1
|
Zhou J, Guo Y, Tian Z, Lv Z, Jiang S, Zhang W. Aberrant formation of the neutrophil extracellular trap and the expression of the PLEKHA1 in systemic lupus erythematosus and ulcerative colitis. Mol Cell Biochem 2025:10.1007/s11010-025-05300-4. [PMID: 40379887 DOI: 10.1007/s11010-025-05300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/27/2025] [Indexed: 05/19/2025]
Abstract
Systemic lupus erythematosus (SLE) and ulcerative colitis (UC) are both chronic autoimmune diseases with unclear shared mechanisms, largely due to limited mechanistic studies and clinical research cohorts. Transcriptome datasets from the Gene Expression Omnibus (GEO) database were analyzed for SLE and UC, identifying differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) identified significant module genes, including PLEKHA1. The diagnostic potential of PLEKHA1 was confirmed using machine-learning algorithms and real-time fluorescence quantitative PCR (RT-PCR) in clinical samples. Additionally, the study explored the link between PLEKHA1 and neutrophil extracellular trap (NET) formation. Our analyses identified transcriptional signatures associated with neutrophil degranulation and NET formation pathways in the peripheral blood of both SLE and UC, a perspective not previously explored. PLEKHA1 was identified as a promising biomarker that may impact NET formation. Pathway enrichment analyses indicated that PLEKHA1 plays a regulatory role in NET formation in both diseases. This study provides novel transcriptional evidence by proposing neutrophil degranulation and NET formation as common pathways in SLE and UC, with PLEKHA1 acting as a shared diagnostic gene. PLEKHA1 may regulate neutrophil activation and immune response, influencing NET formation and neutrophil degranulation in SLE patients' peripheral blood.
Collapse
Affiliation(s)
- Jieyu Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yilin Guo
- Department of Blood Transfusion, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Zihan Lv
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Su Jiang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Nguyen KH, Wasielewski ML, Yalavarthi S, Qu X, Knight JS, Takayama S. A Mimetic Assay of Neutrophil Extracellular Trap Degradation Using YOYO-1-Stained DNA-Histone Surface Webs. Cells 2025; 14:615. [PMID: 40277940 PMCID: PMC12025948 DOI: 10.3390/cells14080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are not only promising biomarkers of disease, but also potential therapeutic targets. Overproduction or the improper clearance of NETs has been linked to disease severity. In vitro NET degradation assays can reveal mechanisms and degradation efficiency differences in diseased serum samples. There is a need for more convenient assays to increase the speed of NET degradation studies. This paper describes a simplified, lower variability mimetic assay with DNA-histone structures, referred to as surface webs, that performs functionally similarly to traditional NET degradation assays with increased scalability, ease of use, shorter preparation time, and lowered costs. The surface webs are created and dehydrated in a 96-well microplate that is shelf-stable, transportable, and viable for 30 days of storage at room temperature. The surface webs, compared to NETs, have similar shapes and distribution but lower intraplate variability while degrading with healthy serum and DNase I within the same timeframe. The assay can identify patient serum with reduced degradation capabilities. This assay opens new opportunities for NET-targeted drug discovery and studies on the role of NETs as modulators of disease.
Collapse
Affiliation(s)
- Katherine H. Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Midori L. Wasielewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA;
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (K.H.N.); (M.L.W.)
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Wise AD, TenBarge EG, Mendonça JDC, Mennen EC, McDaniel SR, Reber CP, Holder BE, Bunch ML, Belevska E, Marshall MG, Vaccaro NM, Blakely CR, Wellawa DH, Ferris J, Sheldon JR, Bieber JD, Johnson JG, Burcham LR, Monteith AJ. Mitochondria sense bacterial lactate and drive release of neutrophil extracellular traps. Cell Host Microbe 2025; 33:341-357.e9. [PMID: 40020664 PMCID: PMC11955204 DOI: 10.1016/j.chom.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Neutrophils induce oxidative stress, creating a harsh phagosomal environment. However, Staphylococcus aureus can survive these conditions, requiring neutrophils to deploy mechanisms that sense bacterial persistence. We find that staphylococcal lactate is a metabolic danger signal that triggers neutrophil extracellular trap release (NETosis). Neutrophils coordinate mitochondria in proximity to S. aureus-containing phagosomes, allowing transfer of staphylococcal lactate to mitochondria where it is rapidly converted into pyruvate and causes mitochondrial reactive oxygen species, a precursor to NETosis. Similar results were observed in response to phylogenetically distinct bacteria, implicating lactate accumulation as a broad signal triggering NETosis. Furthermore, patients with systemic lupus erythematosus (SLE) are more susceptible to bacterial infections. We find that SLE neutrophils cannot sense bacterial lactate impairing their capacity to undergo NETosis upon S. aureus infection but initiate aberrant NETosis triggered by apoptotic debris. Thus, neutrophils adapt mitochondria as sensory organelles that detect bacterial metabolic activity and dictate downstream antibacterial processes.
Collapse
Affiliation(s)
- Ashley D Wise
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Eden G TenBarge
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Ellie C Mennen
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Sarah R McDaniel
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Callista P Reber
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Bailey E Holder
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Madison L Bunch
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Eva Belevska
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Nicole M Vaccaro
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Dinesh H Wellawa
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jennifer Ferris
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jessica R Sheldon
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jeffry D Bieber
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lindsey R Burcham
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Andrew J Monteith
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
5
|
Henning S, Reimers T, Abdulahad W, Fierro JJ, Doornbos-van der Meer B, Bootsma H, Horvath B, de Leeuw K, Westra J. Low-density granulocytes and neutrophil extracellular trap formation are increased in incomplete systemic lupus erythematosus. Rheumatology (Oxford) 2025; 64:1234-1242. [PMID: 38775454 PMCID: PMC11879334 DOI: 10.1093/rheumatology/keae300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE To investigate the proportion of low-density granulocytes (LDGs), circulating plasma neutrophil extracellular traps (NETs) and serum-induced NET formation in patients with incomplete SLE (iSLE) and SLE. METHODS LDGs were measured cross-sectionally in 18 iSLE patients, 11 SLE patients and 14 healthy controls (HCs), whereas circulating NETs and serum-induced NET formation were assessed in 35 iSLE patients, 41 SLE patients and 16 HCs. LDGs (CD14lowCD15+) were measured in peripheral blood mononuclear cells (PBMCs) using flow cytometry, and circulating plasma NETs were measured using anti-myeloperoxidase-DNA, anti-citrullinated histone H3 and anti-elastase-DNA complex ELISAs. Serum-induced NET formation was assessed by incubating healthy neutrophils with serum from iSLE patients, SLE patients or HCs and visualizing NETs with fluorescence microscopy. RESULTS Proportions of LDGs and circulating plasma NETs were similarly elevated in iSLE and SLE patients compared with those in HCs. Furthermore, patients under HCQ treatment had lower proportions of LDGs than those without. Serum from iSLE and SLE patients similarly induced NET formation in healthy neutrophils. In iSLE patients, myeloperoxidase-DNA complexes were correlated with proportions of age-associated B-cells, memory B-cells and negatively with naïve B-cells, while we did not find associations between measures of NETs or serum-induced NET formation and interferon score or clinical parameters. CONCLUSION These results show that neutrophil dysfunction, including higher proportions of LDGs, and increased NET formation, already occur in iSLE, similar to SLE, despite differences in disease manifestations. Thereby, neutrophil dysfunction may contribute to sustained exposure to autoantigens and autoreactivity in early stages of SLE.
