated the macrophage spheroids. Furthermore, it has precise targeting ability in the AS mouse model and can produce good anti-inflammatory efficacy by inhibiting p65 entry into the nucleus turn out inflammatory factor. Conclusion Our formulations work with safety in mind, and it also highlights the potential of precisely targeted and on-demand-released dual-responsive smart nanoplatforms as promising therapeutic options to penetrate deeper plaques for the effective treatment of AS.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaodong Chen
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Huawen Ji
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Along Han
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic‒Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Chengxi Wu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People’s Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhang Y, Gao Y, Li N, Xu L, Wang Y, Liu H. Polypropylene sulfide methotrexate nanoparticles target the synovial lymphatic system to restore immune tolerance in rheumatoid arthritis. Int J Pharm 2024; 665:124713. [PMID: 39284426 DOI: 10.1016/j.ijpharm.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Around 40 % of patients fail to achieve primary clinical outcomes for rheumatoid arthritis (RA). The growth of lymphatic system in the synovial membrane, is a primary response during RA inflammation. It is suggested that a delivery strategy targeting immunosuppressive agents to the synovial lymph nodes and then to the immune cells is beneficial for resolving arthritis. This study introduced a synthetic polypropylene sulfide methotrexate nano-delivery system (PPS-MTX), which was prepared by covalently bonding methotrexate to polypropylene sulfide, with a diameter size range of 36 nm. It enhanced joint accumulation and retention, which can be selectively uptake by antigen-presenting cells in the synovial lymphatic system. The results indicated that PPS-MTX nanoparticles effectively improved arthritis disease progression and restored the immune tolerance microenvironment in the synovial lymphatic system, promoting peripheral tolerance in collagen-induced arthritis mice. Additionally, no systemic toxicity was observed. This study presents a promising targeted strategy for inducing immune tolerance in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
4
|
Bergström B, Selldén T, Bollmann M, Svensson MND, Ekwall AKH. Methotrexate promotes the release of granulocyte-macrophage colony-stimulating factor from rheumatoid arthritis fibroblast-like synoviocytes via autocrine interleukin-1 signaling. Arthritis Res Ther 2024; 26:178. [PMID: 39394168 PMCID: PMC11468154 DOI: 10.1186/s13075-024-03406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Activated fibroblast-like synoviocytes (FLS) are drivers of synovitis and structural joint damage in rheumatoid arthritis (RA). Despite the use of disease-modifying drugs, only about 50% of RA patients reach remission in real-world settings. We used an unbiased approach to investigate the effects of standard-of-care methotrexate (MTX) and a Janus kinase inhibitor, tofacitinib (TOFA), on gene expression in RA-FLS, in order to identify untargeted disease mediators. METHODS Primary RA-FLS were activated by stimulation with interleukin-1β (IL-1β) or platelet-derived growth factor + IL-1β in the presence or absence of MTX or TOFA, with or without additional inhibitors. Co-cultures of synovial cells were performed in direct and indirect systems. Cells were collected for RNA sequencing or qPCR, and supernatants were analyzed for protein concentrations. RESULTS Six thousand three hundred fifty genes were differentially expressed, the majority being upregulated, in MTX-treated activated RA-FLS and 970 genes, the majority being downregulated, in TOFA-treated samples. Pathway analysis showed that MTX had largest effects on 'Molecular mechanisms of cancer' and TOFA on 'Interferon signaling'. Targeted analysis of disease-associated genes revealed that MTX increased the expression of cell cycle-regulating genes but also of pro-inflammatory mediators like IL-1α (IL1A) and granulocyte-macrophage colony-stimulating factor, GM-CSF (CSF2). The MTX-promoted expression of CSF2 in activated RA-FLS peaked at 48 h, could be mediated via either NF-κB or AP-1 transcription factors, and was abrogated by IL-1 inhibitors (IRAK4 inhibitor and anakinra). In a co-culture setting, MTX-treatment of activated RA-FLS induced IL1B expression in macrophages. CONCLUSIONS MTX treatment induces secretion of IL-1 from activated RA-FLS which by autocrine signaling augments their release of GM-CSF. This unexpected effect of MTX might contribute to the persistence of synovitis.
Collapse
Affiliation(s)
- Beatrice Bergström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tilia Selldén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Miriam Bollmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Rheumatology, Division 3, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
5
|
Kingsbury SR, Tharmanathan P, Keding A, Watt FE, Scott DL, Roddy E, Birrell F, Arden NK, Bowes M, Arundel C, Watson M, Ronaldson SJ, Hewitt C, Doherty M, Moots RJ, O'Neill TW, Green M, Patel G, Garrood T, Edwards CJ, Walmsley PJ, Sheeran T, Torgerson DJ, Conaghan PG. Pain Reduction With Oral Methotrexate in Knee Osteoarthritis : A Randomized, Placebo-Controlled Clinical Trial. Ann Intern Med 2024; 177:1145-1156. [PMID: 39074374 DOI: 10.7326/m24-0303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Treatments for osteoarthritis (OA) are limited. Previous small studies suggest that the antirheumatic drug methotrexate may be a potential treatment for OA pain. OBJECTIVE To assess symptomatic benefits of methotrexate in knee OA (KOA). DESIGN A multicenter, randomized, double-blind, placebo-controlled trial done between 13 June 2014 and 13 October 2017. (ISRCTN77854383; EudraCT: 2013-001689-41). SETTING 15 secondary care musculoskeletal clinics in the United Kingdom. PARTICIPANTS A total of 207 participants with symptomatic, radiographic KOA and knee pain (severity ≥4 out of 10) on most days in the past 3 months with inadequate response to current medication were approached for inclusion. INTERVENTION Participants were randomly assigned 1:1 to oral methotrexate once weekly (6-week escalation 10 to 25 mg) or matched placebo over 12 months and continued usual analgesia. MEASUREMENTS The primary end point was average knee pain (numerical rating scale [NRS] 0 to 10) at 6 months, with 12-month follow-up to assess longer-term response. Secondary end points included knee stiffness and function outcomes and adverse events (AEs). RESULTS A total of 155 participants (64% women; mean age, 60.9 years; 50% Kellgren-Lawrence grade 3 to 4) were randomly assigned to methotrexate (n = 77) or placebo (n = 78). Follow-up was 86% (n = 134; methotrexate: 66, placebo: 68) at 6 months. Mean knee pain decreased from 6.4 (SD, 1.80) at baseline to 5.1 (SD, 2.32) at 6 months in the methotrexate group and from 6.8 (SD, 1.62) to 6.2 (SD, 2.30) in the placebo group. The primary intention-to-treat analysis showed a statistically significant pain reduction of 0.79 NRS points in favor of methotrexate (95% CI, 0.08 to 1.51; P = 0.030). There were also statistically significant treatment group differences in favor of methotrexate at 6 months for Western Ontario and McMaster Universities Osteoarthritis Index stiffness (0.60 points [CI, 0.01 to 1.18]; P = 0.045) and function (5.01 points [CI, 1.29 to 8.74]; P = 0.008). Treatment adherence analysis supported a dose-response effect. Four unrelated serious AEs were reported (methotrexate: 2, placebo: 2). LIMITATION Not permitting oral methotrexate to be changed to subcutaneous delivery for intolerance. CONCLUSION Oral methotrexate added to usual medications demonstrated statistically significant reduction in KOA pain, stiffness, and function at 6 months. PRIMARY FUNDING SOURCE Versus Arthritis.
Collapse
Affiliation(s)
- Sarah R Kingsbury
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre, Leeds, United Kingdom (S.R.K., P.G.C.)
| | - Puvan Tharmanathan
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Ada Keding
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Fiona E Watt
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith Campus, Imperial College London, and Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, and Department of Rheumatology, Oxford University Hospitals NHS Foundation Trust, and Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Oxford, United Kingdom (F.E.W.)
| | - David L Scott
- King's College London, London, United Kingdom (D.L.S.)
| | - Edward Roddy
- Primary Care Centre Versus Arthritis, Keele University, and Haywood Academic Rheumatology Centre, Midlands Partnership University NHS Foundation Trust, Keele, United Kingdom (E.R.)
| | - Fraser Birrell
- Medical Research Council-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, and Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (F.B.)
| | - Nigel K Arden
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, and Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, University of Oxford, Oxford, United Kingdom (N.K.A.)
| | - Mike Bowes
- Imorphics, Manchester, United Kingdom (M.B.)
| | - Catherine Arundel
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Michelle Watson
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Sarah J Ronaldson
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Catherine Hewitt
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Michael Doherty
- Academic Rheumatology and Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom (M.D.)
| | - Robert J Moots
- Faculty of Heath Social Care and Medicine, Edge Hill University, Ormskirk, and Department of Rheumatology, Aintree University Hospital, Liverpool, United Kingdom (R.J.M.)
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom (T.W.O.)
| | - Michael Green
- Harrogate and District NHS Foundation Trust, Harrogate, and York Teaching Hospital NHS Foundation Trust, York, United Kingdom (M.G.)
| | - Gulam Patel
- Rheumatology Department, Ashford and St. Peter's Hospital NHS Trust, Chertsey, United Kingdom (G.P.)
| | - Toby Garrood
- Department of Rheumatology, Guy's and St. Thomas' NHS Trust, London, United Kingdom (T.G.)
| | - Christopher J Edwards
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (C.J.E.)
| | - Phil J Walmsley
- Department of Orthopaedics, Victoria Hospital Kirkcaldy and School of Medicine, St. Andrews University, Fife and Fife NHS Trust, Kirkcaldy, United Kingdom (P.J.W.)
| | - Tom Sheeran
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom (T.S.)
| | - David J Torgerson
- York Trials Unit, Department of Health Sciences, Faculty of Science, University of York, Heslington, York, United Kingdom (P.T., A.K., C.A., M.W., S.J.R., C.H., D.J.T.)
