1
|
Polunosika E, Pastare D, Karelis G, Vasylovska V. Development of anti-NMDA receptor encephalitis in a patient with multiple sclerosis. BMJ Case Rep 2025; 18:e263945. [PMID: 40345675 PMCID: PMC12067385 DOI: 10.1136/bcr-2024-263945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis is a rare subtype of autoimmune encephalitis, often presenting with early-onset, disease-specific neuropsychiatric symptoms. This case report describes a female patient with relapsing-remitting multiple sclerosis (RRMS) who developed anti-NMDA receptor encephalitis while receiving disease-modifying treatment. She exhibited neurocognitive symptoms and atypical magnetic resonance findings. Clinical and laboratory findings, including lumbar puncture, confirmed the presence of IgG antibodies against the GluN1 subunit of the NMDA receptor, establishing the diagnosis. First-line therapy with methylprednisolone and plasma exchange proved refractory, and immunoglobulin therapy yielded only a suboptimal response. Rituximab achieved the optimal therapeutic effect; however, therapy was followed by recurrent COVID-19 infection in this previously unvaccinated patient. This report highlights the complexities of diagnosis, differential considerations, therapeutic strategies and the detrimental impact of anti-NMDA receptor encephalitis and RRMS on the patient's quality of life.
Collapse
Affiliation(s)
- Elīna Polunosika
- Neurology and Neurosurgery, Riga East University Hospital, Riga, Latvia
| | - Daina Pastare
- Neurology and Neurosurgery, Riga East University Hospital, Riga, Latvia
| | - Guntis Karelis
- Neurology and Neurosurgery, Riga East University Hospital, Riga, Latvia
| | | |
Collapse
|
2
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Cottrill R, Ekanayake A, Grove C, Peiris S, Corbett N, Ahmed B, Jens W, Brearly T, Kanekar S, Eslinger P, Yang Q, Karunanayaka P. Alzheimer's disease (AD) in multiple sclerosis (MS): A systematic review of published cases, mechanistic links between AD and MS, and possible clinical evaluation of AD in MS. J Alzheimers Dis Rep 2025; 9:25424823251316134. [PMID: 40034519 PMCID: PMC11864252 DOI: 10.1177/25424823251316134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Alzheimer's disease (AD) and multiple sclerosis (MS) are two neurological disorders that can pose enormous burden to a person's quality of life. Due to new therapeutic advancements that significantly extend the lifespan, there may be an increased prevalence of AD in elderly MS patients. Objective: Building on a previous review on MS-AD coexistence, this review not only aimed to broaden the pool of literature searched, but also investigated possible mechanistic links between clinical markers for MS and AD. Methods: We searched for newly reported cases of coexisting MS and AD in PubMed, Clinical Key, BioMed Central, and Europe PubMed Central databases; and identified 101 new cases in addition to the previously reported 24 cases by Luczynski et al. (2019). The resulting 125 comorbid cases necessitated an evaluation of literature on the pathogenesis of MS and AD. Results: This review highlights many overlaps between AD and MS (for instance, the immune cell dysfunction, glymphatic dysfunction, genetics, environmental factors, and others). We critically evaluated clinical and laboratory metrics used to identify AD in MS patients (e.g., MRI, amyloid-β and tau protein identification, miRNA biomarker evaluation, cerebrospinal fluid analysis, vitamin levels, gut microbiota etc.). Conclusions: Future research should refine these diagnostic criteria and focus on enhancing screening and detection methods for AD in MS patients. Furthermore, one should also investigate the primary causes of the increased comorbidity between AD and MS.
Collapse
Affiliation(s)
- Ross Cottrill
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Nicholas Corbett
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Will Jens
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Tim Brearly
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Huarcaya LRD. Gut Microbiota and Alzheimer Disease. ACTA NEUROLOGICA TAIWANICA 2025; 34:1-12. [PMID: 40396795 DOI: 10.4103/ant.ant_113_0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 05/22/2025]
Abstract
ABSTRACT The hallmarks of Alzheimer's disease (AD) include brain dysfunction and the buildup of amyloid and tau proteins. The onset of dementia is one of the latter symptoms. Imaging diagnostics allowed for the detection of amyloid buildup in the brain 10-20 years before the emergence of overt signs of the disease. The application of imaging diagnostic techniques allowed for this identification. Within the next few decades, the incidence and frequency of this disease are expected to reach epidemic proportions unless measures are done to stop or slow its growth. However, unless action is taken to slow or stop the disease's progression, it will continue to threaten the health of the general public. Recently, there has been some speculation that the gut flora might contribute to the development of AD. Not only that, but the rapidly expanding ischemia etiology is another possible contributor to the issue. Rumor has it that there's a network connecting the brain and the stomach called the "gut-brain-microbiota axis." The hypothesis is based on this network. Furthermore, a large amount of evidence implies that the gut microbiota (GMB) could potentially contribute to the onset of AD. It has been suggested that the GMB could play a role in the onset of AD. This notion has been bolstered by new studies. It is quite probable that this review will address the prospect of a link between the microbiome and AD. This concept could be explored as a potential therapy or preventative measure. Some techniques that show promise as new treatments for AD include changes to the GMB, which can be achieved through dietary changes or positive microflora interventions, and changes to microbiological partners and their products, like amyloid protein.