Collapse
Affiliation(s)
- Svenja Henning
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Tobias Reimers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wayel Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Reproduction Group, Department of Microbiology and Parasitology, University of Antioquia UdeA, Medellin, Colombia
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Barbara Horvath
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Li H, Li C, Fu C, Wang Y, Liang T, Wu H, Wu C, Wang C, Sun T, Liu S. Innovative nanoparticle-based approaches for modulating neutrophil extracellular traps in diseases: from mechanisms to therapeutics. J Nanobiotechnology 2025; 23:88. [PMID: 39915767 PMCID: PMC11800495 DOI: 10.1186/s12951-025-03195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Neutrophil extracellular traps (NETs) participate in both host defense and the pathogenesis of various diseases, such as infections, thrombosis, and tumors. While they help capture and eliminate pathogens, NETs' excessive or dysregulated formation can lead to tissue damage and disease progression. Therapeutic strategies targeting NET modulation have shown potential, but challenges remain, particularly in achieving precise drug delivery and maintaining drug stability. Nanoparticle (NP)-based drug delivery systems offer innovative solutions for overcoming the limitations of conventional therapies. This review explores the biological mechanisms of NET formation, their interactions with NPs, and the therapeutic applications of NP-based drug delivery systems for modulating NETs. We discuss how NPs can be designed to either promote or inhibit NET formation and provide a comprehensive analysis of their potential in treating NET-related diseases. Additionally, we address the current challenges and future prospects for NP-based therapies in NET research, aiming to bridge the gap between nanotechnology and NET modulation for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Can Li
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chenxi Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
7
|
van Mourik DJM, Jansen VLBI, Coppens M, Middeldorp S, Cate HT, Büller HR, Spronk HMH, Nagy M, van Mens TE. Intrinsic pathway activation in patients with antiphospholipid syndrome and healthy controls. Res Pract Thromb Haemost 2025; 9:102694. [PMID: 40093963 PMCID: PMC11909749 DOI: 10.1016/j.rpth.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Background Antiphospholipid syndrome (APS) is a thrombotic autoimmune disease. Activation of the intrinsic coagulation pathway contributes to inflammatory and cardiovascular diseases, but its role in APS is unknown. Increased release of neutrophil extracellular traps and reduced effectiveness of direct oral anticoagulants support the hypothesis of increased intrinsic pathway activation in patients with APS, which is relevant considering the ongoing development and clinical testing of intrinsic pathway inhibitors. Objectives To compare in vivo intrinsic pathway activation of patients with APS and healthy controls. Methods Patients with APS without recent thrombotic or obstetric events and healthy controls were investigated. ELISAs were used to measure activated coagulation factors in complex with the natural inhibitors antithrombin or C1-esterase inhibitor in plasma. The primary outcome of this study was factor (F)XII activation, which initiates the intrinsic pathway. Secondary outcomes included activation of downstream intrinsic coagulation FXI and FIX. Results Plasma of 73 patients with APS and 19 healthy controls showed no significant difference in activated FXII-inhibitor complexes. The concentrations of activated FXI and FIX and inhibitor complexes likewise did not differ between the groups. A subanalysis of patients with APS by anticoagulant use showed no difference for FXII and FXI activation. Conclusion Intrinsic pathway activation in patients with APS without recent thrombotic or obstetric events did not differ significantly compared with healthy controls.
Collapse
Affiliation(s)
- Dagmar J M van Mourik
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Valérie L B I Jansen
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Michiel Coppens
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hugo Ten Cate
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Harry R Büller
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Henri M H Spronk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Biochemistry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Magdolna Nagy
- Department of Biochemistry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Thijs E van Mens
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Liu L, de Leeuw K, van Goor H, Doornbos-van der Meer B, Arends S, Westra J. Neutrophil extracellular traps and oxidative stress in systemic lupus erythematosus patients with and without renal involvement. Arthritis Res Ther 2024; 26:220. [PMID: 39702549 DOI: 10.1186/s13075-024-03454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES To investigate the levels of plasma neutrophil extracellular traps (NETs) and free thiols, the latter reflecting systemic oxidative stress (OS), and to explore the relationship between NETs and OS in quiescent systemic lupus erythematosus (SLE) patients with and without renal involvement. METHODS Plasma levels of NETs and free thiols were measured cross-sectionally in 100 SLE patients with low disease activity (SLEDAI < 5), of whom 73 patients had no renal involvement (non-LN) and 27 patients had lupus nephritis (LN). Additionally, 22 healthy controls (HCs) were included. NETs were measured using a myeloperoxidase-DNA complex ELISA and free thiols were measured using a thiol assay kit. RESULTS NETs levels were significantly higher in both non-LN and LN patients compared to HCs (p < 0.001, p = 0.013), with no difference between the two patient groups (p = 0.799). Free thiol levels were not significantly different between groups. Interestingly, NETs were negatively correlated with free thiols in all 100 SLE patients (rho = -0.32) and non-LN patients (rho = -0.38), but not in LN patients. Levels of free thiols were significantly lower in subgroups of patients with estimated glomerular filtration rate (eGFR) < 60, serum creatinine (sCr) ≥ 90, C reactive protein (CRP) levels ≥ 5 and body mass index (BMI) ≥ 30. In multivariable regression, disease duration, NETs levels, and eGFR were independently associated with free thiol levels. CONCLUSIONS Levels of NETs were increased in quiescent SLE patients. Although free thiol levels did not differ among the groups. The levels of NETs and free thiols were independently associated in SLE patients, suggesting a potential role of OS in NETs formation. Therefore, reducing OS might be an additional therapeutic target for SLE treatment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
9
|
Kaan ED, Brunekreef TE, Drylewicz J, van den Hoogen LL, van der Linden M, Leavis HL, van Laar JM, van der Vlist M, Otten HG, Limper M. Association of autoantibodies with the IFN signature and NETosis in patients with systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100246. [PMID: 39027720 PMCID: PMC11254743 DOI: 10.1016/j.jtauto.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a variety of disease symptoms and an unpredictable clinical course. To improve treatment outcome, stratification based on immunological manifestations commonly seen in patients with SLE such as autoantibodies, type I interferon (IFN) signature and neutrophil extracellular trap (NET) release may help. It is assumed that there is an association between these immunological phenomena, since NET release induces IFN production and IFN induces autoantibody formation via B-cell activation. Here we studied the association between autoantibodies, the IFN signature, NET release, and clinical manifestations in patients with SLE. Methods We performed principal component analysis (PCA) and hierarchical clustering of 57 SLE-related autoantibodies in 25 patients with SLE. We correlated each autoantibody to the IFN signature and NET inducing capacity. Results We observed two distinct clusters: one cluster contained mostly patients with a high IFN signature. Patients in this cluster often present with cutaneous lupus, and have higher anti-dsDNA concentrations. Another cluster contained a mix of patients with a high and low IFN signature. Patients with high and low NET inducing capacity were equally distributed between the clusters. Variance between the clusters is mainly driven by antibodies against histones, RibP2, RibP0, EphB2, RibP1, PCNA, dsDNA, and nucleosome. In addition, we found a trend towards increased concentrations of autoantibodies against EphB2, RibP1, and RNP70 in patients with an IFN signature. We found a negative correlation of NET inducing capacity with anti-FcER (r = -0.530; p = 0.007) and anti-PmScl100 (r = -0.445; p = 0.03). Conclusion We identified a subgroup of patients with an IFN signature that express increased concentrations of antibodies against DNA and RNA-binding proteins, which can be useful for further patient stratification and a more targeted therapy. We did not find positive associations between autoantibodies and NET inducing capacity. Our study further strengthens the evidence of a correlation between RNA-binding autoantibodies and the IFN signature.