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre, Leeds, United Kingdom (S.R.K., P.G.C.)
| |
Collapse
|
6
|
Zhang M, Niu Z, Huang Q, Han L, Du J, Liang J, Cheng Y, Cao R, Yawalkar N, Zhang Z, Yan K. Identification of an exosomal miRNA-mRNA regulatory network contributing to methotrexate efficacy. Int Immunopharmacol 2024; 135:112280. [PMID: 38776848 DOI: 10.1016/j.intimp.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Methotrexate (MTX) is an economic and effective medicine treatment for psoriasis. Extracellular vesicle (EV) miRNA biomarkers related to its efficiency have been identified in various diseases. Whether certain miRNA profiles are associated with psoriasis treatment is unknown. In order to determine specific miRNA biomarkers for MTX effectiveness prediction and the severity of psoriasis, our study looked at the variations in circulating EV miRNA profiles before and after MTX therapy. METHODS Plasma EV isolation and next-generation sequencing were performed to identify differentially expressed EV miRNAs between GRs (n = 14) and NRs (n = 6). Univariate and multiple linear regression analyses were performed to evaluate the correlation between PASI scores and miRNA expression levels. RESULTS 15 miRNAs out of a total profile of 443 miRNAs were substantially different between GRs and NRs at baseline, 4 of them (miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246) have the potential to distinguish between GRs and NRs [area under the curve (AUC) ≥ 0.70, all P < 0.05]. KEGG pathway analyses revealed differentially expressed miRNAs to potentially target immune-related pathways. SIRT1 was discovered to be a target of miR-199a-5p and involved in MAPK signaling pathway. MiR-191-5p and miR-21-5p expression levels have been discovered to positively correlate with PASI scores[P < 0.05]. CONCLUSION This pilot investigation found that miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246 might be prospective biomarkers to predict the efficacy of MTX, and that miR-191-5p and miR-21-5p were correlated with psoriasis severity. Five of them previously reported to be involved in MAPK signaling pathway, indicating a potential role of MTX in delaying the progression of psoriatic inflammation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwen Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoshui Cao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Xia T, Zhu Y, Li K, Hao K, Chai Y, Jiang H, Lou C, Yu J, Yang W, Wang J, Deng J, Wang Z. Microneedles loaded with cerium-manganese oxide nanoparticles for targeting macrophages in the treatment of rheumatoid arthritis. J Nanobiotechnology 2024; 22:103. [PMID: 38468261 PMCID: PMC10926598 DOI: 10.1186/s12951-024-02374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent inflammatory autoimmune disease characterised by persistent inflammation and joint damage with elevated levels of reactive oxygen species (ROS). Current treatment modalities for RA have significant limitations, including poor bioavailability, severe side effects, and inadequate targeting of inflamed joints. Herein, we synthesised cerium/manganese oxide nanoparticles (NPs) as efficient drug carriers with antioxidant and catalytic-like functions that can eliminate ROS to facilitate the polarization of macrophages phenotype from M1 to M2 and alleviate inflammation. Methotrexate (MTX), a first-line RA medication, was loaded into the NPs, which were further modified with bovine serum albumin (BSA) and integrated into dissolving hyaluronic acid-based microneedles (MNs) for transdermal delivery. RESULT This innovative approach significantly enhanced drug delivery efficiency, reduced RA inflammation, and successfully modulated macrophage polarization toward an anti-inflammatory phenotype. CONCLUSION This research not only presents a promising drug delivery strategy for RA but also contributes broadly to the field of immune disease treatment by offering an advanced approach for macrophage phenotypic reprogramming.
Collapse
Affiliation(s)
- Tian Xia
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Yuting Zhu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yingqian Chai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Hongyi Jiang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Chao Lou
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jiachen Yu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Wei Yang
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Laboratory Medicine Center, Department of Transfusion Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| |
Collapse
|
8
|
Peng Y, Huang Y, Li H, Li C, Wu Y, Wang X, Wang Q, He J, Miao C. Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microb Pathog 2024; 188:106563. [PMID: 38331355 DOI: 10.1016/j.micpath.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, β diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qiang Wang
- Department of Pharmaceutical Preparation, Anhui University of Science and Technology, Fengyang, Anhui, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
9
|
Canevarolo RR, Cury NM, Yunes JA. The Expression and Activation of the NF-κB Pathway Correlate with Methotrexate Resistance and Cell Proliferation in Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:1880. [PMID: 37895229 PMCID: PMC10606671 DOI: 10.3390/genes14101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although its prognosis continually improves with time, a significant proportion of patients still relapse from the disease because of the leukemia's resistance to therapy. Methotrexate (MTX), a folic-acid antagonist, is a chemotherapy agent commonly used against ALL and as an immune-system suppressant for rheumatoid arthritis that presents multiple and complex mechanisms of action and resistance. Previous studies have shown that MTX modulates the nuclear factor kappa B (NF-κB) pathway, an important family of transcription factors involved in inflammation, immunity, cell survival, and proliferation which are frequently hyperactivated in ALL. Using a gene set enrichment analysis of publicly available gene expression data from 161 newly diagnosed pediatric ALL patients, we found the Tumor necrosis factor α (TNF-α) signaling pathway via NF-κB to be the most enriched Cancer Hallmark in MTX-poor-responder patients. A transcriptomic analysis using a panel of ALL cell lines (six B-cell precursor acute lymphoblastic leukemia and seven T-cell acute lymphoblastic leukemia) also identified the same pathway as differentially enriched among MTX-resistant cell lines, as well as in slowly dividing cells. To better understand the crosstalk between NF-κB activity and MTX resistance, we genetically modified the cell lines to express luciferase under an NF-κB-binding-site promoter. We observed that the fold change in NF-κB activity triggered by TNF-α (but not MTX) treatment correlated with MTX resistance and proliferation across the lines. At the individual gene level, NFKB1 expression was directly associated with a poorer clinical response to MTX and with both an increased TNF-α-triggered NF-κB activation and MTX resistance in the cell lines. Despite these results, the pharmacological inhibition (using BAY 11-7082 and parthenolide) or stimulation (using exogenous TNF-α supplementation) of the NF-κB pathway did not alter the MTX resistance of the cell lines significantly, evidencing a complex interplay between MTX and NF-κB in ALL.
Collapse
Affiliation(s)
| | - Nathalia Moreno Cury
- Centro de Pesquisa Boldrini, Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil; (R.R.C.)
| | - José Andrés Yunes
- Centro de Pesquisa Boldrini, Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil; (R.R.C.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil
| |
Collapse
|
10
|
Wroński J, Ciechomska M, Kuca-Warnawin E. Impact of methotrexate treatment on vaccines immunogenicity in adult rheumatological patients - Lessons learned from the COVID-19 pandemic. Biomed Pharmacother 2023; 165:115254. [PMID: 37542854 DOI: 10.1016/j.biopha.2023.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Despite the development of new biological and synthetic targeted therapies, methotrexate remains one of the most commonly used immunomodulatory drugs in rheumatology. However, its effect on the immunogenicity of vaccines has been studied only to a limited extent until recently, resulting in the lack of clear guidelines on the use of methotrexate during vaccination. Significant progress was made during the COVID-19 pandemic due to the dynamic development of research on vaccines, including patients with autoimmune inflammatory rheumatic diseases. In the following literature review, we present a summary of what we know so far on the impact of methotrexate on post-vaccination response in adult rheumatology patients, taking into account the lessons learned from the COVID-19 pandemic. Studies on the effect of methotrexate on the immunogenicity of influenza, pneumococcal, herpes zoster, tetanus/diphtheria/pertussis, hepatitis A, yellow fever, and COVID-19 vaccines are described in detail, including the effect of methotrexate on the humoral and cellular response of individual vaccines. The available evidence for recommendations for withholding methotrexate in the post-vaccination period is presented. Lastly, an overview of potential immunological mechanisms through which MTX modulates the immunogenicity of vaccinations is also provided.
Collapse
Affiliation(s)
- Jakub Wroński
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland.
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| |
Collapse
|
11
|
Singh V, Naldi A, Soliman S, Niarakis A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. NPJ Syst Biol Appl 2023; 9:33. [PMID: 37454172 DOI: 10.1038/s41540-023-00294-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with an unknown aetiology. However, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) play a significant role in initiating and perpetuating destructive joint inflammation by expressing immuno-modulating cytokines, adhesion molecules, and matrix remodelling enzymes. In addition, RA-FLS are primary drivers of inflammation, displaying high proliferative rates and an apoptosis-resistant phenotype. Thus, RA-FLS-directed therapies could become a complementary approach to immune-directed therapies by predicting the optimal conditions that would favour RA-FLS apoptosis, limit inflammation, slow the proliferation rate and minimise bone erosion and cartilage destruction. In this paper, we present a large-scale Boolean model for RA-FLS that consists of five submodels focusing on apoptosis, cell proliferation, matrix degradation, bone erosion and inflammation. The five-phenotype-specific submodels can be simulated independently or as a global model. In silico simulations and perturbations reproduced the expected biological behaviour of the system under defined initial conditions and input values. The model was then used to mimic the effect of mono or combined therapeutic treatments and predict novel targets and drug candidates through drug repurposing analysis.
Collapse
Affiliation(s)
- Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Univ Evry, Evry, France
| | - Aurelien Naldi
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France
| | - Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Univ Evry, Evry, France.