Collapse
|
5
|
Duarte-Silva E, Oriá AC, Mendonça IP, Paiva IHR, Leuthier Dos Santos K, Sales AJ, de Souza JRB, Maes M, Meuth SG, Peixoto CA. The Antidepressant- and Anxiolytic-Like Effects of the Phosphodiesterase Type-5 Inhibitor Tadalafil are Associated with the Modulation of the Gut-Brain Axis During CNS Autoimmunity. J Neuroimmune Pharmacol 2024; 19:45. [PMID: 39158758 DOI: 10.1007/s11481-024-10148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Multiple Sclerosis (MS) is a debilitating disease that severely affects the central nervous system (CNS). Apart from neurological symptoms, it is also characterized by neuropsychiatric comorbidities, such as anxiety and depression. Phosphodiesterase-5 inhibitors (PDE5Is) such as Sildenafil and Tadalafil have been shown to possess antidepressant-like effects, but the mechanisms underpinning such effects are not fully characterized. To address this question, we used the EAE model of MS, behavioral tests, immunofluorescence, immunohistochemistry, western blot, and 16 S rRNA sequencing. Here, we showed that depressive-like behavior in Experimental Autoimmune Encephalomyelitis (EAE) mice is due to neuroinflammation, reduced synaptic plasticity, dysfunction in glutamatergic neurotransmission, glucocorticoid receptor (GR) resistance, increased blood-brain barrier (BBB) permeability, and immune cell infiltration to the CNS, as well as inflammation, increased intestinal permeability, and immune cell infiltration in the distal colon. Furthermore, 16 S rRNA sequencing revealed that behavioral dysfunction in EAE mice is associated with changes in the gut microbiota, such as an increased abundance of Firmicutes and Saccharibacteria and a reduction in Proteobacteria, Parabacteroides, and Desulfovibrio. Moreover, we detected an increased abundance of Erysipelotrichaceae and Desulfovibrionaceae and a reduced abundance of Lactobacillus johnsonii. Surprisingly, we showed that Tadalafil likely exerts antidepressant-like effects by targeting all aforementioned disease aspects. In conclusion, our work demonstrated that anxiety- and depressive-like behavior in EAE is associated with a plethora of neuroimmune and gut microbiota-mediated mechanisms and that Tadalafil exerts antidepressant-like effects probably by targeting these mechanisms. Harnessing the knowledge of these mechanisms of action of Tadalafil is important to pave the way for future clinical trials with depressed patients.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/ Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, PE, Brazil.
- Department of Neurology, University Hospital Düsseldorf, 40255, Düsseldorf, Germany.