Collapse
Affiliation(s)
- Ellen D. Kaan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Tammo E. Brunekreef
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lucas L. van den Hoogen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten van der Linden
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Helen L. Leavis
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jacob M. van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michiel van der Vlist
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henny G. Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten Limper
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Malamud M, Whitehead L, McIntosh A, Colella F, Roelofs AJ, Kusakabe T, Dambuza IM, Phillips-Brookes A, Salazar F, Perez F, Shoesmith R, Zakrzewski P, Sey EA, Rodrigues C, Morvay PL, Redelinghuys P, Bedekovic T, Fernandes MJG, Almizraq R, Branch DR, Amulic B, Harvey J, Stewart D, Yuecel R, Reid DM, McConnachie A, Pickering MC, Botto M, Iliev ID, McInnes IB, De Bari C, Willment JA, Brown GD. Recognition and control of neutrophil extracellular trap formation by MICL. Nature 2024; 633:442-450. [PMID: 39143217 PMCID: PMC11390483 DOI: 10.1038/s41586-024-07820-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Regulation of neutrophil activation is critical for disease control. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA and neutrophil-derived proteins, are formed following pro-inflammatory signals; however, if this process is uncontrolled, NETs contribute to disease pathogenesis, exacerbating inflammation and host tissue damage1,2. Here we show that myeloid inhibitory C-type lectin-like (MICL), an inhibitory C-type lectin receptor, directly recognizes DNA in NETs; this interaction is vital to regulate neutrophil activation. Loss or inhibition of MICL functionality leads to uncontrolled NET formation through the ROS-PAD4 pathway and the development of an auto-inflammatory feedback loop. We show that in the context of rheumatoid arthritis, such dysregulation leads to exacerbated pathology in both mouse models and in human patients, where autoantibodies to MICL inhibit key functions of this receptor. Of note, we also detect similarly inhibitory anti-MICL autoantibodies in patients with other diseases linked to aberrant NET formation, including lupus and severe COVID-19. By contrast, dysregulation of NET release is protective during systemic infection with the fungal pathogen Aspergillus fumigatus. Together, we show that the recognition of NETs by MICL represents a fundamental autoregulatory pathway that controls neutrophil activity and NET formation.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- Aspergillus fumigatus/immunology
- Aspergillus fumigatus/pathogenicity
- Autoantibodies/immunology
- Autoantibodies/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Disease Models, Animal
- DNA/metabolism
- DNA/immunology
- Extracellular Traps/metabolism
- Extracellular Traps/immunology
- Feedback, Physiological
- Inflammation/immunology
- Inflammation/metabolism
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/deficiency
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice, Inbred C57BL
- Neutrophil Activation
- Neutrophils/immunology
- Neutrophils/metabolism
- Protein-Arginine Deiminase Type 4/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Mitogen/antagonists & inhibitors
- Receptors, Mitogen/deficiency
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
Collapse
Affiliation(s)
- Mariano Malamud
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Lauren Whitehead
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alasdair McIntosh
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Fabio Colella
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Ivy M Dambuza
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Fabián Salazar
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Federico Perez
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Romey Shoesmith
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Emily A Sey
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Petruta L Morvay
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Tina Bedekovic
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Maria J G Fernandes
- Faculty of Medicine, Department of Microbiology, Infectious Diseases, and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Ruqayyah Almizraq
- Medical Affairs and Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Donald R Branch
- Medical Affairs and Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jamie Harvey
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Diane Stewart
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Raif Yuecel
- Centre for Cytomics, University of Exeter, Exeter, UK
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex McConnachie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthew C Pickering
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marina Botto
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK.
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
12
|
Rysenga CE, May-Zhang L, Zahavi M, Knight JS, Ali RA. Taxifolin inhibits NETosis through activation of Nrf2 and provides protective effects in models of lupus and antiphospholipid syndrome. Rheumatology (Oxford) 2024; 63:2006-2015. [PMID: 37815837 DOI: 10.1093/rheumatology/kead547] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVES Taxifolin (dihydroquercetin) is a bioactive plant flavonoid that exhibits anti-inflammatory and anti-oxidative properties. We hypothesized that taxifolin might be an effective dietary supplement to ameliorate symptoms arising from thrombo-inflammatory diseases such as lupus and APS. METHODS We used in vitro assays and a mouse model to determine mechanisms by which taxifolin inhibits neutrophil extracellular trap (NET) formation (i.e. NETosis) and venous thrombosis in lupus and APS. RESULTS At doses ranging from 0.1 to 1 µg/ml, taxifolin inhibited NETosis from control neutrophils stimulated with autoantibodies isolated from lupus and APS patients, and its suppressive effects were mitigated by blocking the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Furthermore, taxifolin at a dose as low as 20 mg/kg/day reduced in vivo NETosis in thrombo-inflammatory mouse models of lupus and APS while also significantly attenuating autoantibody formation, inflammatory cytokine production and large-vein thrombosis. CONCLUSION Our study is the first to demonstrate the protective effects of taxifolin in the context of lupus and APS. Importantly, our study also suggests a therapeutic potential to neutralize neutrophil hyperactivity and NETosis that could have relevance to a variety of thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Christine E Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Miela Zahavi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Stabach PR, Sims D, Gomez-Bañuelos E, Zehentmeier S, Dammen-Brower K, Bernhisel A, Kujawski S, Lopez SG, Petri M, Goldman DW, Lester ER, Le Q, Ishaq T, Kim H, Srivastava S, Kumar D, Pereira JP, Yarema KJ, Koumpouras F, Andrade F, Braddock DT. A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models. JCI Insight 2024; 9:e177003. [PMID: 38888971 PMCID: PMC11383374 DOI: 10.1172/jci.insight.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and deficiency of DNASE1L3, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association can be found in an ultrarare population of pediatric patients with DNASE1L3 deficiency who develop SLE, adult patients with loss-of-function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies against DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1-/-Dnase1L3-/- double-knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degraded genomic and mitochondrial cell-free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.
Collapse
Affiliation(s)
- Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dominique Sims
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eduardo Gomez-Bañuelos
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kris Dammen-Brower
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Bernhisel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophia Kujawski
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sam G. Lopez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W. Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Quan Le
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tayyaba Ishaq
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hana Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shivani Srivastava
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deepika Kumar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joao P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin J. Yarema
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fotios Koumpouras
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Tambralli A, Harbaugh A, NaveenKumar SK, Radyk MD, Rysenga CE, Sabb K, Hurley JM, Sule GJ, Yalavarthi S, Estes SK, Hoy CK, Smith T, Sarosh C, Madison JA, Schaefer JK, Sood SL, Zuo Y, Sawalha AH, Lyssiotis CA, Knight JS. Neutrophil glucose flux as a therapeutic target in antiphospholipid syndrome. J Clin Invest 2024; 134:e169893. [PMID: 38869951 PMCID: PMC11290966 DOI: 10.1172/jci169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.
Collapse
Affiliation(s)
- Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | | | | | | | - Kaitlyn Sabb
- Division of Rheumatology, Department of Internal Medicine
| | | | - Gautam J. Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | - Tristin Smith
- Division of Rheumatology, Department of Internal Medicine
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jordan K. Schaefer
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suman L. Sood
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
15
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Li Y, Xu B, Zhang J, Liu X, Ganesan K, Shi G. Exploring the role of LIAS-related cuproptosis in systemic lupus erythematosus. Lupus 2023; 32:1598-1609. [PMID: 37903189 DOI: 10.1177/09612033231211429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
BACKGROUND Cuproptosis is a novel mode of cell death, which is strongly related to energy metabolism in mitochondria and regulated by protein lipoylation. Currently, the molecular mechanisms of cuproptosis-related genes (CRGs) involved in systemic lupus erythematosus (SLE) largely remained unclear, our study is aimed to explore the mechanisms of cuproptosis and CRGs involved in SLE. METHODS Bulk RNA-seq datasets were collected to display the expressions of CRGs in peripheral blood mononuclear cells (PBMCs) of SLE and healthy individuals, and then ROC analysis was used to establish the diagnostic models of CRGs. Next, the immune infiltration analyses were applied to reveal the difference of immune cells infiltration in LIAS-low and LIAS-high group. Additionally, WGCNA analysis was performed to find the gene modules significantly correlated with the LIAS expression level. We also performed the functional enrichment analyses for LIAS-related gene modules to determine the potential pathways involved in the development of SLE. Finally, scRNA-seq dataset was used to cluster immune cell subsets, reveal the activated pathways, and study cell-cell interactions in LIAS-low and LIAS-high cells. RESULT We found CDKN2A was significantly increased and LIAS was significantly decreased in SLE patients compared with healthy individuals. The AUC score showed that LIAS had a great diagnostic value than other CRGs. Additionally, the results of immune infiltration analyses showed that immune cells proportion were diverse in LIAS-low and LIAS-high samples. The gene sets related to LIAS expression level were involved in dephosphorylation of JAK1 by SHP1, phosphorylation of STAT2, cytokine signaling in immune system, expression of interferon-alpha and beta, inhibition of JAK kinase activity by SOCS1/3, and so on. Finally, the results of cell-cell communication showed that CCL- (CCL5 + CCR1) and ANNEXIN- (ANXA1 + FPR1) might play an essential role in the communication network between LIAS-low and LIAS-high cells. CONCLUSION Above findings inferred that LIAS-mediated cuproptosis might involve in a comprehensive cellular and molecular mechanism to cause the occurrence and development of SLE.