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France.
| |
Collapse
|
12
|
Lang MB, Leung KY, Greene ND, Malone KM, Saginc G, Randi AM, Kiprianos A, Maughan RT, Pericleous C, Mason JC. The actions of methotrexate on endothelial cells are dependent on the shear stress-induced regulation of one carbon metabolism. Front Immunol 2023; 14:1209490. [PMID: 37457690 PMCID: PMC10349526 DOI: 10.3389/fimmu.2023.1209490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Objectives The disease-modifying anti-rheumatic drug methotrexate (MTX) is recognized to reduce cardiovascular risk in patients with systemic inflammatory diseases. However, the molecular basis for these cardioprotective effects remains incompletely understood. This study evaluated the actions of low-dose MTX on the vascular endothelium. Methods Human endothelial cells (EC) were studied under in vitro conditions relevant to inflammatory arthritis. These included culture in a pro-inflammatory microenvironment and exposure to fluid shear stress (FSS) using a parallel plate model. Respectively treated cells were analyzed by RNA sequencing and quantitative real-time PCR for gene expression, by immunoblotting for protein expression, by phosphokinase activity arrays, by flow cytometry for cell cycle analyses and by mass spectrometry to assess folate metabolite levels. Results In static conditions, MTX was efficiently taken up by EC and caused cell cycle arrest concurrent with modulation of cell signaling pathways. These responses were reversed by folinic acid (FA), suggesting that OCM is a predominant target of MTX. Under FSS, MTX did not affect cell proliferation or pro-inflammatory gene expression. Exposure to FSS downregulated endothelial one carbon metabolism (OCM) as evidenced by decreased expression of key OCM genes and metabolites. Conclusion We found that FSS significantly downregulated OCM and thereby rendered EC less susceptible to the effects of MTX treatment. The impact of shear stress on OCM suggested that MTX does not directly modulate endothelial function. The cardioprotective actions of MTX likely reflect direct actions on inflammatory cells and indirect benefit on the vascular endothelium.
Collapse
Affiliation(s)
- Marie B. Lang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kit-Yi Leung
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nicholas D.E. Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Kerri M. Malone
- European Bioinformatics Institute, Cambridge, United Kingdom
| | - Gaye Saginc
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anna M. Randi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Allan Kiprianos
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert T. Maughan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Justin C. Mason
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Suga K, Suto A, Tanaka S, Sugawara Y, Kageyama T, Ishikawa J, Sanayama Y, Ikeda K, Furuta S, Kagami SI, Iwata A, Hirose K, Suzuki K, Ohara O, Nakajima H. TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis. JCI Insight 2023; 8:164778. [PMID: 37212280 PMCID: PMC10322677 DOI: 10.1172/jci.insight.164778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17-producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.
Collapse
Affiliation(s)
- Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yutaka Sugawara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yoshie Sanayama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shin-Ichiro Kagami
- Research Center for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| |
Collapse
|
14
|
Genetzakis E, Gilchrist J, Kassiou M, Figtree GA. Development and clinical translation of P2X7 receptor antagonists: A potential therapeutic target in coronary artery disease? Pharmacol Ther 2022; 237:108228. [DOI: 10.1016/j.pharmthera.2022.108228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
|
15
|
Fonseca Peixoto R, Ewerton Maia Rodrigues C, Henrique de Sousa Palmeira P, Cézar Comberlang Queiroz Davis Dos Santos F, Keesen de Souza Lima T, de Sousa Braz A. Immune hallmarks of rheumatoid arthritis management: A brief review. Cytokine 2022; 158:156007. [PMID: 35985174 DOI: 10.1016/j.cyto.2022.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this review was to examine current evidence on immunomodulation mediated by conventional drugs and the use of novel biological agents for the treatment of rheumatoid arthritis (RA). Currently, treatment is focused on maximizing quality of life through sustained clinical remission and/or attenuating disease activity. To do so, disease-modifying antirheumatic drugs, especially methotrexate, are used alone or in combination with other drugs, including leflunomide, biological disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs). The most recent strategies modulate the immune response of the individual RA patient using tsDMARDs such as JAK inhibitors and bDMARDs such as ig-CTLA-4, anti- IL6R, anti-TNF-α and anti-CD20. To better understand current immunopharmacological interventions, we also looked at documented mechanisms of RA-mediated immunomodulation, highlighting perspectives potentially boosting RA treatment.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Carlos Ewerton Maia Rodrigues
- Post‑Graduate Program in Medical Sciences, Medical School, University of Fortaleza (Unifor), Fortaleza, Brazil; Department of Internal Medicine, Federal University of Ceará, Brazil.
| | - Pedro Henrique de Sousa Palmeira
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Keesen de Souza Lima
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | |
Collapse
|
16
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. Two Main Cellular Components in Rheumatoid Arthritis: Communication Between T Cells and Fibroblast-Like Synoviocytes in the Joint Synovium. Front Immunol 2022; 13:922111. [PMID: 35844494 PMCID: PMC9284267 DOI: 10.3389/fimmu.2022.922111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of approximately 1% of the global population. Current RA medications on the market mainly include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying drugs. These drugs aim to inhibit the overactivated immune response or inflammation of RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will provide a new understanding to search for RA targets and for drug development. The infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the synovium of patients with RA are significantly upregulated. Furthermore, the abnormal activation of these two types of cells has been confirmed to promote development of the course of A by many studies. This article systematically summarizes the interactions between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and direct/indirect regulation between the two. It further aims to investigate the pathogenesis of RA from the perspective of mutual regulation between T cells and FLS and to provide new insights into RA research.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Chen Zhu,
| |
Collapse
|
17
|
Inhibitory Effects of Cold Atmospheric Plasma on Inflammation and Tumor-Like Feature of Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Inflammation 2022; 45:2433-2448. [PMID: 35713788 DOI: 10.1007/s10753-022-01703-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, debilitating systemic disease characterized by chronic inflammation and progressive joint destruction. Fibroblast-like synoviocytes (FLSs) are one of the most important players in the pathophysiology of RA, acting like tumor cells and secreting inflammatory cytokines. Previous research has shown that cold atmospheric plasma (CAP) inhibits cancer cells and may have anti-inflammatory properties. This study examined the effects of argon plasma jet-produced CAP on the suppression of invasion and inflammation caused by cultured RA-FLS. The findings revealed that CAP reduced cell viability and elevated the percentage of apoptotic RA-FLS by producing reactive oxygen species. Carboxyfluorescein diacetate succinimidyl ester (CFSE) staining confirmed that CAP could decrease the proliferation of RA-FLS. Furthermore, CAP effectively reduced the production of inflammatory factors (e.g., NF-κB and IL-6) as well as destructive factors like receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metalloproteinases-3 (MMP-3). These data suggest that CAP could be a promising treatment for slowing the progression of RA by reducing tumor-like features and inflammation in RA-FLS.
Collapse
|
18
|
Yan K, Meng Q, He H, Zhu H, Wang Z, Han L, Huang Q, Zhang Z, Yawalkar N, Zhou H, Xu J. iTRAQ-based quantitative proteomics reveals biomarkers/pathways in psoriasis that can predict the efficacy of methotrexate. J Eur Acad Dermatol Venereol 2022; 36:1784-1795. [PMID: 35666151 DOI: 10.1111/jdv.18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methotrexate (MTX) is the first-line medicine to treat psoriasis. So far, there has been less research on protein biomarkers to predict its efficacy by the proteomic technique. OBJECTIVES To evaluate differentially expressed proteins in peripheral mononuclear cells (PBMCs) between good responders (GRs) and non-responders (NRs) after MTX treatment, compared with normal controls (NCs). METHODS We quantified protein expression of PBMCs with 4 GRs and 4 NRs to MTX and 4 NCs by isobaric tags for relative and absolute quantification (iTRAQ), analyzing and identifying proteins related to efficacy of MTX in 18 psoriatic patients. RESULTS A total of 3,177 proteins had quantitative information, and 403 differentially expressed proteins (fold change ≥ 1.2, p < .05) were identified. Compared to NCs, upregulated proteins (ANXA6, RPS27A, EZR, XRCC6), participating in the activation of NF-κB, the JAK-STAT pathway, and neutrophil degranulation were detected in GRs. The proteins (GPV, FN1, STOM), involving platelet activation, signaling and aggregation as well as neutrophil degranulation were significantly downregulated in GRs. These proteins returned to normal levels after MTX treatment. Furthermore, Western blotting identified the expression of ANXA6 and STAT1 in PBMCs, which were significantly downregulated in GRs, but not in NRs. CONCLUSIONS We identified seven differentially expressed and regulated proteins (ANXA6, GPV, FN1, XRCC6, STOM, RPS27A, and EZR) as biomarkers to predict MTX efficacy in NF-κB signaling, JAK-STAT pathways, neutrophil degranulation, platelet activation, signaling and aggregation.
Collapse
Affiliation(s)
- Kexiang Yan
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qian Meng
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han He
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongwen Zhu
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhicheng Wang
- Department of Clinical Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Han
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhenghua Zhang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinhua Xu
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
19
|
Zhao Z, Hua Z, Luo X, Li Y, Yu L, Li M, Lu C, Zhao T, Liu Y. Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother 2022; 150:113074. [PMID: 35658215 DOI: 10.1016/j.biopha.2022.113074] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Methotrexate (MTX) has been used for the treatment of rheumatoid arthritis (RA) for about forty years and to date MTX remains the part of global standard of treatment for RA. The efficacy of MTX in RA is the result of multiple mechanisms of action. In order to summarize the possible pharmacological mechanisms of MTX in the treatment of RA, this review will elaborate on folate antagonism, promotion of adenosine accumulation, regulation of inflammatory signaling pathways, bone protection and maintenance of immune system function.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
20
|
Park JS, Lee D, Yang S, Jeong HY, Na HS, Cho KH, Choi J, Koo H, Cho ML, Park SH. Methotrexate-loaded nanoparticles ameliorate experimental model of autoimmune arthritis by regulating the balance of interleukin-17-producing T cells and regulatory T cells. J Transl Med 2022; 20:85. [PMID: 35148758 PMCID: PMC8840785 DOI: 10.1186/s12967-022-03267-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease that is characterized by infiltration of inflammatory cells into the hyperplastic synovial tissue, resulting in subsequent destruction of adjacent articular cartilage and bone. Methotrexate (MTX), the first conventional disease-modifying antirheumatic drug (DMARD), could alleviate articular damage in RA and is implicated in humoral and cellular immune responses. However, MTX has several side effects, so efficient delivery of low-dose MTX is important. Methods To investigate the efficacy of MTX-loaded nanoparticles (MTX-NPs) against experimental model of RA, free MTX or MTX-NPs were administered as subcutaneous route to mice with collagen-induced arthritis (CIA) at 3 weeks after CII immunization. The levels of inflammatory factors in tissues were determined by immunohistochemistry, confocal microscopy, real-time PCR, and flow cytometry. Results MTX-NPs ameliorated arthritic severity and joint destruction in collagen-induced arthritis (CIA) mice compared to free MTX-treated CIA mice. The levels of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor-α, and vascular endothelial growth factor, were reduced in MTX-NPs-treated mice. Number of CD4 + IL-17 + cells decreased whereas the number of CD4 + CD25 + Foxp3 + cells increased in spleens from MTX- NPs-treated CIA mice compared to MTX-treated CIA mice. The frequency of CD19 + CD25 + Foxp3 + regulatory B cells increased in ex vivo splenocytes from MTX-loaded NPs-treated CIA mice compared to MTX-treated CIA mice. Conclusion The results suggest that MTX-loaded NPs have therapeutic potential for RA.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea.