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique Rodrigues Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Amanda Juliana Sales
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, 4002, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, 4002, Bulgaria
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, VIC, Australia
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sven Guenther Meuth
- Department of Neurology, University Hospital Düsseldorf, 40255, Düsseldorf, Germany
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JWS, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. Sci Rep 2024; 14:15292. [PMID: 38961134 PMCID: PMC11222390 DOI: 10.1038/s41598-024-64369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Qin Wang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ali Mirza
- Pharmacoepidemiology in Multiple Sclerosis Research Group, The University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Deanna Dwyer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qi Wu
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Catherine A Dowling
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jennifer Yang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| | - Yang Mao-Draayer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Autoimmunity Center of Excellence, Multiple Sclerosis Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Torres-Chávez ME, Torres-Carrillo NM, Monreal-Lugo AV, Garnés-Rancurello S, Murugesan S, Gutiérrez-Hurtado IA, Beltrán-Ramírez JR, Sandoval-Pinto E, Torres-Carrillo N. Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (Review). Biomed Rep 2023; 19:93. [PMID: 37901876 PMCID: PMC10603378 DOI: 10.3892/br.2023.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Understanding the relationship between microorganisms that live in our intestines and neuroinflammatory and neurodegenerative pathologies of the central nervous system (CNS) is essential, since they have been shown to have an immunomodulatory effect in neurological disorders, such as multiple sclerosis (MS). The gut microbiota can be affected by several environmental factors, including infections, physical and emotional stress and diet, the latter known as the main modulator of intestinal bacteria. An abrupt shift in the gut microbiota composition and function is known as dysbiosis, a state of local and systemic inflammation produced by pathogenic bacteria and its metabolites responsible for numerous neurological symptoms. It may also trigger neuronal damage in patients diagnosed with MS. Intestinal dysbiosis affects the permeability of the intestine, allowing chronic low-grade bacterial translocation from the intestine to the circulation, which may overstimulate immune cells and cells resident in the CNS, break immune tolerance and, in addition, alter the permeability of the blood-brain barrier (BBB). This way, toxins, inflammatory molecules and oxidative stress molecules can pass freely into the CNS and cause extensive damage to the brain. However, commensal bacteria, such as the Lactobacillus genus and Bacteroides fragilis, and their metabolites (with anti-inflammatory potential), produce neurotransmitters such as γ-aminobutyric acid, histamine, dopamine, norepinephrine, acetylcholine and serotonin, which are important for neurological regulation. In addition, reprogramming the gut microbiota of patients with MS with a healthy gut microbiota may help improve the integrity of the gut and BBB, by providing clinically protective anti-inflammatory effects and reducing the disease's degenerative progression. The present review provides valuable information about the relationship between gut microbiota and neuroinflammatory processes of the CNS. Most importantly, it highlights the importance of intestinal bacteria as an environmental factor that may mediate the clinical course of MS, or even predispose to the outbreak of this disease.
Collapse
Affiliation(s)
- María Eugenia Torres-Chávez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Nora Magdalena Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Victoria Monreal-Lugo
- Department of Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
- Department of Nutrition and Bioprogramming Coordination, Isidro Espinosa de los Reyes National Institute of Perinatology, Mexico City 11000, Mexico
| | - Sandra Garnés-Rancurello
- Department of Nutrition, Technological Institute of Higher Studies of Monterrey, Zapopan, Jalisco 45201, Mexico
| | | | - Itzae Adonai Gutiérrez-Hurtado
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Jesús Raúl Beltrán-Ramírez
- Department of Information Systems, University Center of Administrative Economic Sciences, University of Guadalajara, Zapopan, Jalisco 45100, Mexico
| | - Elena Sandoval-Pinto
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences, University of Guadalajara, Zapopan, Jalisco 45200, Mexico
| | - Norma Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
8
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Role of Bmal1 and Gut Microbiota in Alzheimer's Disease and Parkinson's Disease Pathophysiology: The Probable Effect of Melatonin on Their Association. ACS Chem Neurosci 2023; 14:3883-3893. [PMID: 37823531 DOI: 10.1021/acschemneuro.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
In recent years, the role of new factors in the pathophysiology of neurodegenerative diseases has been investigated. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. Although pathological changes such as the accumulation of aggregated proteins in the brain and inflammatory responses are known as the main factors involved in the development of these diseases, new studies show the role of gut microbiota and circadian rhythm in the occurrence of these changes. However, the association between circadian rhythm and gut microbiota in AD and PD has not yet been investigated. Recent results propose that alterations in circadian rhythm regulators, mainly Bmal1, may regulate the abundance of gut microbiota. This correlation has been linked to the regulation of the expression of immune-related genes and Bmal-1 mediated oscillation of IgA and hydrogen peroxide production. These data seem to provide new insight into the molecular mechanism of melatonin inhibiting the progression of AD and PD. Therefore, this manuscript aims to review the role of the gut microbiota and circadian rhythm in health and AD and PD and also presents a hypothesis on the effect of melatonin on their communication.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Faculty of Pharmacy. Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| |
Collapse
|
9
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JW, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291875. [PMID: 37425956 PMCID: PMC10327224 DOI: 10.1101/2023.06.26.23291875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. Methods In a longitudinal study, disability status and associated clinical features in 60 MS patients were tracked over 4.2 ± 0.97 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. Results We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 45 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia , Lachnospiraceae, and Oscillospiraceae , with an expansion of Alloprevotella , Prevotella-9 , and Rhodospirillales . Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed a significant enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K 2 production (linked to Akkermansia ), and a depletion in SCFA metabolism (linked to Lachnospiraceae and Oscillospiraceae ). Further, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to robustly predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. Conclusions These results demonstrate the utility of the gut microbiome for predicting disease progression in MS. Further, analysis of the inferred metagenome revealed that oxidative stress, vitamin K 2 and SCFAs are associated with progression. Abstract Figure
Collapse
|
11
|
Khezri MR, Ghasemnejad-Berenji M. Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. NPJ AGING 2023; 9:9. [PMID: 37130863 PMCID: PMC10154390 DOI: 10.1038/s41514-023-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-β (Aβ) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23115877. [PMID: 35682558 PMCID: PMC9180348 DOI: 10.3390/ijms23115877] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Maysa Hamade
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qi Wu
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qin Wang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Robert Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Yang Mao-Draayer
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-615-5635
| |
Collapse
|
14
|
Janeiro MH, Ramírez MJ, Solas M. Dysbiosis and Alzheimer's Disease: Cause or Treatment Opportunity? Cell Mol Neurobiol 2022; 42:377-387. [PMID: 33400081 PMCID: PMC11441293 DOI: 10.1007/s10571-020-01024-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aβ clearance.