Collapse
Affiliation(s)
- Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Bojun Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Xiaoyan Liu
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| |
Collapse
|
17
|
Kubota T. An Emerging Role for Anti-DNA Antibodies in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:16499. [PMID: 38003689 PMCID: PMC10671047 DOI: 10.3390/ijms242216499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Anti-DNA antibodies are hallmark autoantibodies produced in systemic lupus erythematosus (SLE), but their pathogenetic role is not fully understood. Accumulating evidence suggests that some anti-DNA antibodies enter different types of live cells and affect the pathophysiology of SLE by stimulating or impairing these cells. Circulating neutrophils in SLE are activated by a type I interferon or other stimuli and are primed to release neutrophil extracellular traps (NETs) on additional stimulation. Anti-DNA antibodies are also involved in this process and may induce NET release. Thereafter, they bind and protect extracellular DNA in the NETs from digestion by nucleases, resulting in increased NET immunogenicity. This review discusses the pathogenetic role of anti-DNA antibodies in SLE, mainly focusing on recent progress in the two research fields concerning antibody penetration into live cells and NETosis.
Collapse
Affiliation(s)
- Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Tsuchiura 300-0051, Ibaraki, Japan
| |
Collapse
|
18
|
Ali RA, Minarchick VC, Zahavi M, Rysenga CE, Sturm KA, Hoy CK, Sarosh C, Knight JS, Demoruelle MK. Ginger intake suppresses neutrophil extracellular trap formation in autoimmune mice and healthy humans. JCI Insight 2023; 8:e172011. [PMID: 37737262 PMCID: PMC10561719 DOI: 10.1172/jci.insight.172011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
We previously reported that treatment of mice with 6-gingerol, the most abundant phytochemical in ginger root, leads to phosphodiesterase inhibition that counteracts neutrophil hyperactivity in models of antiphospholipid syndrome (APS) and lupus. Here, we explored the extent to which oral intake of a whole-ginger extract would similarly impact neutrophils in both autoimmune mice and healthy humans. In vitro, a solubilized ginger extract was able to attenuate neutrophil extracellular trap formation (NETosis) by human neutrophils through a mechanism that was dependent upon the cyclic AMP-dependent kinase, protein kinase A. When mice with features of either APS or lupus were administered a ginger extract orally, they demonstrated reduced circulating NETs, as well as the tempering of other disease outcomes, such as large-vein thrombosis (APS) and autoantibody production (lupus). In a pilot clinical trial, which was validated in a second cohort, daily intake of a ginger supplement for 7 days by healthy volunteers boosted neutrophil cAMP, inhibited NETosis in response to disease-relevant stimuli, and reduced circulating plasma NET levels. In summary, this work demonstrates that ginger intake restrains neutrophil hyperactivity in autoimmune mouse models and that ginger consumption by healthy individuals makes their neutrophils more resistant to NETosis.
Collapse
Affiliation(s)
- Ramadan A. Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie C. Minarchick
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Miela Zahavi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine E. Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristin A. Sturm
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
19
|
Reshetnyak T, Nurbaeva K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:13581. [PMID: 37686381 PMCID: PMC10487763 DOI: 10.3390/ijms241713581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown aetiology [...].
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- Department of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | | |
Collapse
|
20
|
Metzemaekers M, Malengier-Devlies B, Gouwy M, De Somer L, Cunha FDQ, Opdenakker G, Proost P. Fast and furious: The neutrophil and its armamentarium in health and disease. Med Res Rev 2023; 43:1537-1606. [PMID: 37036061 DOI: 10.1002/med.21958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Division of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at the University Hospital Leuven, Leuven, Belgium
| | | | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
22
|
Torell A, Stockfelt M, Larsson G, Blennow K, Zetterberg H, Leonard D, Rönnblom L, Saleh M, Sjöwall C, Strevens H, Jönsen A, Bengtsson AA, Trysberg E, Sennström MM, Zickert A, Svenungsson E, Gunnarsson I, Christenson K, Bylund J, Jacobsson B, Rudin A, Lundell AC. Low-density granulocytes are related to shorter pregnancy duration but not to interferon alpha protein blood levels in systemic lupus erythematosus. Arthritis Res Ther 2023; 25:107. [PMID: 37349744 PMCID: PMC10286457 DOI: 10.1186/s13075-023-03092-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND An increased risk of pregnancy complications is seen in women with systemic lupus erythematosus (SLE), but the specific immunopathological drivers are still unclear. Hallmarks of SLE are granulocyte activation, type I interferon (IFN) overproduction, and autoantibodies. Here we examined whether low-density granulocytes (LDG) and granulocyte activation increase during pregnancy, and related the results to IFNα protein levels, autoantibody profile, and gestational age at birth. METHODS Repeated blood samples were collected during pregnancy in trimesters one, two, and three from 69 women with SLE and 27 healthy pregnant women (HC). Nineteen of the SLE women were also sampled late postpartum. LDG proportions and granulocyte activation (CD62L shedding) were measured by flow cytometry. Plasma IFNα protein concentrations were quantified by single molecule array (Simoa) immune assay. Clinical data were obtained from medical records. RESULTS Women with SLE had higher LDG proportions and increased IFNα protein levels compared to HC throughout pregnancy, but neither LDG fractions nor IFNα levels differed during pregnancy compared to postpartum in SLE. Granulocyte activation status was higher in SLE relative to HC pregnancies, and it was increased during pregnancy compared to after pregnancy in SLE. Higher LDG proportions in SLE were associated with antiphospholipid positivity but not to IFNα protein levels. Finally, higher LDG proportions in trimester three correlated independently with lower gestational age at birth in SLE. CONCLUSION Our results suggest that SLE pregnancy results in increased peripheral granulocyte priming, and that higher LDG proportions late in pregnancy are related to shorter pregnancy duration but not to IFNα blood levels in SLE.
Collapse
Affiliation(s)
- Agnes Torell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 405 30, Sweden.