| |
Collapse
|
21
|
Kononoff A, Vuolteenaho K, Hämäläinen M, Kautiainen H, Elfving P, Savolainen E, Arstila L, Niinisalo H, Rutanen J, Marjoniemi O, Moilanen E, Kaipiainen-Seppänen O. Metabolic Syndrome, Disease Activity, and Adipokines in Patients With Newly Diagnosed Inflammatory Joint Diseases. J Clin Rheumatol 2021; 27:e349-e356. [PMID: 32453216 DOI: 10.1097/rhu.0000000000001412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate metabolic syndrome (MetS), disease activity, and adipokine levels among patients with rheumatoid arthritis (RA), spondyloarthritis (SpA), and undifferentiated arthritis (UA) at the time of diagnosis and after 1 year of follow-up. METHODS Patients with inflammatory joint diseases participating in the Northern Savo 2010 population-based longitudinal epidemiological study were evaluated for components of MetS (by National Cholesterol Education Program's Adult Treatment Panel III) and clinical parameters of disease activity. The adipokines adiponectin, adipsin, resistin, and leptin were measured at baseline and after 1 year of treatment with disease-modifying antirheumatic drugs. RESULTS Among 176 patients, MetS was detected in 42% of RA, 36% of SpA, and 51% of UA patients. Metabolic syndrome was associated with higher disease activity as measured by patient global assessment in RA and UA patients and increased pain in RA patients. Leptin levels were increased in patients with MetS, showing a linearly increasing trend with the number of components of MetS in SpA and UA, but not in RA. In RA patients, decrease in disease activity correlated with decrease in leptin levels. Resistin did not associate with MetS, but a decrease in resistin correlated with decrease in disease activity in RA and UA. In SpA, increased adiponectin level correlated with relief in disease activity, but not with MetS. CONCLUSIONS Metabolic syndrome was common in patients with newly diagnosed arthritides and associated with higher disease activity and increased leptin levels. Resistin responded to treatment of arthritis in RA and UA, leptin in RA, and adiponectin in SpA.
Collapse
Affiliation(s)
- Aulikki Kononoff
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere
| | | | - Pia Elfving
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Elina Savolainen
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | | | | | - Jarno Rutanen
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Olga Marjoniemi
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere
| | | |
Collapse
|
22
|
Iwamoto N, Furukawa K, Endo Y, Shimizu T, Sumiyoshi R, Umeda M, Koga T, Kawashiri SY, Igawa T, Ichinose K, Tamai M, Origuchi T, Kawakami A. Methotrexate Alters the Expression of microRNA in Fibroblast-like Synovial Cells in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222111561. [PMID: 34768991 PMCID: PMC8584010 DOI: 10.3390/ijms222111561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate the effect of methotrexate (MTX) on microRNA modulation in rheumatoid arthritis fibroblast-like synovial cells (RA-FLS). RA-FLS were treated with MTX for 48 h. We then performed miRNA array analysis to investigate differentially expressed miRNAs. Transfection with miR-877-3p precursor and inhibitor were used to investigate the functional role of miR-877-3p in RA-FLS. Gene ontology analysis was used to investigate the cellular processes involving miR-877-3p. The production of cytokines/chemokines was screened by multiplex cytokine/chemokine bead assay and confirmed by ELISA and quantitative real-time PCR. The migratory and proliferative activities of RA-FLS were analyzed by wound healing assay and MKI-67 expression. MTX treatment altered the expression of 13 miRNAs (seven were upregulated and six were downregulated). Among them, quantitative real-time PCR confirmed that miR-877-3p was upregulated in response to MTX (1.79 ± 0.46-fold, p < 0.05). The possible target genes of miR-877-3p in RA-FLS revealed by the microarray analysis were correlated with biological processes. The overexpression of miR-877-3p decreased the production of GM-CSF and CCL3, and the overexpression of miR-877-3p inhibited migratory and proliferative activity. MTX altered the miR-877-3p expression on RA-FLS, and this alteration of miR-877-3p attenuated the abundant production of cytokines/chemokines and proliferative property of RA-FLS.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
- Correspondence: ; Tel.: +81-95-819-7260; Fax: +81-95-849-7270
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Yushiro Endo
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Remi Sumiyoshi
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan
| | - Shin-ya Kawashiri
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
- Division of Advanced Preventive Medical Sciences, Department of Community Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan
| | - Takashi Igawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Mami Tamai
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Tomoki Origuchi
- Department of Physical Therapy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan;
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| |
Collapse
|
23
|
Abdi F, Mohammadi SS, Falavarjani KG. Intravitreal Methotrexate. J Ophthalmic Vis Res 2021; 16:657-669. [PMID: 34840688 PMCID: PMC8593537 DOI: 10.18502/jovr.v16i4.9756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Intravitreal methotrexate (MTX) has been proven to be an effective treatment for various intraocular diseases. In this article, a comprehensive review was performed on intravitreal applications of methotrexate. Different aspects of the administration of intravitreal MTX for various clinical conditions such as intraocular tumors, proliferative vitreoretinopathy, diabetic retinopathy, age-related macular degeneration, and uveitis were reviewed and the adverse effects of intravitreal injection of MTX were discussed. The most common indications are intraocular lymphoma and uveitis. Other applications remain challenging and more studies are needed to establish the role of intravitreal MTX in the management of ocular diseases.
Collapse
Affiliation(s)
- Fatemeh Abdi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - S. Saeed Mohammadi
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
25
|
Hosoya T, Shukla NM, Fujita Y, Yao S, Lao FS, Baba H, Yasuda S, Cottam HB, Carson DA, Hayashi T, Corr M. Identification of Compounds With Glucocorticoid Sparing Effects on Suppression of Chemokine and Cytokine Production by Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Front Pharmacol 2020; 11:607713. [PMID: 33390996 PMCID: PMC7773657 DOI: 10.3389/fphar.2020.607713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years target based drug discovery has expanded our therapeutic armamentarium in the treatment of inflammatory and autoimmune diseases. Despite these advances and adverse effects, glucocorticoids remain reliable agents that are used in many of these diseases. The anti-inflammatory mechanisms of glucocorticoids include the suppression of transcription factor activity like nuclear factor kappa B (NF-κB). By reanalyzing data from two prior high throughput screens (HTS) that utilized a NF-κB reporter construct in THP-1 cells, we identified 1824 small molecule synthetic compounds that demonstrated NF-κB suppressive activities similar to the glucocorticoids included in the original >134,000 compound libraries. These 1824 compounds were then rescreened for attenuating NF-κB activity at 5 and 16 h after LPS stimuli in the NF-κB THP-1 reporter cells. After a “Top X” selection approach 122 hit compounds were further tested for toxicity and suppression of LPS induced CXCL8 release in THP-1 cells. Excluding cytotoxic compounds, the remaining active compounds were grouped into chemotype families using Tanimoto based clustering. Promising representatives from clustered chemotype groups were commercially purchased for further testing. Amongst these index compounds a lead chemotype: 1H-pyrazolo [3,4 d] pyrimidin-4-amine, effectively suppressed CXCL8, and TNF production by THP-1 cells when stimulated with LPS, TNF or IL-1ß. Extending these studies to primary cells, these lead compounds also reduced IL-6 and CXCL8 production by TNF stimulated fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. Importantly a lead 1H-pyrazolo [3,4 d] pyrimidin-4-amine compound demonstrated synergistic effects with dexamethasone when co-administered to TNF stimulated THP-1 cells and RA FLS in suppressing chemokine production. In summary, a cell based HTS approach identified lead compounds that reduced NF-κB activity and chemokine secretion induced by potent immunologic stimuli, and one lead compound that acted synergistically with dexamethasone as an anti-inflammatory agent showing a dose-sparing effect.
Collapse
Affiliation(s)
- Tadashi Hosoya
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States.,Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nikunj M Shukla
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Yuya Fujita
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Fitzgerald S Lao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hiroyuki Baba
- Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
26
|
Slauenwhite D, McAlpine SM, Hanly JG, Malik A, Haidl ID, Marshall JS, Issekutz TB. Association of a Type 2-Polarized T Cell Phenotype With Methotrexate Nonresponse in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2020; 72:1091-1102. [PMID: 32039570 DOI: 10.1002/art.41223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disease mediated through complex immunologic pathways. Among RA patients receiving low-dose methotrexate (MTX) monotherapy, approximately one-half exhibit a meaningful clinical response within the first 6 months of starting treatment. Whether baseline immune phenotypes differ between subsequent MTX responders and nonresponders is unknown. This study utilized comprehensive T cell immunophenotyping to identify specific immunologic pathways associated with MTX-nonresponsive joint inflammation in patients with RA. METHODS In total, 32 patients with recent-onset RA were treated with MTX therapy. After 6 months, 15 patients were categorized as responders and 17 as nonresponders. Comprehensive blood T cell immunophenotyping, using multiparameter immunofluorescence flow cytometry analyses, was performed at baseline and following 6 months of treatment. RESULTS Baseline measures of disease activity (Disease Activity Score in 28 joints [DAS28], C-reactive protein level, and erythrocyte sedimentation rate) did not differ between MTX responders and nonresponders following MTX treatment. Frequencies of CD4+ and CD8+ T cells were skewed to favor higher CD4:CD8 T cell ratios in MTX responders compared to nonresponders (P < 0.05). The proportion of inducible costimulator-expressing Treg cells was significantly greater among MTX nonresponders. Interleukin-13 (IL-13)-producing, but not interferon-γ- or IL-17-producing, CD4+ effector memory T (Tem) cells were significantly more frequent in MTX nonresponders (P < 0.05). The ratio of IL-13+:IL-17+ Tem cells among CD4+ Tem cells was 1.9-fold higher in MTX nonresponders compared to responders (P < 0.05). Both the CD4:CD8 T cell ratio and the frequency of IL-13+CD4+ Tem cells correlated with changes in the DAS28 score following MTX treatment, whereas T cell expression of immune checkpoint inhibitor markers (CTLA-4, programmed death 1, and T cell immunoglobulin and mucin domain-containing protein 3) did not differ between MTX responders and nonresponders. CONCLUSION We observed a bias toward type 2-polarized T cell inflammatory responses in the peripheral blood of MTX-nonresponsive RA patients. Targeting the IL-13+CD4+ T cell pathway could be a new therapeutic strategy in RA patients whose disease remains resistant to MTX.