Collapse
Affiliation(s)
- Manuel H Janeiro
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
15
|
Miziak B, Błaszczyk B, Czuczwar SJ. Some Candidate Drugs for Pharmacotherapy of Alzheimer's Disease. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050458. [PMID: 34068096 PMCID: PMC8152728 DOI: 10.3390/ph14050458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Health Sciences, High School of Economics, Law and Medical Sciences, 25-734 Kielce, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-00; Fax: +48-81-65-00-01
| |
Collapse
|
16
|
Zhu F, Li C, Chu F, Tian X, Zhu J. Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:544235. [PMID: 33132894 PMCID: PMC7572848 DOI: 10.3389/fnagi.2020.544235] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is commonly an age-associated dementia with neurodegeneration. The pathogenesis of AD is complex and still remains unclear. The inflammation, amyloid β (Aβ), and neurofibrillary tangles as well misfolded tau protein in the brain may contribute to the occurrence and development of AD. Compared with tau protein, Aβ is less toxic. So far, all efforts made in the treatments of AD with targeting these pathogenic factors were unsuccessful over the past decades. Recently, many studies demonstrated that changes of the intestinal environment and gut microbiota via gut–brain axis pathway can cause neurological disorders, such as AD, which may be involved in the pathogenesis of AD. Thus, remodeling the gut microbiota by various ways to maintain their balance might be a novel therapeutic strategy for AD. In the review article, we analyzed the characteristics of gut microbiota and its dysbiosis in AD and its animal models and investigated the possibility of targeting the gut microbiota in the treatment of the patients with AD in the future.
Collapse
Affiliation(s)
- Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
17
|
van Pamelen J, van Olst L, Budding AE, de Vries HE, Visser LH. Alterations of Gut Microbiota and the Brain-Immune-Intestine Axis in Patients With Relapsing-Remitting Multiple Sclerosis After Treatment With Oral Cladribine: Protocol for a Prospective Observational Study. JMIR Res Protoc 2020; 9:e16162. [PMID: 32723709 PMCID: PMC7424462 DOI: 10.2196/16162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Immunological factors are the key to the pathogenesis of multiple sclerosis (MS). Conjointly, environmental factors are known to affect MS disease onset and progression. Several studies have found that the intestinal microbiota in MS patients differs from that of control subjects. One study found a trend toward lower species richness in patients with active disease versus in patients in remission. The microbiota plays an important role in shaping the immune system. Recent studies suggest the presence of an association between the gut microbiota and inflammatory pathways in the central nervous system. However, the function of this brain-immune-intestine axis and its possible value for predicting treatment effect in MS patients is currently unknown. Objective Our goal is to examine if the changes in gut and oral microbiota and simultaneous changes in the immune response are a predictor for the treatment response in subjects with active relapsing-remitting MS (RRMS) who are being treated with oral cladribine. Methods This is a prospective, observational, multicenter study. Eligible subjects are patients with RRMS, between the ages of 18 and 55 years, who will start treatment with oral cladribine. Patients who used probiotics 1 month prior to the start of oral cladribine will be excluded. At baseline (ie, before start) and after 3, 12, and 24 months, the Expanded Disability Status Scale (EDSS) score will be assessed and fecal, oral, and blood samples will be collected. Also, subjects will be asked to register their food intake for 7 consecutive days following the visits. After 24 months, a magnetic resonance imaging (MRI) assessment of the brain will be performed. Responders are defined as subjects without relapses, without progression on the EDSS, and without radiological progression on MRI. Results Inclusion started in January 2019. A total of 30 patients are included at the moment. The aim is to include 80 patients from 10 participating centers during a period of approximately 24 months. Final results are expected in 2024. Conclusions The results of the BIA Study will contribute to precision medicine in patients with RRMS and will contribute to a better understanding of the brain-immune-intestine axis. International Registered Report Identifier (IRRID) DERR1-10.2196/16162
Collapse
Affiliation(s)
- Jeske van Pamelen
- Department of Neurology, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, Netherlands
| | - Lynn van Olst
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Leo H Visser
- Department of Neurology, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, Netherlands
| |
Collapse
|
18
|