| | - Marit Stockfelt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 405 30, Sweden
- Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gunilla Larsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 405 30, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Winsconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Muna Saleh
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helena Strevens
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Estelle Trysberg
- Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Majcuk Sennström
- Department of Womens and Childrens Health, Division for Obstetrics and Gynecology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Agneta Zickert
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 405 30, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 405 30, Sweden
| |
Collapse
|
23
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
24
|
Reshetnyak T, Nurbaeva K, Ptashnik I, Kudriaeva A, Belogurov A, Lila A, Nasonov E. Markers of NETosis in Patients with Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:ijms24119210. [PMID: 37298160 DOI: 10.3390/ijms24119210] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Neutrophil Extracellular Traps (NETs) have been implicated in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) pathogenesis. The myeloperoxidase-deoxyribonucleic acid (MPO-DNA) complex and nucleosomes are serum markers of NETosis. The aim of this study was to assess these NETosis parameters as markers for SLE and APS diagnosis and their association with clinical features and disease activity. A total of 138 people were included in the cross-sectional study: 30 with SLE without APS, 47 with SLE and APS, 41 patients with primary antiphospholipid syndrome (PAPS), and 20 seemingly healthy individuals. Serum MPO-DNA complex and nucleosome levels were determined via an enzyme-linked immunosorbent assay (ELISA). Informed consent was obtained from all subjects involved in the study. The Ethics Committee of the V.A. Nasonova Research Institute of Rheumatology (Protocol No. 25 dated 23 December 2021) approved the study. In patients with SLE without APS, the levels of the MPO-DNA complex were significantly higher compared to patients with SLE with APS, with PAPS, and healthy controls (p < 0.0001). Among patients with a reliable diagnosis of SLE, 30 had positive values of the MPO-DNA complex, of whom 18 had SLE without APS, and 12 had SLE with APS. Patients with SLE and positive MPO-DNA complex levels were significantly more likely to have high SLE activity (χ2 = 5.25, p = 0.037), lupus glomerulonephritis (χ2 = 6.82, p = 0.009), positive antibodies to dsDNA (χ2 = 4.82, p = 0.036), and hypocomplementemia (χ2 = 6.72, p = 0.01). Elevated MPO-DNA levels were observed in 22 patients with APS: 12 with SLE with APS and 10 with PAPS. There were no significant associations between positive levels of the MPO-DNA complex and clinical and laboratory manifestations of APS. The concentration of nucleosomes was significantly lower in the group of SLE patients (±APS) compared to controls and PAPS (p < 0.0001). In SLE patients, the frequency of low nucleosome levels was associated with high SLE activity (χ2 = 13.4, p < 0.0001), lupus nephritis (χ2 = 4.1, p = 0.043), and arthritis (χ2 = 3.89, p = 0.048). An increase in the specific marker of NETosis, the MPO-DNA complex, was found in the blood serum of SLE patients without APS. Elevated levels of the MPO-DNA complex can be regarded as a promising biomarker of lupus nephritis, disease activity, and immunological disorders in SLE patients. Lower levels of nucleosomes were significantly associated with SLE (±APS). Low nucleosome levels were more common in patients with high SLE activity, lupus nephritis, and arthritis.
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
- Department of Rheumatology, The Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Kamila Nurbaeva
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
- Department of Rheumatology, The Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Ivan Ptashnik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Aleksandr Lila
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
- Department of Rheumatology, The Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Evgeny Nasonov
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
| |
Collapse
|
25
|
Muñoz-Callejas A, González-Sánchez E, Silván J, San Antonio E, González-Tajuelo R, Ramos-Manzano A, Sánchez-Abad I, González-Alvaro I, García-Pérez J, Tomero EG, de Vicuña RG, Vicente-Rabaneda EF, Castañeda S, Urzainqui A. Low P-Selectin Glycoprotein Ligand-1 Expression in Neutrophils Associates with Disease Activity and Deregulated NET Formation in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24076144. [PMID: 37047117 PMCID: PMC10093849 DOI: 10.3390/ijms24076144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by the generation of anti-DNA autoantibodies due to exposure of immune cells to excessive amounts of extracellular DNA. Lack of P-selectin in mice induces the development of a lupus-like syndrome and patients with cutaneous lupus have reduced P-selectin expression in skin vessels. Using flow cytometry we analyzed in healthy donors and patients the expression of P-selectin Glycoprotein Ligand-1 (PSGL-1) in circulating neutrophils and the implication of PSGL-1/P-selectin interaction in neutrophil extracellular traps (NETs) generation. We found a statistical significance that neutrophils from active SLE patients have a reduced expression of PSGL-1 and low levels of PSGL-1 in neutrophils from SLE patients associated with the presence of anti-dsDNA antibodies, clinical lung involvement, Raynaud's phenomenon, and positive lupus anticoagulant. PSGL-1 is present along the DNA in the NET. In healthy donors, neutrophil interaction with immobilized P-selectin triggers Syk activation, increases the NETs percentage and reduces the amount of DNA extruded in the NETs. In active SLE patients, neutrophil interaction with P-selectin does not activate Syk or reduce the amount of DNA extruded in the NETs, that might contribute to increase the extracellular level of DNA and hence, to disease pathogenesis.
Collapse
Affiliation(s)
- Antonio Muñoz-Callejas
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Esther San Antonio
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Rafael González-Tajuelo
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Alejandra Ramos-Manzano
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Inés Sánchez-Abad
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Isidoro González-Alvaro
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Javier García-Pérez
- Pulmonology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Eva G Tomero
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Rosario García de Vicuña
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Esther F Vicente-Rabaneda
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Santos Castañeda
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
- Catedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| |
Collapse
|
26
|
Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol 2023; 116:109843. [PMID: 36764274 DOI: 10.1016/j.intimp.2023.109843] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Numerous studies suggest that neutrophils might have a crucial role in the pathogenesis of systemic autoimmune diseases through neutrophil extracellular trap (NET) formation, production of pro-inflammatory cytokines, and organ destruction. NET components that are released into extracellular spaces can be considered autoantigens, which contribute to causing a break in self-tolerance. Subsequently, this leads to the development of autoimmune responses in predisposed individuals. Additionally, an imbalance between NET formation and NET degradation may prolong immune system contact with these modified autoantigens and enhance NET-induced tissue damage. In this review, we discuss the generation and clearance of the NET, as well as the role of NETosis in the pathogenesis of autoimmune disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), multiple sclerosis (MS), psoriasis, antiphospholipid syndrome (APS), and Type-1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Targeting thromboinflammation in antiphospholipid syndrome. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2022; 21:744-757. [PMID: 36696191 DOI: 10.1016/j.jtha.2022.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases.
Collapse
|
28
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
29
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
30
|
Xu Y, Li P, Li K, Li N, Liu H, Zhang X, Liu W, Liu Y. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. J Autoimmun 2022; 132:102890. [PMID: 35963809 DOI: 10.1016/j.jaut.2022.102890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a profound immune dysregulation and the presence of a variety of autoantibodies. Aberrant activation of programmed cell death (PCD) signaling and accelerated cell death is critical in the immunopathogenesis of SLE. Accumulating cellular components from the dead cells and ineffective clearance of the dead cell debris, in particular the nucleic acids and nucleic acids-protein complexes, provide a stable source of self-antigens, which potently activate auto-reactive B cells and promote IFN-I responses in SLE. Different cell types display distinct susceptibility and characteristics to a certain type of cell death, while different PCDs in various cells have mutual and intricate connections to promote immune dysregulation and contribute to the development of SLE. In this review, we discuss the role of various cell death pathways and their interactions in the pathogenesis of SLE. An in depth understanding of the interconnections among various forms cell death in SLE will lead to a better understanding of disease pathogenesis, shedding light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huazhen Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
31
|
Taeschler P, Cervia C, Zurbuchen Y, Hasler S, Pou C, Tan Z, Adamo S, Raeber ME, Bächli E, Rudiger A, Stüssi‐Helbling M, Huber LC, Brodin P, Nilsson J, Probst‐Müller E, Boyman O. Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy 2022; 77:2415-2430. [PMID: 35364615 PMCID: PMC9111424 DOI: 10.1111/all.15302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Several autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. In this study, we longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. METHODS We performed highly sensitive indirect immunofluorescence assays to detect antinuclear antibodies (ANA) and antineutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed up to 1 year after infection, eleven vaccinated individuals, and 41 unexposed controls. RESULTS Compared with healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, the paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA-negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B-cell compartment after recovery. CONCLUSION Highly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased antiviral humoral immune responses and inflammatory immune signatures.