Collapse
Affiliation(s)
- Drew Slauenwhite
- IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah M McAlpine
- IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - John G Hanly
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Anikó Malik
- IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian D Haidl
- Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Thomas B Issekutz
- IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Al Kury LT, Dayyan F, Ali Shah F, Malik Z, Khalil AAK, Alattar A, Alshaman R, Ali A, Khan Z. Ginkgo biloba Extract Protects against Methotrexate-Induced Hepatotoxicity: A Computational and Pharmacological Approach. Molecules 2020; 25:E2540. [PMID: 32486047 PMCID: PMC7321289 DOI: 10.3390/molecules25112540] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ginkgo biloba extract possess several promising biological activities; currently, it is clinically employed in the management of several diseases. This research work aimed to extrapolate the antioxidant and anti-inflammatory effects of Ginkgo biloba (Gb) in methotrexate (MTX)-induced liver toxicity model. These effects were analyzed using different in vivo experimental approaches and by bioinformatics analysis. Male SD rats were grouped as follows: saline; MTX; Gb (pretreated for seven days with 60, 120, and 180 mg/kg daily dose before MTX treatment); silymarin (followed by MTX treatment); Gb 180 mg/kg daily only; and silymarin only. Histopathological results revealed that MTX induced marked hepatic injury, associated with a substantial surge in various hepatic enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and serum alkaline phosphatase (ALP). Furthermore, MTX caused the triggering of oxidative distress associated with a depressed antioxidant system. All these injury markers contributed to a significant release of apoptotic (caspase-3 and c-Jun N-terminal kinases (JNK)) and tumor necrosis factor (TNF-α)-like inflammatory mediators. Treatment with Gb counteracts MTX-mediated apoptosis and inflammation dose-dependently along with modulating the innate antioxidative mechanisms such as glutathione (GSH) and glutathione S-transferase (GST). These results were further supplemented by in silico study to analyze drug-receptor interactions (for several Gb constituents and target proteins) stabilized by a low energy value and with a good number of hydrogen bonds. These findings demonstrated that Gb could ameliorate MTX-induced elevated liver reactive oxygen species (ROS) and inflammation, possibly by JNK and TNF-α modulation.
Collapse
Affiliation(s)
- Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 00000, UAE;
| | - Fazli Dayyan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.D.); (Z.M.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.D.); (Z.M.)
| | - Zulkifal Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.D.); (Z.M.)
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, 71491 Tabuk, Saudi Arabia; (A.A.); (R.A.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, 71491 Tabuk, Saudi Arabia; (A.A.); (R.A.)
| | - Amjad Ali
- Department of Botany, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
| | - Zahid Khan
- Department of Pharmacognosy, Faculty of Pharmacy, Federal Urdu University of Arts Science and Technology, Karachi 75300, Pakistan;
| |
Collapse
|
28
|
Gorska-Ponikowska M, Ploska A, Jacewicz D, Szkatula M, Barone G, Lo Bosco G, Lo Celso F, Dabrowska AM, Kuban-Jankowska A, Gorzynik-Debicka M, Knap N, Chmurzynski L, Dobrucki LW, Kalinowski L, Wozniak M. Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol-induced neuronal nitric oxide synthase uncoupling in metastatic osteosarcoma cells. Redox Biol 2020; 32:101522. [PMID: 32305006 PMCID: PMC7162974 DOI: 10.1016/j.redox.2020.101522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected the release of biologically active (free) nitric oxide (•NO) with concurrent measurements of peroxynitrite (ONOO−) in real time in a single cell of 143B cell line by using •NO/ONOO− sensitive microsensors after stimulation with calcium ionophore. Detection of nitrogen dioxide (•NO2) and determination of chemical rate constants were carried out by a stopped-flow technique. The affinity of reactive nitrogen species toward the guanine base of DNA was evaluated by density functional theory calculations. Expression and localization of nuclear factor NF-kB was determined using imaging cytometry, while cell viability assay was evaluated by MTT assay. Herein, we presented that 2-ME triggers pro-apoptotic signalling cascade by increasing cellular reactive nitrogen species overproduction – a result of enzymatic uncoupling of increased nNOS protein levels. In particular, we proved that ONOO− and •NO2 directly formed from peroxynitrous acid (ONOOH) and/or by auto-oxidation of •NO, are inducers of DNA damage in anticancer mechanism of 2-ME. Specifically, the affinity of reactive nitrogen species toward the guanine base of DNA, evaluated by density functional theory calculations, decreased in the order: ONOOH > ONOO− > •NO2 > •NO. Therefore, we propose to consider the specific inducers of nNOS as an effective tool in the field of chemotherapy.
Collapse
Affiliation(s)
- Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| | - Agata Ploska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Dagmara Jacewicz
- Department of General and Inorganic Chemistry, University of Gdansk, Gdansk, Poland
| | - Michal Szkatula
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo,Palermo, Italy
| | - Giosuè Lo Bosco
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy; Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Palermo, Italy
| | | | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland
| | - Monika Gorzynik-Debicka
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland
| | - Lech Chmurzynski
- Department of General and Inorganic Chemistry, University of Gdansk, Gdansk, Poland
| | - Lawrence Wawrzyniec Dobrucki
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland
| |
Collapse
|
29
|
Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1417981. [PMID: 32351667 PMCID: PMC7174952 DOI: 10.1155/2020/1417981] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerosis and its clinical complications constitute the major healthcare problems of the world population. Due to the central role of endothelium throughout the atherosclerotic disease process, endothelial dysfunction is regarded as a common mechanism for various cardiovascular (CV) disorders. It is well established that patients with rheumatic autoimmune diseases are characterized by significantly increased prevalence of cardiovascular morbidity and mortality compared with the general population. The current European guidelines on cardiovascular disease (CVD) prevention in clinical practice recommend to use a 1,5-factor multiplier for CV risk in rheumatoid arthritis as well as in other autoimmune inflammatory diseases. However, mechanisms of accelerated atherosclerosis in these diseases, especially in the absence of traditional risk factors, still remain unclear. Oxidative stress plays the major role in the endothelial dysfunction and recently is strongly attributed to endothelial NO synthase dysfunction (eNOS uncoupling). Converted to a superoxide-producing enzyme, uncoupled eNOS not only leads to reduction of the nitric oxide (NO) generation but also potentiates the preexisting oxidative stress, which contributes significantly to atherogenesis. However, to date, there are no systemic analyses on the role of eNOS uncoupling in the excess CV mortality linked with autoimmune rheumatic diseases. The current review paper addresses this issue.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Agata Kasprzyk
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
30
|
Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 2020; 16:145-154. [PMID: 32066940 DOI: 10.1038/s41584-020-0373-9] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 11/08/2022]
Abstract
Despite the introduction of numerous biologic agents for the treatment of rheumatoid arthritis (RA) and other forms of inflammatory arthritis, low-dose methotrexate therapy remains the gold standard in RA therapy. Methotrexate is generally the first-line drug for the treatment of RA, psoriatic arthritis and other forms of inflammatory arthritis, and it enhances the effect of most biologic agents in RA. Understanding the mechanism of action of methotrexate could be instructive in the appropriate use of the drug and in the design of new regimens for the treatment of RA. Although methotrexate is one of the first examples of intelligent drug design, multiple mechanisms potentially contribute to the anti-inflammatory actions of methotrexate, including the inhibition of purine and pyrimidine synthesis, transmethylation reactions, translocation of nuclear factor-κB (NF-κB) to the nucleus, signalling via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway and nitric oxide production, as well as the promotion of adenosine release and expression of certain long non-coding RNAs.
Collapse
|
31
|
Mortazavi‐Jahromi SS, Aslani M, Omidian S, Ahmadzadeh A, Rezaieyazdi Z, Mirshafiey A. Immunopharmacological effect of β‐
d
‐mannuronic acid (M2000), as a new immunosuppressive drug, on gene expression of miR‐155 and its target molecules (SOCS1, SHIP1) in a clinical trial on rheumatoid arthritis patients. Drug Dev Res 2019; 81:295-304. [DOI: 10.1002/ddr.21619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mona Aslani
- Department of Immunology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Saiedeh Omidian
- Department of Immunology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Arman Ahmadzadeh
- Department of Rheumatology, Loghman Hakim HospitalShahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research CenterMashhad University of Medical Sciences Mashhad Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
32
|
Jekic B, Maksimovic N, Damnjanovic T. Methotrexate pharmacogenetics in the treatment of rheumatoid arthritis. Pharmacogenomics 2019; 20:1235-1245. [DOI: 10.2217/pgs-2019-0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For many decades, methotrexate (MXT) has remained the drug of choice in the treatment of rheumatoid arthritis (RA). Unfortunately, a considerable number of patients do not achieve an appropriate therapeutic response. Pharmacogenetics studies do not give usable results regarding differences in MTX response among RA patients. The mechanism of MTX action in RA is not completely understood. We present and discuss data regarding the molecular basis of folate and adenosine pathways, the most obvious MTX targets, to explain possible causes of therapy failure. The molecular basis of the disease could also have an impact on therapy outcomes and in this review we explore this. Finally, we make a short review of available pharmacogenetics study results.