Gut microbiota and pro/prebiotics in Alzheimer's disease. Aging (Albany NY) 2020; 12:5539-5550. [PMID: 32191919 PMCID: PMC7138569 DOI: 10.18632/aging.102930] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease is characterized by the accumulation of amyloid and dysfunctional tau protein in the brain along with the final development of dementia. Accumulation of amyloid in the brain was observed 10-20 years before the onset of clinical symptoms by diagnostic methods based on image analysis. This is a serious public health problem, incidence and prevalence being expected to reach epidemic proportions over the next few decades if the disease cannot be prevented or slowed down. Recently, in addition to the strongly developing ischemic etiology of Alzheimer’s disease, it is suggested that the gut microbiota may also participate in the development of this disease. The brain and gut are thought to form a network called the “gut-brain-microbiota axis”, and it is strongly supported idea that the intestinal microflora can be involved in Alzheimer’s disease. Lately, many new studies have been conducted that draw attention to the relationship between Alzheimer’s disease and gut microbiota. This review presents a possible relationship between Alzheimer’s disease and a microbiome. It is a promising idea for prevention or therapeutic intervention. Modulation of the gut microbiota through a personalized diet or beneficial microflora intervention like pro/prebiotics, changing microbiological partners and their products, including amyloid protein, can become a new treatment for Alzheimer’s disease.
Collapse
|
19
|
Duarte-Silva E, Macedo D, Maes M, Peixoto CA. Novel insights into the mechanisms underlying depression-associated experimental autoimmune encephalomyelitis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:1-10. [PMID: 30849414 DOI: 10.1016/j.pnpbp.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disease characterized by neuroinflammation, demyelination and neuroaxonal degeneration affecting >2 million people around the world. MS is often accompanied by psychiatric comorbidities such as major depressive disorder (MDD), which presents a lifetime prevalence of around 50% in MS patients. Experimental Autoimmune Encephalomyelitis (EAE) is an animal model extensively used to study MS. EAE mimics the autoimmune nature of MS, as well as its inflammatory and demyelinating mechanisms also presenting predictive validity. There are important similarities between EAE and MS-associated depression (MSD). The mechanisms shared by these disorders include peripheral inflammation, neuroinflammation, mitochondrial dysfunctions, oxidative stress, nitrosative stress, lowered antioxidant defenses, increased bacterial translocation into the systemic circulation, and microglial pathology. Although the role of the immune-inflammatory system in MDD has been established in the 1990's, only few studies addressed immune pathways as a major determinant of depressive-like behavior in EAE. Therefore, in the present study we aimed at revising the current literature on EAE as an animal model to investigate the comorbidity between MS and MDD. In this regard, we revised the current literature on behavioral alterations in EAE, the possible mechanisms involved in this comorbidity and the potential and limitations of using this animal model to study depressive-like behavior.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
|
21
|
Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation 2019; 16:108. [PMID: 31118068 PMCID: PMC6530014 DOI: 10.1186/s12974-019-1494-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease whose various pathophysiological aspects are still being investigated. Recently, it has been hypothesized that AD may be associated with a dysbiosis of microbes in the intestine. In fact, the intestinal flora is able to influence the activity of the brain and cause its dysfunctions.Given the growing interest in this topic, the purpose of this review is to analyze the role of antibiotics in relation to the gut microbiota and AD. In the first part of the review, we briefly review the role of gut microbiota in the brain and the various theories supporting the hypothesis that dysbiosis can be associated with AD pathophysiology. In the second part, we analyze the possible role of antibiotics in these events. Antibiotics are normally used to remove or prevent bacterial colonization in the human body, without targeting specific types of bacteria. As a result, broad-spectrum antibiotics can greatly affect the composition of the gut microbiota, reduce its biodiversity, and delay colonization for a long period after administration. Thus, the action of antibiotics in AD could be wide and even opposite, depending on the type of antibiotic and on the specific role of the microbiome in AD pathogenesis.Alteration of the gut microbiota can induce changes in brain activity, which raise the possibility of therapeutic manipulation of the microbiome in AD and other neurological disorders. This field of research is currently undergoing great development, but therapeutic applications are still far away. Whether a therapeutic manipulation of gut microbiota in AD could be achieved using antibiotics is still not known. The future of antibiotics in AD depends on the research progresses in the role of gut bacteria. We must first understand how and when gut bacteria act to promote AD. Once the role of gut microbiota in AD is well established, one can think to induce modifications of the gut microbiota with the use of pre-, pro-, or antibiotics to produce therapeutic effects.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Amlerova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