Collapse
Affiliation(s)
| | - Carlo Cervia
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Yves Zurbuchen
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Sara Hasler
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Christian Pou
- Science for Life LaboratoryDepartment of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Ziyang Tan
- Science for Life LaboratoryDepartment of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Sarah Adamo
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Miro E. Raeber
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Esther Bächli
- Clinic for Internal MedicineHirslanden Klinik St. AnnaLucerneSwitzerland
| | - Alain Rudiger
- Department of MedicineLimmattal HospitalSchlierenSwitzerland
| | | | - Lars C. Huber
- Clinic for Internal MedicineCity Hospital Triemli ZurichZurichSwitzerland
| | - Petter Brodin
- Science for Life LaboratoryDepartment of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Pediatric RheumatologyKarolinska University HospitalSolnaSweden
- Department of Immunology and InflammationImperial College LondonLondonUK
| | - Jakob Nilsson
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | | | - Onur Boyman
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
| |
Collapse
|
32
|
Zhou Y, Xu Z, Liu Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front Cell Infect Microbiol 2022; 12:910908. [PMID: 35711663 PMCID: PMC9195303 DOI: 10.3389/fcimb.2022.910908] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombotic diseases seriously endanger human health, neutrophils and neutrophil extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs are extracellular structures released by neutrophils upon stimulation by pathogens. NETs include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active substances. The network structure provided by NETs can prevent the spread of pathogens and effectively kill and eliminate pathogens. However, the components of NETs can also abnormally activate the coagulation pathway and participate in the formation of pathological thrombi. This review aims to summarize the mechanisms of NETs formation in detail; the research progress of NETs in venous thrombosis, arterial thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as well as the strategies to target NETs in thrombosis prevention and treatment.
Collapse
Affiliation(s)
| | - Zhendong Xu
- *Correspondence: Zhiqiang Liu, ; Zhendong Xu,
| | | |
Collapse
|
33
|
Zhao J, You X, Zeng X. Research progress of BK virus and systemic lupus erythematosus. Lupus 2022; 31:522-531. [PMID: 35264023 DOI: 10.1177/09612033221084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients are often infected by viruses due to deficient immunity or immunosuppressant use. BK virus (BKV)mainly affects the kidney and can also cause multiple organ involvement throughout the body, which is similar to SLE. BKV is mostly a latent infection in vivo. The incidence of virus reactivation is higher in SLE patients. Reactivation of BKV can induce the production of autoantibodies, thereby promoting the occurrence and development of SLE.Purpose: Aim of this article is to review the prevalence and pathegenesis of BKV infection in SLE patients.Method: The literature search was conducted using four different databases including PubMed, Cochrane Library, Scopus and Web of Science.Results: BK virus is higher infection and reactivation in SLE patients. The "hapten carrier" mechanism may lead to the production of autoantibodies. Some immunosuppressive drugs, like leflumide and hydroxychloroquine, may show a protective effect.Conclusions: BKV infection plays a role in the occurrence and development of SLE, and its significance deserves further exploration.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Torres-Ruiz J, Carrillo-Vázquez DA, Leal-Alanis A, Zentella-Dehesa A, Tapia-Rodríguez M, Maravillas-Montero JL, Nuñez-Álvarez CA, Carazo-Vargas ER, Romero-Hernández I, Juárez-Vega G, Alcocer-Varela J, Gómez-Martín D. Low-Density Granulocytes and Neutrophil Extracellular Traps as Biomarkers of Disease Activity in Adult Inflammatory Myopathies. J Clin Rheumatol 2022; 28:e480-e487. [PMID: 34643846 DOI: 10.1097/rhu.0000000000001772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Biomarkers for disease activity and damage accrual in idiopathic inflammatory myopathies (IIMs) are currently lacking. The purpose of this cross-sectional study is to analyze the relationship among low-density granulocytes (LDGs), neutrophil extracellular traps (NETs), and clinical and immunological features of patients with IIM. METHODS We assessed disease activity, damage accrual, amount of LDGs, NETs, expression of LL-37, and serum cytokines in 65 adult patients with IIM. Differences between groups and correlations were assessed by Kruskal-Wallis, Mann-Whitney U, and Spearman ρ tests. The association between LDGs, NETs, disease activity, calcinosis, and cutaneous ulcers was assessed by logistic regression. To address the capacity of LDGs and NETs to diagnose disease activity, we used receiving operating characteristic curves. RESULTS Low-density granulocytes were higher in patients with active disease, ulcers, calcinosis, and anti-MDA5 antibodies, which correlated with serum levels of IL-17A and IL-18. Neutrophil extracellular traps were higher in patients with calcinosis, elevated titers of antinuclear antibodies, and positive anti-PM/Scl75 tests. The combination of a high proportion of both total LDGs and NETs was associated with the presence of calcinosis and cutaneous ulcers. LL-37 was higher in NETs originating from LDGs. Normal-density neutrophils were elevated in patients with active dermatomyositis. CONCLUSIONS Low-density granulocytes and NETs containing LL-37 are increased in patients with IIM and active disease, and correlate with proinflammatory cytokines. Both total and CD10+ LDGs are potential biomarkers for disease activity and, in combination with NETs, have the potential to detect patients who are at risk for cutaneous ulcers and calcinosis.
Collapse
Affiliation(s)
| | | | - Araceli Leal-Alanis
- Internal Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran
| | | | - Miguel Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico
| | | | | | | | | | - Guillermo Juárez-Vega
- Flow Cytometry Unit, Red de Apoyo a la Investigación, Coordinacion de Investigación Cientifica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | |
Collapse
|
35
|
Duan Z, Xie T, Chu C, Chen F, Wang X, Li J, Ding W. De-escalation antibiotic therapy alleviates organ injury through modulation of NETs formation during sepsis. Cell Death Discov 2021; 7:345. [PMID: 34759282 PMCID: PMC8580974 DOI: 10.1038/s41420-021-00745-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Empiric broad-spectrum antimicrobials therapy is suggested to be started immediately for sepsis patients. Empiric antimicrobial therapy should be narrowed once pathogen identification and sensitivities are established. However, the detailed mechanisms of de-escalation strategy are still unclear. Here we hypothesized neutrophil extracellular traps (NETs) played an essential role and de-escalation strategy might alleviate organs injury through regulation of NETs formation in sepsis. We evaluated the effect of imipenem and ceftriaxone on NETs formation in vitro and examined the role of reactive oxygen species (ROS). Next, we designed de-escalation and escalation strategy in cecum ligation and puncture (CLP) models. Organ injury, inflammatory cytokines, NETs levels were compared and evaluated. In CLP models, de-escalation therapy resulted in an increased serum MPO-DNA level during the early stage and decreased MPO-DNA level during late stage, which exerted the reverse effects in escalation therapy. Inflammatory response and organ injury exacerbated when eliminated NETs with DNAse I during the early stage of sepsis (p < 0.01). Histopathological analysis showed decreased injury in lung, liver, and intestine in de-escalation therapy compared with escalation therapy (p < 0.01). De-escalation therapy results in the highest 6-day survival rate compared with the control group (p < 0.01), however, no significant difference was found between de-escalation and escalation group (p = 0.051). The in vitro study showed that the imipenem could promote, while the ceftriaxone could inhibit the formation of NETs in PMA-activated PMNs through a ROS-dependent manner. We firstly demonstrate that de-escalation, not escalation, therapy reduces organ injury, decreases inflammatory response by promoting NETs formation in the early stage, and inhibiting NETs formation in the late stage of sepsis.
Collapse
Affiliation(s)
- Zehua Duan
- Division of Trauma and Surgical Intensive Care Unit, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Tian Xie
- Department of Hepatobiliary and Pancreatic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518000, Guangdong Province, PR China
| | - Chengnan Chu
- Division of Trauma and Surgical Intensive Care Unit, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, 210002, Jiangsu Province, PR China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Jieshou Li
- Division of Trauma and Surgical Intensive Care Unit, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China.
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China.