Collapse
Affiliation(s)
- Biljana Jekic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| | - Nela Maksimovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| | - Tatjana Damnjanovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| |
Collapse
|
33
|
Gremese E, Alivernini S, Tolusso B, Zeidler MP, Ferraccioli G. JAK inhibition by methotrexate (and csDMARDs) may explain clinical efficacy as monotherapy and combination therapy. J Leukoc Biol 2019; 106:1063-1068. [PMID: 31313387 PMCID: PMC6852123 DOI: 10.1002/jlb.5ru0519-145r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022] Open
Abstract
Methotrexate (MTX) is recognized as the anchor drug in the algorithm treating chronic arthritis (RA, psoriatic arthritis), as well as a steroid sparing agent in other inflammatory conditions (polymyalgia rheumatica, vasculitis, scleroderma). Its main mechanism of action has been related to the increase in extracellular adenosine, which leads to the effects of A2A receptor in M1 macrophages that dampens TNFα and IL12 production and increases IL1Ra and TNFRp75. By acting on A2B receptor on M2 macrophages it enhances IL10 synthesis and inhibits NF-kB signaling. MTX has also been shown to exert JAK inhibition of JAK2 and JAK1 when tested in Drosophila melanogaster as a model of kinase activity and in human cell lines (nodular sclerosis Hodgkin's lymphoma and acute myeloid leukemia cell lines). These effects may explain why MTX leads to clinical effects similar to anti-TNFα biologics in monotherapy, but is less effective when compared to anti-IL6R in monotherapy, which acting upstream exerts major effects downstream on the JAK1-STAT3 pathway. The MTX effects on JAK1/JAK2 inhibition also allows to understand why the combination of MTX with Leflunomide, or JAK1/JAK3 inhibitor leads to better clinical outcomes than monotherapy, while the combination with JAK1/JAK2 or JAK1 specific inhibitors does not seem to exert additive clinical benefit.
Collapse
Affiliation(s)
- Elisa Gremese
- Division of RheumatologyFondazione Policlinico Universitario A. Gemelli—IRCCSRomeItaly
- Institute of RheumatologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Stefano Alivernini
- Division of RheumatologyFondazione Policlinico Universitario A. Gemelli—IRCCSRomeItaly
- Institute of RheumatologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Barbara Tolusso
- Division of RheumatologyFondazione Policlinico Universitario A. Gemelli—IRCCSRomeItaly
| | - Martin P. Zeidler
- The Bateson Centre, Department of Biomedical ScienceThe University of SheffieldSheffieldS10 2TNUnited Kingdom
| | | |
Collapse
|
34
|
Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an Old Drug with New Tricks. Int J Mol Sci 2019; 20:E5023. [PMID: 31658782 PMCID: PMC6834162 DOI: 10.3390/ijms20205023] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Methotrexate (MTX) is the first line drug for the treatment of a number of rheumatic and non-rheumatic disorders. It is currently used as an anchor disease, modifying anti-rheumatic drug in the treatment of rheumatoid arthritis (RA). Despite the development of numerous new targeted therapies, MTX remains the backbone of RA therapy due to its potent efficacy and tolerability. There has been also a growing interest in the use of MTX in the treatment of chronic viral mediated arthritis. Many viruses-including old world alphaviruses, Parvovirus B19, hepatitis B/C virus, and human immunodeficiency virus-have been associated with arthritogenic diseases and reminiscent of RA. MTX may provide benefits although with the potential risk of attenuating patients' immune surveillance capacities. In this review, we describe the emerging mechanisms of action of MTX as an anti-inflammatory drug and complementing its well-established immunomodulatory activity. The mechanisms involve adenosine signaling modulation, alteration of cytokine networks, generation of reactive oxygen species and HMGB1 alarmin suppression. We also provide a comprehensive understanding of the mechanisms of MTX toxic effects. Lastly, we discussed the efficacy, as well as the safety, of MTX used in the management of viral-related rheumatic syndromes.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Xavier Guillot
- Service de Rhumatologie, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Jimmy Sélambarom
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Pascale Guiraud
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Claude Giry
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Marie Christine Jaffar-Bandjee
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Stéphane Ralandison
- Service de Rhumatologie-Médecine Interne, CHU Morafeno, Route d'Ivoloina 501, Toamasina, Madagascar.
| | - Philippe Gasque
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
- Pôle de Biologie, secteur Laboratoire d'Immunologie Clinique et Expérimentale de la zone de l'Océan Indien (LICE-OI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| |
Collapse
|
35
|
Abstract
Rheumatic diseases are a group of chronic heterogeneous autoimmune disorders characterized by abnormal regulation of the innate and adaptive immune systems. Despite extensive efforts, the full spectrum of molecular factors that contribute to the pathogenesis of rheumatic diseases remains unclear. ncRNAs can govern gene expression at the transcriptional and post-transcriptional levels in multiple diseases. Recent studies have demonstrated an important role for ncRNAs, such as miRNAs and lncRNAs, in the development of immune cells and rheumatic diseases. Here, we focus on the epigenetic regulatory roles of ncRNAs in the pathogenesis of rheumatic diseases and as biomarkers of disease state.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Quan-Zhen Li
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| |
Collapse
|
36
|
El-Saka MH, Madi NM, Shahba A. The possible role of heat shock protein-70 induction in collagen-induced arthritis in rats. Physiol Int 2019; 106:128-139. [PMID: 31262206 DOI: 10.1556/2060.106.2019.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM This study aimed to evaluate the possible role of heat shock protein-70 (HSP70) induction by 17-allylaminodemethoxygeldanamycin (17-AAG) in collagen-induced arthritis in rats. MATERIAL AND METHODS Male Wistar rats were divided into five groups (n = 10/group) and were treated intraperitoneally twice a week for 4 weeks, namely normal control (saline), arthritis control (AR; saline), AR + 17-AAG, AR + methotrexate (MTX), and AR + 17-AAG + MTX. At the end of the treatments, arthritic score was determined and then the animals were sacrificed. Erythrocyte sedimentation rate (ESR), serum levels of HSP70, interleukin-17 (IL-17), tumor necrosis factor-alpha (TNF-α), rheumatic factor (RF), C-reactive protein (CRP), malondialdehyde (MDA), glutathione peroxidase (GPx), and matrix metalloproteinase-9 (MMP-9) were determined. RESULTS In the AR group, all parameters increased significantly, except for GPx, which showed a pronounced decrease. The 17-AAG and/or MTX treatments significantly reduced arthritic score, ESR, IL-17, TNF-α, RF, CRP, MDA, and MMP-9 with significant increase in GPx compared to the AR group. The HSP70 level was significantly higher in the AR + 17-AAG and the AR + 17-AAG + MTX groups but significantly lower in the AR + MTX group as compared to the AR group. Also, it was significantly lower in the AR + MTX group as compared to the AR + 17-AAG group. CONCLUSION We concluded that HSP70 induction by 17-AAG attenuated the inflammatory process in a rheumatoid arthritis (RA) model induced by collagen, which suggested that HSP70 inducers can be promising agents in the treatment of RA.
Collapse
Affiliation(s)
- M H El-Saka
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - N M Madi
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - A Shahba
- 2 Department of Internal Medicine, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
37
|
Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur J Med Chem 2018; 158:502-516. [PMID: 30243154 DOI: 10.1016/j.ejmech.2018.09.027] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022]
Abstract
Methotrexate (MTX) is used as an anchor disease-modifying anti-rheumatic drugs (DMARDs) in treating rheumatoid arthritis (RA) because of its potent efficacy and tolerability. MTX benefits a large number of RA patients but partially suffered from side effects. A variety of side effects can be associated with MTX when treating RA patients, from mild to severe or discontinuation of the treatment. In this report, we reviewed the possible side effects that MTX might cause from the most common gastrointestinal toxicity effects to less frequent malignant diseases. In order to achieve regimen with less side effects, the administration of MTX with appropriate dose and a careful pretreatment inspection is necessary. Further investigations are required when combining MTX with other drugs so as to enhance the efficacy and reduce side effects at the same time. The management of MTX treatment is also discussed to provide strategies for occurred side effects. Thus, this review will provide scholars with a comprehensive understanding the side effects of MTX administration by RA patients.
Collapse
|
38
|
Municio C, Dominguez-Soto Á, Fuentelsaz-Romero S, Lamana A, Montes N, Cuevas VD, Campos RG, Pablos JL, González-Álvaro I, Puig-Kröger A. Methotrexate limits inflammation through an A20-dependent cross-tolerance mechanism. Ann Rheum Dis 2018; 77:752-759. [PMID: 29431121 PMCID: PMC5909749 DOI: 10.1136/annrheumdis-2017-212537] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Methotrexate (MTX) is the anchor drug for treatment of rheumatoid arthritis (RA), but the mechanism of its anti-inflammatory action is not fully understood. In RA, macrophages display a proinflammatory polarisation profile that resembles granulocyte-macrophage colony-stimulating factor (GM-CSF)-differentiated macrophages and the response to MTX is only observed in thymidylate synthase+ GM-CSF-dependent macrophages. To determine the molecular basis for the MTX anti-inflammatory action, we explored toll-like receptor (TLR), RA synovial fluid (RASF) and tumour necrosis factor receptor (TNFR)-initiated signalling in MTX-exposed GM-CSF-primed macrophages. METHODS Intracellular responses to TLR ligands, TNFα or RASF stimulation in long-term low-dose MTX-exposed human macrophages were determined through quantitative real-time PCR, western blot, ELISA and siRNA-mediated knockdown approaches. The role of MTX in vivo was assessed in patients with arthritis under MTX monotherapy and in a murine sepsis model. RESULTS MTX conditioned macrophages towards a tolerant state, diminishing interleukin (IL)-6 and IL-1β production in LPS, LTA, TNFα or RASF-challenged macrophages. MTX attenuated LPS-induced MAPK and NF-κB activation, and toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF1)-dependent signalling. Conversely, MTX increased the expression of the NF-κB suppressor A20 (TNFAIP3), itself a RA-susceptibility gene. Mechanistically, MTX-induced macrophage tolerance was dependent on A20, as siRNA-mediated knockdown of A20 reversed the MTX-induced reduction of IL-6 expression. In vivo, TNFAIP3 expression was significantly higher in peripheral blood cells of MTX-responsive individuals from a cohort of patients with arthritis under MTX monotherapy, whereas MTX-treated mice exhibited reduced inflammatory responses to LPS. CONCLUSIONS MTX impairs macrophage proinflammatory responses through upregulation of A20 expression. The A20-mediated MTX-induced innate tolerance might limit inflammation in the RA synovial context, and positions A20 as a potential MTX-response biomarker.