22
|
Bostanciklioğlu M. The role of gut microbiota in pathogenesis of Alzheimer's disease. J Appl Microbiol 2019; 127:954-967. [PMID: 30920075 DOI: 10.1111/jam.14264] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
This paper describes the effects of the gut microbiota on the pathogenesis of Alzheimer's pathology by evaluating the current original key findings and identifying gaps in the knowledge required for validation. The diversity of the gut microbiota declines in the elderly and in patients with Alzheimer's disease (AD). Restoring the diversity with probiotic treatment alleviates the psychiatric and histopathological findings. This presents a problem: How does gut microbiota interact with the pathogenesis of AD? The starting point of this comprehensive review is addressing the role of bacterial metabolites and neurotransmitters in the brain under various conditions, ranging from a healthy state to ageing and disease. In the light of current literature, we describe three different linkages between the present gut microbiome hypothesis and the other major theories for the pathogenesis of AD as follows: bacterial metabolites and amyloids can trigger central nervous system inflammation and cerebrovascular degeneration; impaired gut microbiome flora inhibits the autophagy-mediated protein clearance process; and gut microbiomes can change the neurotransmitter levels in the brain through the vagal afferent fibres.
Collapse
Affiliation(s)
- M Bostanciklioğlu
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
23
|
Abstract
Commensal microbes affect all aspects of immune development and homeostasis in health and disease. Increasing evidence points to the notion that the gut commensals impact not only intestinal diseases but also diseases in tissues distant from the gut. Autoimmune or non-infectious uveitis is a sight-threatening intraocular inflammation that affects the neuroretina. It is strongly T cell driven, but the precise causative mechanisms are not fully understood. We and others observed that depletion of gut microbiota in animal models of uveitis attenuated disease. Using a spontaneous model of the disease, we questioned how retina-specific uveitogenic T cells are primed when their cognate antigens are sequestered within the immune privileged eye. The data suggested that gut commensals provide a signal directly through the retina-specific T cell receptor and cause these autoreactive T cells to trigger uveitis. This activation of retina-specific T cells in the gut appears to be independent of the endogenous retinal antigen. Rather, the findings point to the notion that gut microbiota may mimic retinal antigen(s), however, the actual mimic has not yet been identified. Microbiota may also serve as an “adjuvant” providing innate signals that amplify and direct the host immune response for development of uveitis. In contrast, spontaneous uveitis that develops in AIRE−/− mice appears to be independent of gut microbiota. To date, available data on human microbiota in association with uveitis are very limited and causative relationships are difficult to establish. This review will summarize the current knowledge on the role of microbiome in uveitis and its underlying mechanisms, and discuss unresolved questions and issues in an attempt to explore the concept of gut-retina axis.
Collapse
Affiliation(s)
- Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Saksida T, Koprivica I, Vujičić M, Stošić-Grujičić S, Perović M, Kanazir S, Stojanović I. Impaired IL-17 Production in Gut-Residing Immune Cells of 5xFAD Mice with Alzheimer's Disease Pathology. J Alzheimers Dis 2019; 61:619-630. [PMID: 29254086 DOI: 10.3233/jad-170538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by accumulation of amyloid-β plaques that further promotes microglia-mediated neuroinflammatory responses and inflammation in the brain. Emerging data are revealing the relation between gut-associated lymphoid tissue (GALT) cells and CNS, as effector cells primed in the gut might home to the brain. This study aimed to determine cell composition of GALT in 5xFAD mice, an established model for AD. Immune cells isolated from Peyer's patches (PP) and mesenteric lymph nodes (MLN) were stained with surface and intracellular markers for T helper (Th) subpopulations, B lymphocytes and macrophages and analyzed cytofluorimetrically, while cytokine expression and production were determined by qPCR and ELISA, respectively. Inflammation was detected in GALT of 5xFAD mice with established AD pathology. Although the production of IFN-γ, IL-4, and IL-10 was comparable between the strains, lower IL-17 production was observed in PP and MLN cells. This phenomenon could not be attributed to a lower abundance of Th17 cells, or cytokines that initiate their formation or propagation (TGF-β, IL-6, and IL-23). Also, reduced IL-17 production was not a consequence of altered Il-17 mRNA transcription or deficiency of Rorγt, a key transcription factor for IL-17. However, the expression of miR-155 (a non-coding micro RNA that promotes the development of Th17 cells), was significantly lower in MLN cells of 5xFAD mice. In contrast, mice without AD neuropathology did not have inflammation in GALT or altered Th17 numbers, nor decreased IL-17 production. In conclusion, the observed changes in GALT of 5xFAD mice mirror the disease progression and might reflect inadequate immune surveillance in the gut and lead to enhanced AD pathology.