- Division of Trauma and Surgical Intensive Care Unit, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
36
|
Patiño-Trives AM, Pérez-Sánchez C, Pérez-Sánchez L, Luque-Tévar M, Ábalos-Aguilera MC, Alcaide-Ruggiero L, Arias-de la Rosa I, Román-Rodríguez C, Seguí P, Espinosa M, Font P, Barbarroja N, Escudero-Contreras A, Antonio González-Reyes J, Manuel Villalba J, Collantes-Estévez E, Aguirre-Zamorano MÁ, López-Pedrera C. Anti-dsDNA Antibodies Increase the Cardiovascular Risk in Systemic Lupus Erythematosus Promoting a Distinctive Immune and Vascular Activation. Arterioscler Thromb Vasc Biol 2021; 41:2417-2430. [PMID: 34320837 DOI: 10.1161/atvbaha.121.315928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Systemic lupus erythematosus (SLE) is associated to boosted atherosclerosis development and a higher cardiovascular disease risk. This study aimed to delineate the role of anti-double stranded DNA (anti-dsDNA) antibodies on the molecular profile and the activity of immune and vascular cells, as well as on their enhanced cardiovascular risk. Approach and Results Eighty SLE patients were included. Extensive clinical/analytical evaluation was performed, including cardiovascular disease parameters (endothelial function, proatherogenic dyslipidemia, and carotid intima-media thickness). Gene and protein expression profiles were evaluated in monocytes from patients diagnosed positive or negative for anti-dsDNA antibodies by using NanoString and cytokine arrays, respectively. NETosis and circulating inflammatory profile was assessed in both neutrophils and plasma. Positivity and persistence of anti-dsDNA antibodies in SLE patients were associated to endothelial dysfunction, proatherogenic dyslipidemia, and accelerated atherosclerosis. In parallel, anti-dsDNA antibodies were linked to the aberrant activation of innate immune cells, so that anti-dsDNA(+) SLE monocytes showed distinctive gene and protein expression/activity profiles, and neutrophils were more prone to suffer NETosis in comparison with anti-dsDNA(−) patients. Anti-dsDNA(+) patients further displayed altered levels of numerous circulating mediators related to inflammation, NETosis, and cardiovascular risk. In vitro, Ig-dsDNA promoted NETosis on neutrophils, apoptosis on monocytes, modulated the expression of inflammation and thrombosis-related molecules, and induced endothelial activation, at least partially, by FcR (Fc receptor)-binding mechanisms. Conclusions Anti-dsDNA antibodies increase the cardiovascular risk of SLE patients by altering key molecular processes that drive a distinctive and coordinated immune and vascular activation, representing a potential tool in the management of this comorbidity.
Collapse
Affiliation(s)
- Alejandra María Patiño-Trives
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain.,Deparment of Cell Biology, Immunology and Physiology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Spain (C.P.-S., J.A.G.-R., J.M.V.)
| | - Laura Pérez-Sánchez
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - María Luque-Tévar
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - M Carmen Ábalos-Aguilera
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Lourdes Alcaide-Ruggiero
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Iván Arias-de la Rosa
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Cristóbal Román-Rodríguez
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Pedro Seguí
- Radiology Service (P.S.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Mario Espinosa
- Nephrology Service (M.E.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Pilar Font
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - José Antonio González-Reyes
- Deparment of Cell Biology, Immunology and Physiology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Spain (C.P.-S., J.A.G.-R., J.M.V.)
| | - José Manuel Villalba
- Deparment of Cell Biology, Immunology and Physiology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Spain (C.P.-S., J.A.G.-R., J.M.V.)
| | - Eduardo Collantes-Estévez
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - M Ángeles Aguirre-Zamorano
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Chary López-Pedrera
- Rheumatology Service (A.M.P.-T., C.P.-S., L.P.-S., M.L.-T., M.C.A.-A., L.A.-R., I.A.-d.l.R., C.R.-R., P.F., N.B., A.E.-C., E.C.-E., M.Á.A.-Z., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| |
Collapse
|
37
|
Sahu S, Sharma K, Sharma M, Narang T, Dogra S, Minz RW, Chhabra S. Neutrophil NETworking in ENL: Potential as a Putative Biomarker: Future Insights. Front Med (Lausanne) 2021; 8:697804. [PMID: 34336901 PMCID: PMC8316588 DOI: 10.3389/fmed.2021.697804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Erythema nodosum leprosum (ENL), also known as type 2 reaction (T2R) is an immune complex mediated (type III hypersensitivity) reactional state encountered in patients with borderline lepromatous and lepromatous leprosy (BL and LL) either before, during, or after the institution of anti-leprosy treatment (ALT). The consequences of ENL may be serious, leading to permanent nerve damage and deformities, constituting a major cause of leprosy-related morbidity. The incidence of ENL is increasing with the increasing number of multibacillary cases. Although the diagnosis of ENL is not difficult to make for physicians involved in the care of leprosy patients, its management continues to be a most challenging aspect of the leprosy eradication program: the chronic and recurrent painful skin lesions, neuritis, and organ involvement necessitates prolonged treatment with prednisolone, thalidomide, and anti-inflammatory and immunosuppressive drugs, which further adds to the existing morbidity. In addition, the use of immunosuppressants like methotrexate, azathioprine, cyclosporine, or biologics carries a risk of reactivation of persisters (Mycobacterium leprae), apart from their own end-organ toxicities. Most ENL therapeutic guidelines are primarily designed for acute episodes and there is scarcity of literature on management of patients with chronic and recurrent ENL. It is difficult to predict which patients will develop chronic or recurrent ENL and plan the treatment accordingly. We need simple point-of-care or ELISA-based tests from blood or skin biopsy samples, which can help us in identifying patients who are likely to require prolonged treatment and also inform us about the prognosis of reactions so that appropriate therapy may be started and continued for better ENL control in such patients. There is a significant unmet need for research for better understanding the immunopathogenesis of, and biomarkers for, ENL to improve clinical stratification and therapeutics. In this review we will discuss the potential of neutrophils (polymorphonuclear granulocytes) as putative diagnostic and prognostic biomarkers by virtue of their universal abundance in human blood, functional versatility, phenotypic heterogeneity, metabolic plasticity, differential hierarchical cytoplasmic granule mobilization, and their ability to form NETs (neutrophil extracellular traps). We will touch upon the various aspects of neutrophil biology relevant to ENL pathophysiology in a step-wise manner. We also hypothesize about an element of metabolic reprogramming of neutrophils by M. leprae that could be investigated and exploited for biomarker discovery. In the end, a potential role for neutrophil derived exosomes as a novel biomarker for ENL will also be explored.
Collapse
Affiliation(s)
- Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head and Neck Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
38
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
39
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
40
|
Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, Kambas K, Hahn J, Braster Q, Soehnlein O, Hoffmann MH, Es HHGV, Raats JMH. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol 2021; 18:1528-1544. [PMID: 32203195 PMCID: PMC8166830 DOI: 10.1038/s41423-020-0381-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.
Collapse
Affiliation(s)
- Renato G S Chirivi
- ModiQuest B.V., Oss, The Netherlands.
- Citryll B.V., Oss, The Netherlands.
| | | | | | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | - Galina Bogatkevich
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupoli, Greece
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
41
|
Mauracher LM, Krall M, Roiß J, Hell L, Koder S, Hofbauer TM, Gebhart J, Hayden H, Brostjan C, Ay C, Pabinger I. Neutrophil subpopulations and their activation potential in patients with antiphospholipid syndrome and healthy individuals. Rheumatology (Oxford) 2021; 60:1687-1699. [PMID: 33026085 PMCID: PMC8024003 DOI: 10.1093/rheumatology/keaa532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Patients with APS are at increased risk of thromboembolism. Neutrophils have been shown to play a role in inducing thrombosis. We aimed to investigate differences in neutrophil subpopulations, their potential of activation and neutrophil extracellular trap (NET) formation comparing high and low-density neutrophils (HDNs/LDNs) as well as subpopulations in patients with APS and controls to gain deeper insight into their potential role in thrombotic manifestations in patients with APS. METHODS HDNs and LDNs of 20 patients with APS and 20 healthy donors were isolated by density gradient centrifugation and stimulated. Neutrophil subpopulations, their activation and NET release were assessed by flow cytometry. RESULTS LDNs of both groups showed higher baseline activation, lower response to stimulation (regulation of activation markers CD11b/CD66b), but higher NET formation compared with HDNs. In patients with APS, the absolute number of LDNs was higher compared with controls. HDNs of APS patients showed higher spontaneous activation [%CD11b high: median (interquartile range): 2.78% (0.58-10.24) vs 0.56% (0.19-1.37)] and response to stimulation with ionomycin compared with HDNs of healthy donors [%CD11b high: 98.20 (61.08-99.13) vs 35.50% (13.50-93.85)], whereas no difference was found in LDNs. NET formation was increased in patients' HDNs upon stimulation. CONCLUSION HDNs and LDNs act differently, unstimulated and upon various stimulations in both healthy controls and APS patients. Differences in HDNs and LDNs between patients with APS and healthy controls indicate that neutrophils may enhance the risk of thrombosis in these patients and could thus be a target for prevention of thrombosis in APS.