Collapse
Affiliation(s)
- Cristina Municio
- Laboratorio de Inmuno-Metabolismo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Sara Fuentelsaz-Romero
- Laboratorio de Inmuno-Metabolismo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Madrid, Spain
| | - Nuria Montes
- Servicio de Reumatología, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Madrid, Spain
| | | | - Raquel García Campos
- Laboratorio de Inmuno-Metabolismo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - José L Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Madrid, Spain
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-Metabolismo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
39
|
Suzuki K, Yoshida K, Ueha T, Kaneshiro K, Nakai A, Hashimoto N, Uchida K, Hashimoto T, Kawasaki Y, Shibanuma N, Nakagawa N, Sakai Y, Hashiramoto A. Methotrexate upregulates circadian transcriptional factors PAR bZIP to induce apoptosis on rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 2018; 20:55. [PMID: 29566767 PMCID: PMC5863822 DOI: 10.1186/s13075-018-1552-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Effects of methotrexate (MTX) on the proliferation of rheumatoid arthritis (RA) synovial fibroblasts are incompletely understood. We explored actions of MTX in view of circadian transcriptions of synovial fibroblasts. Methods Under treatment with MTX, expression of core circadian clock genes, circadian transcriptional factor proline and acidic amino acid-rich basic leucine zipper (PAR bZIP), and proapoptotic molecule Bcl-2 interacting killer (Bik) was examined by real-time polymerase chain reaction. Protein expression of circadian clock gene PERIOD2 (PER2) and CYTOCHROME C was also examined by western blotting and ELISA. Promoter activities of Per2 and Bik were measured by Luciferase assay. Expression of PER2, BIK, and CYTOCHROME C and morphological changes of the nucleus were observed by fluorescent immunostaining. Synovial fibroblasts were transfected with Per2/Bik small interfering RNA, and successively treated with MTX to determine cell viabilities. Finally, synovial fibroblasts were treated with MTX according to the oscillation of Per2/Bik expression. Results MTX (10 nM) significantly decreased cell viabilities, but increased messenger RNA expression of Per2, Bik, and PAR ZIP including D site of the albumin promoter binding protein (Dbp), hepatic leukemia factor (Hlf), and thyrotroph embryonic factor (Tef). MTX also increased protein expression of PER2 and CYTOCHROME C, and promoter activities of Per2 and Bik via D-box. Under fluorescent observations, expression of PER2, BIK, and CYTOCHROME C was increased in apoptotic cells. Cytotoxicity of MTX was attenuated by silencing of Per2 and/or Bik, and revealed that MTX was significantly effective in situations where Per2/Bik expression was high. Conclusions We present here novel unique action of MTX on synovial fibroblasts that upregulates PAR bZIP to transcribe Per2 and Bik, resulting in apoptosis induction. MTX is important in modulating circadian environments to understand a new aspect of pathogenesis of RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1552-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohjin Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Takeshi Ueha
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Ayako Nakai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Naonori Hashimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Koto Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Teppei Hashimoto
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, 657-0068, Japan
| | - Yoshiko Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, 657-0068, Japan
| | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, 657-0068, Japan
| | - Natsuko Nakagawa
- Department of Rheumatology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, 675-0003, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan.
| |
Collapse
|
40
|
Bergström B, Carlsten H, Ekwall AKH. Methotrexate inhibits effects of platelet-derived growth factor and interleukin-1β on rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res Ther 2018; 20:49. [PMID: 29554943 PMCID: PMC5859417 DOI: 10.1186/s13075-018-1554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background A key feature of joints in rheumatoid arthritis (RA) is the formation of hyperplastic destructive pannus tissue, which is orchestrated by activated fibroblast-like synoviocytes (FLS). We have demonstrated that the RA risk gene and tumor suppressor Limb bud and heart development (LBH) regulates cell cycle progression in FLS. Methotrexate (MTX) is the first-line treatment for RA, but its mechanisms of action remain incompletely understood. Here, we studied the effects of MTX on mitogen-induced FLS proliferation and expression of cell cycle regulators in vitro. Methods Primary FLS from patients with RA or osteoarthritis were stimulated with the mitogen platelet-derived growth factor (PDGF) and the cytokine interleukin-1β (IL-1β) in the presence or absence of MTX. Cells were then subjected to qPCR for gene expression and cell cycle analysis by flow cytometry. Results Stimulation with PDGF and IL-1β increased the percentage of FLS in the G2/M phase and shifted the cell morphology to a dendritic shape. These effects were inhibited by MTX. Furthermore, PDGF + IL-1β reduced LBH mRNA expression. However, MTX treatment yielded significantly higher transcript levels of LBH, and of CDKN1A (p21) and TP53 (p53), compared to untreated samples upon mitogen stimulation. The expression of DNA methyltransferase-1 (DNMT1) was also higher in the presence of MTX and there was strong correlation between DNMT1 and LBH expression. Conclusions Therapeutic concentrations of MTX abolish the effects of PDGF and IL-1β on tumor suppressor expression and inhibit mitogen-promoted FLS proliferation. These data demonstrate novel and important effects of MTX on pathogenic effector cells in the joint, which might involve epigenetic mechanisms.
Collapse
Affiliation(s)
- Beatrice Bergström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden. .,Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
41
|
Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 2017; 13:657-669. [PMID: 28978995 DOI: 10.1038/nrrheum.2017.162] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key epigenetic regulators that govern gene expression and influence multiple biological processes. Accumulating evidence demonstrates that lncRNAs have critical roles in immune cell development and function. In this Review, the molecular mechanisms of gene expression regulation by lncRNAs are described and current knowledge of the role of lncRNAs in immune regulation and inflammation are presented, highlighting strategies for defining the roles of lncRNAs in the pathogenesis of multiple rheumatic diseases. Finally, research progress in understanding the role of lncRNAs in rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, 2200 Lane 25 Xietu Road, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Corciulo C, Lendhey M, Wilder T, Schoen H, Cornelissen AS, Chang G, Kennedy OD, Cronstein BN. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat Commun 2017; 8:15019. [PMID: 28492224 PMCID: PMC5437286 DOI: 10.1038/ncomms15019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage destruction and chondrocytes have a central role in this process. With age and inflammation chondrocytes have reduced capacity to synthesize and maintain ATP, a molecule important for cartilage homeostasis. Here we show that concentrations of ATP and adenosine, its metabolite, fall after treatment of mouse chondrocytes and rat tibia explants with IL-1β, an inflammatory mediator thought to participate in OA pathogenesis. Mice lacking A2A adenosine receptor (A2AR) or ecto-5′nucleotidase (an enzyme that converts extracellular AMP to adenosine) develop spontaneous OA and chondrocytes lacking A2AR develop an ‘OA phenotype' with increased expression of Mmp13 and Col10a1. Adenosine replacement by intra-articular injection of liposomal suspensions containing adenosine prevents development of OA in rats. These results support the hypothesis that maintaining extracellular adenosine levels is an important homeostatic mechanism, loss of which contributes to the development of OA; targeting adenosine A2A receptors might treat or prevent OA. Osteoarthritis (OA) is a debilitating and destructive joint disease for which disease modifying drugs are not available. Here the authors show that extracellular adenosine signalling via the A2AR receptor on chondrocytes is needed to prevent OA and that liposome-bound adenosine injection can treat the pathology in rats.