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Milica Vujičić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Stanislava Stošić-Grujičić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Milka Perović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Wang H, Wei CX, Min L, Zhu LY. Good or bad: gut bacteria in human health and diseases. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1481350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hao Wang
- Research Center of Biological Information, Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, PR China
- Department of General Design, China Astronaut Research and Training Center, Beijing, PR China
| | - Chuan-Xian Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, PR China
| | - Lu Min
- Research Center of Biological Information, Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, PR China
| | - Ling-Yun Zhu
- Research Center of Biological Information, Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, PR China
| |
Collapse
|
26
|
Neuroimmunology Research. A Report from the Cuban Network of Neuroimmunology. Behav Sci (Basel) 2018; 8:bs8050047. [PMID: 29738432 PMCID: PMC5981241 DOI: 10.3390/bs8050047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/17/2022] Open
Abstract
Neuroimmunology can be traced back to the XIX century through the descriptions of some of the disease’s models (e.g., multiple sclerosis and Guillain Barret syndrome, amongst others). The diagnostic tools are based in the cerebrospinal fluid (CSF) analysis developed by Quincke or in the development of neuroimmunotherapy with the earlier expression in Pasteur’s vaccine for rabies. Nevertheless, this field, which began to become delineated as an independent research area in the 1940s, has evolved as an innovative and integrative field at the shared edges of neurosciences, immunology, and related clinical and research areas, which are currently becoming a major concern for neuroscience and indeed for all of the scientific community linked to it. The workshop focused on several topics: (1) the molecular mechanisms of immunoregulation in health and neurological diseases, (like multiple sclerosis, autism, ataxias, epilepsy, Alzheimer and Parkinson’s disease); (2) the use of animal models for neurodegenerative diseases (ataxia, fronto-temporal dementia/amyotrophic lateral sclerosis, ataxia-telangiectasia); (3) the results of new interventional technologies in neurology, with a special interest in the implementation of surgical techniques and the management of drug-resistant temporal lobe epilepsy; (4) the use of non-invasive brain stimulation in neurodevelopmental disorders; as well as (5) the efficacy of neuroprotective molecules in neurodegenerative diseases. This paper summarizes the highlights of the symposium.
Collapse
|
27
|
Libbey JE, Sanchez JM, Doty DJ, Sim JT, Cusick MF, Cox JE, Fischer KF, Round JL, Fujinami R. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Benef Microbes 2018; 9:495-513. [PMID: 29380645 PMCID: PMC5918152 DOI: 10.3920/bm2017.0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multiple sclerosis (MS) is a metabolically demanding disease involving immune-mediated destruction of myelin in the central nervous system. We previously demonstrated a significant alteration in disease course in the experimental autoimmune encephalomyelitis (EAE) preclinical model of MS due to diet. Based on the established crosstalk between metabolism and gut microbiota, we took an unbiased sampling of microbiota, in the stool, and metabolites, in the serum and stool, from mice (Mus musculus) on the two different diets, the Teklad global soy protein-free extruded rodent diet (irradiated diet) and the Teklad sterilisable rodent diet (autoclaved diet). Within the microbiota, the genus Lactobacillus was found to be inversely correlated with EAE severity. Therapeutic treatment with Lactobacillus paracasei resulted in a significant reduction in the incidence of disease, clinical scores and the amount of weight loss in EAE mice. Within the metabolites, we identified shifts in glycolysis and the tricarboxylic acid cycle that may explain the differences in disease severity between the different diets in EAE. This work begins to elucidate the relationship between diet, microbiota and metabolism in the EAE preclinical model of MS and identifies targets for further study with the goal to more specifically probe the complex metabolic interaction at play in EAE that may have translational relevance to MS patients.