Collapse
Affiliation(s)
- Lisa-Marie Mauracher
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Moritz Krall
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Johanna Roiß
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Lena Hell
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Silvia Koder
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Thomas M Hofbauer
- Division of Cardiology, Department of Internal Medicine II, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Hubert Hayden
- Department of Surgery, Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Vienna, Austria
| |
Collapse
|
42
|
Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, Pandian D, Gudjonsson JE, Kahlenberg JM, O'Riordan MX, Knight JS. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. J Clin Invest 2021; 131:137866. [PMID: 33561013 DOI: 10.1172/jci137866] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex-stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex-mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.
Collapse
Affiliation(s)
- Gautam Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | - Paul A Steffes
- Division of Rheumatology, Department of Internal Medicine
| | | | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine
| |
Collapse
|
43
|
Cecchi I, Radin M, Rodríguez-Carrio J, Tambralli A, Knight JS, Sciascia S. Utilizing type I interferon expression in the identification of antiphospholipid syndrome subsets. Expert Rev Clin Immunol 2021; 17:395-406. [PMID: 33686921 PMCID: PMC10183148 DOI: 10.1080/1744666x.2021.1901581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Antiphospholipid Syndrome (APS) is a systemic autoimmune disease with a complex multifactorial pathogenesis, combining genetic background, traditional cardiovascular risk factors, disease-specific features such as the presence of antiphospholipid antibodies (aPL), and an imbalance of various immune system functions. Recent data support the role of interferons (IFNs), especially type IIFN (IFN-I), in the onset and development of APS clinical manifestations, including thrombotic events and obstetric complications. AREAS COVERED In this review, the authors aimed to discuss the growing body of evidence on the relevance of IFN-I pathways in APS, both from a basic mechanistic perspective, focusing on its possible use in disease/patients stratification. The IFN-I signature has shown promising, although preliminary, results in segregating aPL-positive subjects by aPL profile, association with other autoimmune conditions, such as lupus, age at onset, and current treatment, among others. EXPERT OPINION To date, the scarce available data as well as methodological and technical heterogeneity among studies limit the comparability of the results, thus requiring further validation to translate these findings to routine clinical practice. Therefore, further research is required in pursuit of more nuanced patient profiling and the development of new immunomodulatory therapeutic strategies for APS beyond anti-coagulant and antiplatelet agents.
Collapse
Affiliation(s)
- Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto De Investigación Sanitaria Del Principado De Asturias (ISPA), Oviedo, Spain
| | - Ajay Tambralli
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| |
Collapse
|
44
|
Ali RA, Gandhi AA, Dai L, Weiner J, Estes SK, Yalavarthi S, Gockman K, Sun D, Knight JS. Antineutrophil properties of natural gingerols in models of lupus. JCI Insight 2021; 6:138385. [PMID: 33373329 PMCID: PMC7934838 DOI: 10.1172/jci.insight.138385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Ginger is known to have antiinflammatory and antioxidative effects and has traditionally been used as an herbal supplement in the treatment of various chronic diseases. Here, we report antineutrophil properties of 6-gingerol, the most abundant bioactive compound of ginger root, in models of lupus and antiphospholipid syndrome (APS). Specifically, we demonstrate that 6-gingerol attenuates neutrophil extracellular trap (NET) release in response to lupus- and APS-relevant stimuli through a mechanism that is at least partially dependent on inhibition of phosphodiesterases. At the same time, administration of 6-gingerol to mice reduces NET release in various models of lupus and APS, while also improving other disease-relevant endpoints, such as autoantibody formation and large-vein thrombosis. In summary, this study is the first to our knowledge to demonstrate a protective role for ginger-derived compounds in the context of lupus. Importantly, it provides a potential mechanism for these effects via phosphodiesterase inhibition and attenuation of neutrophil hyperactivity.
Collapse
Affiliation(s)
- Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Weiner
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Abstract
Neutrophils are recruited rapidly to sites of infection in response to host- and/or microbe-derived proinflammatory molecules. At such sites, neutrophils phagocytose microbes and are activated to produce superoxide and other reactive oxygen species (ROS). In addition, neutrophils contain stores of antimicrobial peptides and enzymes that work in concert with ROS to kill ingested microbes. Neutrophils can also release chromosomal DNA bound with antimicrobial peptides and enzymes to form web-like structures known as extracellular traps. Neutrophil extracellular traps (NETs) have been reported to ensnare and kill microbes and are commonly considered to be an important component of innate host defense. Notably, the formation of NETs is most often reported as a cytolytic process. Whereas intraphagosomal killing of microbes sequesters cytotoxic antimicrobial molecules that would otherwise damage host tissues, the formation of NETs and associated extracellular release of these molecules can contribute to host tissue destruction and disease. Here we compare and contrast phagocytosis and NETs in host defense, with emphasis on recent studies of NETs that ultimately underscore the importance of phagocytosis as the primary means by which neutrophils eliminate microbes.
Collapse
Affiliation(s)
- Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lee-Ann H Allen
- Inflammation Program, Department of Internal Medicine and Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- VA Healthcare System, Iowa City, IA, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
46
|
Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire. Clin Rev Allergy Immunol 2020; 60:1-16. [DOI: 10.1007/s12016-020-08816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
|
47
|
Kaplan MJ, Casey KA. Response to: 'Neutrophil extracellular traps and low-density granulocytes are associated with the interferon signature in systemic lupus erythematosus, but not in antiphospholipid syndrome' by van den Hoogen et al. Ann Rheum Dis 2020; 79:e136. [PMID: 31272942 DOI: 10.1136/annrheumdis-2019-215811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/03/2022]
Affiliation(s)
- Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerry A Casey
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
48
|
Wang J, Liu Z, Han Z, Wei Z, Zhang Y, Wang K, Yang Z. Fumonisin B1 triggers the formation of bovine neutrophil extracellular traps. Toxicol Lett 2020; 332:140-145. [DOI: 10.1016/j.toxlet.2020.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
|
49
|
van den Hoogen LL, van der Linden M, Meyaard L, Fritsch-Stork RDE, van Roon JA, Radstake TR. Neutrophil extracellular traps and low-density granulocytes are associated with the interferon signature in systemic lupus erythematosus, but not in antiphospholipid syndrome. Ann Rheum Dis 2020; 79:e135. [PMID: 31177097 DOI: 10.1136/annrheumdis-2019-215781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lucas L van den Hoogen
- Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten van der Linden
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linde Meyaard
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joel A van Roon
- Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy Rdj Radstake
- Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease that is primarily treated with anticoagulation. Better understanding the inflammatory aspects of APS could lead to safer, more effective, and more personalized therapeutic options. To this end, we sought to understand recent literature related to the role of neutrophils and, in particular, neutrophil extracellular traps (NETs) in APS. RECENT FINDINGS Expression of genes associated with type I interferons, endothelial adhesion, and pregnancy regulation are increased in APS neutrophils. APS neutrophils have a reduced threshold for NET release, which likely potentiates thrombotic events and perhaps especially large-vein thrombosis. Neutrophil-derived reactive oxygen species also appear to play a role in APS pathogenesis. There are new approaches for preventing and disrupting NETs that could potentially be leveraged to reduce the risk of APS-associated thrombosis. Neutrophils and NETs contribute to APS pathophysiology. More precisely understanding their roles at a mechanistic level should help identify new therapeutic targets for inhibiting NET formation, enhancing NET dissolution, and altering neutrophil adhesion. Such approaches may ultimately lead to better clinical management of APS patients and thereby reduce the chronic burden of this disease.
Collapse
|