Collapse
Affiliation(s)
- Carmen Corciulo
- Department of Medicine-Division of Translational Medicine-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Matin Lendhey
- Department of Orthopedic Surgery-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Tuere Wilder
- Department of Medicine-Division of Translational Medicine-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Hanna Schoen
- Department of Medicine-Division of Translational Medicine-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Alexander Samuel Cornelissen
- Department of Medicine-Division of Translational Medicine-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Gregory Chang
- Department of Radiology-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Oran D Kennedy
- Department of Orthopedic Surgery-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA.,Department of Anatomy, the Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Bruce N Cronstein
- Department of Medicine-Division of Translational Medicine-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA.,Department of Medicine-Division of Rheumatology-NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
43
|
Warren RB, Mrowietz U, von Kiedrowski R, Niesmann J, Wilsmann-Theis D, Ghoreschi K, Zschocke I, Falk TM, Blödorn-Schlicht N, Reich K. An intensified dosing schedule of subcutaneous methotrexate in patients with moderate to severe plaque-type psoriasis (METOP): a 52 week, multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389:528-537. [PMID: 28012564 DOI: 10.1016/s0140-6736(16)32127-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/18/2016] [Accepted: 09/27/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Methotrexate is one of the most commonly used systemic drugs for the treatment of moderate to severe psoriasis; however, high-quality evidence for its use is sparse and limited to use of oral dosing. We aimed to assess the effect of an intensified dosing schedule of subcutaneous methotrexate in patients with moderate to severe plaque-type psoriasis. METHODS We did this prospective, multicentre, randomised, double-blind, placebo-controlled, phase 3 trial (METOP) at 16 sites in Germany, France, the Netherlands, and the UK. Eligible patients were aged 18 years or older, had a diagnosis of chronic plaque psoriasis for at least 6 months before baseline, had currently moderate to severe disease, and were methotrexate treatment-naive. Participants were randomly assigned (3:1), via a computer-generated random number sequence integrated into an electronic data capture system, to receive either methotrexate at a starting dose of 17·5 mg/week or placebo for the first 16 weeks, followed by methotrexate treatment of all patients up to 52 weeks (methotrexate-methotrexate vs placebo-methotrexate groups). Dose escalation to 22·5 mg/week was allowed after 8 weeks of methotrexate treatment if patients had not achieved at least a 50% reduction in baseline Psoriasis Area and Severity Index score (PASI), with corresponding volume increases in placebo injections. Treatment was combined with folic acid 5 mg/week. Group allocation was concealed from participants and investigators from the time of randomisation until an interim database lock at week 16, and was open label from week 16 onwards, with no masking of participants or investigators. The primary efficacy endpoint was a 75% reduction in PASI score (PASI 75) from baseline to week 16. We did analysis by modified intention to treat, with non-responder imputation. This study is registered with EudraCT, number 2012-002716-10. FINDINGS Between Feb 22, 2013, and May 13, 2015, we randomly assigned 120 patients to receive methotrexate (n=91) or placebo (n=29). At week 16, a PASI 75 response was achieved in 37 (41%) patients in the methotrexate group compared with three (10%) patients in the placebo group (relative risk 3·93, 95% CI 1·31-11·81; p=0·0026). Subcutaneous methotrexate was generally well tolerated; no patients died or had serious infections, malignancies, or major adverse cardiovascular events. Serious adverse events were recorded in three (3%) patients who received methotrexate for the full 52 week treatment period. INTERPRETATION Our findings show a favourable 52 week risk-benefit profile of subcutaneous methotrexate in patients with psoriasis. The route of administration and the intensified dosing schedule should be considered when methotrexate is used in this patient group. FUNDING Medac.
Collapse
Affiliation(s)
- Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester and Manchester Academic Health Science Centre, Manchester, UK
| | - Ulrich Mrowietz
- Psoriasis-Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | - Kristian Reich
- SCIderm GmbH Hamburg, Hamburg, Germany; Dermatologikum Hamburg, Hamburg, Germany.
| |
Collapse
|
44
|
Sramek M, Neradil J, Veselska R. Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochim Biophys Acta Gen Subj 2016; 1861:499-503. [PMID: 27993660 DOI: 10.1016/j.bbagen.2016.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND For decades, methotrexate (MTX; amethopterin) has been known as an antifolate inhibitor of dihydrofolate reductase (DHFR), and it is widely used for the treatment of various malignancies and autoimmune diseases. Although the inclusion of MTX in various therapeutic regimens is based on its ability to inhibit DHFR and consequently to suppress the synthesis of pyrimidine and purine precursors, recent studies have shown that MTX is also able to target other intracellular pathways that are independent of folate metabolism. SCOPE OF REVIEW The main aim of this review is to summarize the most important, up-to-date findings of studies regarding the non-DHFR-mediated mechanisms of MTX action. MAJOR CONCLUSIONS The effectiveness of MTX is undoubtedly caused by its capability to affect various intracellular pathways at many levels. Although the most important therapeutic mechanism of MTX is strongly based on the inhibition of DHFR, many other effects of this compound have been described and new studies bring new insights into the pharmacology of MTX every year. GENERAL SIGNIFICANCE Identification of these new targets for MTX is especially important for a better understanding of MTX action in new protocols of combination therapy.
Collapse
Affiliation(s)
- Martin Sramek
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno 656 91, Czech Republic
| | - Jakub Neradil
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno 656 91, Czech Republic
| | - Renata Veselska
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno 656 91, Czech Republic.
| |
Collapse
|
45
|
Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2016; 13:41-51. [PMID: 27829671 DOI: 10.1038/nrrheum.2016.178] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.
Collapse
Affiliation(s)
- Bruce N Cronstein
- NYU-HHC Clinical and Translational Science Institute, NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 312 MU, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol 2016; 12:731-742. [PMID: 27784891 DOI: 10.1038/nrrheum.2016.175] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The treatment and outcomes of patients with rheumatoid arthritis (RA) have been transformed over the past two decades. Low disease activity and remission are now frequently achieved, and this success is largely the result of the evolution of treatment paradigms and the introduction of new therapeutic agents. Despite the rapid pace of change, the most commonly used drug in RA remains methotrexate, which is considered the anchor drug for this condition. In this Review, we describe the known pharmacokinetic properties and putative mechanisms of action of methotrexate. Consideration of the pharmacodynamic perspective could inform the development of biomarkers of responsiveness to methotrexate, enabling therapy to be targeted to specific groups of patients. Such biomarkers could revolutionize the management of RA.
Collapse
|
47
|
Stuhlmüller B, Mans K, Tandon N, Bonin MO, Smiljanovic B, Sörensen TA, Schendel P, Martus P, Listing J, Detert J, Backhaus M, Neumann T, Winchester RJ, Burmester GR, Häupl T. Genomic stratification by expression of HLA-DRB4 alleles identifies differential innate and adaptive immune transcriptional patterns - A strategy to detect predictors of methotrexate response in early rheumatoid arthritis. Clin Immunol 2016; 171:50-61. [PMID: 27570220 DOI: 10.1016/j.clim.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Effective drug selection is the current challenge in rheumatoid arthritis (RA). Treatment failure may follow different pathomechanisms and therefore require investigation of molecularly defined subgroups. In this exploratory study, whole blood transcriptomes of 68 treatment-naïve early RA patients were analyzed before initiating MTX. Subgroups were defined by serologic and genetic markers. Response related signatures were interpreted using reference transcriptomes of various cell types, cytokine stimulated conditions and bone marrow precursors. HLA-DRB4-negative patients exhibited most distinctive transcriptional differences. Preponderance of transcripts associated with phagocytes and bone marrow activation indicated response and transcripts of T- and B-lymphocytes non-response. HLA-DRB4-positive patients were more heterogeneous, but also linked failure to increased adaptive immune response. RT-qPCR confirmed reliable candidate selection and independent samples of responders and non-responders the functional patterning. In summary, genomic stratification identified different molecular pathomechanisms in early RA and preponderance of innate but not adaptive immune activation suggested response to MTX therapy.
Collapse
Affiliation(s)
- Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany.
| | - Karsten Mans
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Neeraj Tandon
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Marc O Bonin
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Biljana Smiljanovic
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Till A Sörensen
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Pascal Schendel
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Peter Martus
- Institute of Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Germany
| | | | - Jacqueline Detert
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Marina Backhaus
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Thomas Neumann
- Department of Rheumatology, University Medicine Jena, Germany
| | | | - Gerd-R Burmester
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
48
|
Effect of N-Feruloylserotonin and Methotrexate on Severity of Experimental Arthritis and on Messenger RNA Expression of Key Proinflammatory Markers in Liver. J Immunol Res 2016; 2016:7509653. [PMID: 27556049 PMCID: PMC4983360 DOI: 10.1155/2016/7509653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease, leading to progressive destruction of joints and extra-articular tissues, including organs such as liver and spleen. The purpose of this study was to compare the effects of a potential immunomodulator, natural polyphenol N-feruloylserotonin (N-f-5HT), with methotrexate (MTX), the standard in RA therapy, in the chronic phase of adjuvant-induced arthritis (AA) in male Lewis rats. The experiment included healthy controls (CO), arthritic animals (AA), AA given N-f-5HT (AA-N-f-5HT), and AA given MTX (AA-MTX). N-f-5HT did not affect the body weight change and clinical parameters until the 14th experimental day. Its positive effect was rising during the 28-day experiment, indicating a delayed onset of N-f-5HT action. Administration of either N-f-5HT or MTX caused reduction of inflammation measured as the level of CRP in plasma and the activity of LOX in the liver. mRNA transcription of TNF-α and iNOS in the liver was significantly attenuated in both MTX and N-f-5HT treated groups of arthritic rats. Interestingly, in contrast to MTX, N-f-5HT significantly lowered the level of IL-1β in plasma and IL-1β mRNA expression in the liver and spleen of arthritic rats. This speaks for future investigations of N-f-5HT as an agent in the treatment of RA in combination therapy with MTX.
Collapse
|
49
|
Schmitz ML, Kracht M. Cyclin-Dependent Kinases as Coregulators of Inflammatory Gene Expression. Trends Pharmacol Sci 2015; 37:101-113. [PMID: 26719217 DOI: 10.1016/j.tips.2015.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) exert a variety of functions through regulation of the cell cycle and gene expression, thus implicating them in diverse biological processes. Recent studies have deciphered the molecular mechanisms employed by nuclear CDKs to support the expression of inflammatory mediators. Induced transcription of many proinflammatory genes is increased during the G1 phase of the cell cycle in a CDK-dependent manner. This process involves the cytokine-induced recruitment of CDK6 to the nuclear chromatin fraction where it associates with transcription factors of the NF-κB, STAT, and AP-1 families. The ability of CDK6 to trigger the expression of VEGF-A and p16(INK4A) and to recruit the NF-κB subunit p65 to its target sites is largely independent of its kinase function. The involvement of CDKs in proinflammatory gene expression also allows therapeutic targeting of their functions to interfere with tumor-promoting inflammation or chronic inflammatory diseases.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute for Pharmacology, Medical Faculty, Schubertstrasse 81, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
50
|
Spurlock CF, Tossberg JT, Guo Y, Sriram S, Crooke PS, Aune TM. Defective structural RNA processing in relapsing-remitting multiple sclerosis. Genome Biol 2015; 16:58. [PMID: 25885816 PMCID: PMC4403723 DOI: 10.1186/s13059-015-0629-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases. RESULTS We employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs. CONCLUSIONS Our results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Medical Center North T3113, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA.
| |
Collapse
|