Collapse
Affiliation(s)
- J. E. Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - J. M. Sanchez
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - D. J. Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - J. T. Sim
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - M. F. Cusick
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
- Baylor College of Medicine, Division of Abdominal Transplantation, Neurosensory Center, Houston, TX 77030, USA
| | - J. E. Cox
- Department of Biochemistry and Metabolomics Core, University of Utah, 15 North Medical Drive East, A306 EEJMRB, Salt Lake City, UT 84112, USA
| | - K. F. Fischer
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
- uBiota LLC, 825 N 300 W STE: NE-200, Salt Lake City, UT 84103, USA
| | - J. L. Round
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - R.S. Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
29
|
Abstract
Central to the understanding of the relationships between diet, gut microbiota, and vitamins D and A in multiple sclerosis is low-grade inflammation, which is involved in all chronic inflammatory diseases and is influenced by each of the above effectors. We show that food components have either proinflammatory or anti-inflammatory effects and influence both the human metabolism (the "metabolome") and the composition of gut microbiota. Hypercaloric, high-animal-fat Western diets favor anabolism and change gut microbiota composition towards dysbiosis. Subsequent intestinal inflammation leads to leakage of the gut barrier, disruption of the blood-brain barrier, and neuroinflammation. Conversely, a vegetarian diet, rich in fiber, is coherent with gut eubiosis and a healthy condition. Vitamin D levels, mainly insufficient in a persistent low-grade inflammatory status, can be restored to optimal values only by administration of high amounts of cholecalciferol. At its optimal values (>30 ng/ml), vitamin D requires vitamin A for the binding to the vitamin D receptor and exert its anti-inflammatory action. Both vitamins must be supplied to the subjects lacking vitamin D. We conclude that nutrients, including the nondigestible dietary fibers, have a leading role in tackling the low-grade inflammation associated with chronic inflammatory diseases. Their action is mediated by gut microbiota and any microbial change induced by diet modifies host-microbe interactions in a consequent way, to improve the disease or worsen it.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100, Potenza, Italy.
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
30
|
DMARD use is associated with a higher risk of dementia in patients with rheumatoid arthritis: A propensity score-matched case-control study. Toxicol Appl Pharmacol 2017; 334:217-222. [PMID: 28927738 DOI: 10.1016/j.taap.2017.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patients with rheumatoid arthritis (RA) exhibit an increased risk of dementia. Disease-modifying antirheumatic drugs (DMARDs) are commonly used to slow RA progression, but studies investigating the relationship between DMARDs and dementia in patients with RA are lacking. We investigated the relationship between DMARDs and dementia in patients with RA. METHODS Using the National Health Insurance Research Database, patients aged ≥20years, who were newly diagnosed with RA between 2000 and 2011 were identified. Patients with RA who had dementia comprised the dementia group, and patients with RA who did not have dementia comprised the control group. The groups were matched at a 1:1 ratio by the propensity score. DMARDs were categorized into conventional synthetic DMARDs (csDMARDs) and biological DMARDs (bDMARDs). Logistic regression models were used to calculate the odds ratio and 95% confidence interval (CI) to evaluate the association between DMARD use and the risk of dementia in patients with RA. RESULTS A total of 957 patients with RA and dementia, and 957 patients with RA but not dementia, were enrolled. The risk of dementia was determined to be 1.63-fold higher in patients with RA with csDMARD use than in those without csDMARD use (95% CI=1.33-2.00). No significant risk of dementia was observed in patients with RA who used bDMARDs compared with their counterparts. However, patients with RA who used hydroxychloroquine, methotrexate, and sulfasalazine exhibited significant risks of dementia, irrespective of cumulative exposure days. CONCLUSION Patients with RA who used csDMARDs exhibit significant association with dementia.
Collapse
|
31
|
Mills EA, Mirza A, Mao-Draayer Y. Emerging Approaches for Validating and Managing Multiple Sclerosis Relapse. Front Neurol 2017; 8:116. [PMID: 28424654 PMCID: PMC5372802 DOI: 10.3389/fneur.2017.00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
The autoimmune disease multiple sclerosis (MS) is characterized by relapses in the majority of patients. A definitive clinical diagnosis of relapse in MS can be complicated by the presence of an infection or comorbid disorder. In this mini-review, we describe efforts to develop enhanced imaging techniques and biomarker detection as future tools for relapse validation. There is emerging evidence of roles for meningeal inflammation, sex hormones, comorbid metabolic or mood disorders, and a dysregulated immune profile in the manifestation and severity of relapse. Specific subsets of immune cells likely drive the pathophysiology of relapse, and identification of a patient's unique immunological signature of relapse may help guide future diagnosis and treatment. Finally, these studies highlight the diversity in terms of relapse presentation, immunological signature, and response in patients with MS, indicating that going forward the best approach to assessment and treatment of relapse will be multifactorial and highly personalized.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ali Mirza
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Mao-Draayer
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Breedveld FC, Kalden JR, Smolen JS. Advances in targeted therapy. Rheumatology (Oxford) 2016; 55:ii1-ii2. [PMID: 27856653 DOI: 10.1093/rheumatology/kew354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ferry C Breedveld
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josef S Smolen
- Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|