1
|
Panda M, Joshi S, Annalakshmi O, C VS, Venkatraman B. Spectroscopic and dosimetric comparison of tooth enamel separation methods for EPR retrospective dosimetry. Heliyon 2024; 10:e30571. [PMID: 38742072 PMCID: PMC11089350 DOI: 10.1016/j.heliyon.2024.e30571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Precise estimation of individual radiation dose utilizing biomaterials (fingernail, bone, and tooth) is very challenging due to their complex sample processing. Despite, tooth enamel, the most mineralized tissue of tooth is used for this purpose due to its high radiation sensitivity and ability to produce radiation induced long lived CO2- radicals. However, human teeth are not always available, and invasive nature of sample collection adds to the complexity making dose estimation difficult. In such cases, animal teeth (goat, cow, and moose) can be used as a substitute for human teeth due to comparable enamel sensitivity. Moreover, separation of enamel from dentine is a crucial step towards accurate dose estimation from irradiated teeth. In this work, Indian goat teeth were used as it was readily available to us and the comparison of goat enamel sensitivity to radiation was found to be within ∼7.4 % that of human. The enamel samples were separated following two chemical methods; (1) density separation using sodium polytungstate, (2) alkaline denaturation using NaOH and the quality was compared based on their purity and radiation sensitivity. Combined results of spectroscopic characterization using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman analysis authenticated the crystallinity and purity of the separated enamel samples. The radiation sensitivity of separated enamel samples was compared by electron paramagnetic resonance (EPR) analysis as a part of dosimetric characterization. The suitability of both the samples for retrospective dosimetry and epidemiological studies was checked by validating the dose estimated from separated enamel samples with standard alanine/EPR dosimeter.
Collapse
Affiliation(s)
- Madhusmita Panda
- Safety Quality and Research Management Group, IGCAR, Kalpakkam, 603102, India
| | - Shailesh Joshi
- Safety Quality and Research Management Group, IGCAR, Kalpakkam, 603102, India
| | - O. Annalakshmi
- Safety Quality and Research Management Group, IGCAR, Kalpakkam, 603102, India
- Homi Bhabha National Institute, IGCAR, Kalpakkam, 603102, India
| | - Venkata Srinivas C
- Safety Quality and Research Management Group, IGCAR, Kalpakkam, 603102, India
- Homi Bhabha National Institute, IGCAR, Kalpakkam, 603102, India
| | - B. Venkatraman
- Safety Quality and Research Management Group, IGCAR, Kalpakkam, 603102, India
- Homi Bhabha National Institute, IGCAR, Kalpakkam, 603102, India
| |
Collapse
|
2
|
Ghimire L, Waller E. Electron Paramagnetic Resonance (EPR) Biodosimetry with Human Teeth: A Crucial Technique for Acute and Chronic Exposure Assessment. HEALTH PHYSICS 2024; 126:322-338. [PMID: 38526251 DOI: 10.1097/hp.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT Radiation exposure is a primary concern in emergency response scenarios and long-term health assessments. Accurate quantification of radiation doses is critical for informed decision-making and patient care. This paper reviews the dose reconstruction technique using both X- and Q-bands, with tooth enamel as a reliable dosimeter. Tooth enamel, due to its exceptional resistance to alteration over time, offers a unique opportunity for assessing both acute and chronic radiation exposures. This review delves into the principles underlying enamel dosimetry, the mechanism of radiation interactions, and dose retention in tooth enamel. We explore state-of-the-art analytical methods, such as electron paramagnetic resonance (EPR) spectroscopy, that accurately estimate low and high doses in acute and chronic exposure. Furthermore, we discuss the applicability of tooth enamel dosimetry in various scenarios, ranging from historical radiological incidents to recent nuclear events or radiological incidents. The ability to reconstruct radiation doses from dental enamel provides a valuable tool for epidemiological studies, validating the assessment of health risks associated with chronic exposures and aiding in the early detection and management of acute radiation incidents. This paper underscores the significance of tooth enamel as an essential medium for radiation dose reconstruction and its broader implications for enhancing radiation protection, emergency response, and public health preparedness. Incorporating enamel EPR dosimetry into standard protocols has the potential to transform the field of radiation assessment, ensuring more accurate and timely evaluations of radiation exposure and its associated risks.
Collapse
Affiliation(s)
- Lekhnath Ghimire
- Department of Energy and Nuclear Engineering, Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada, or email at
| | | |
Collapse
|
3
|
Toyoda S, Inoue K, Yamaguchi I, Hoshi M, Hirota S, Oka T, Shimazaki T, Mizuno H, Tani A, Yasuda H, Gonzales CAB, Okutsu K, Takahashi A, Tanaka N, Todaka A. Interlaboratory comparison of electron paramagnetic resonance tooth enamel dosimetry with investigations of the dose responses of the standard samples. RADIATION PROTECTION DOSIMETRY 2023; 199:1557-1564. [PMID: 37721076 DOI: 10.1093/rpd/ncad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 09/19/2023]
Abstract
A total of seven Japanese laboratories participated in an intercomparison study to estimate the dose given to tooth enamel samples, using the electron spin resonance method. Each of four of the participating laboratories prepared a set of tooth enamel samples, using the electron spin resonance method. Four of the participating laboratories each prepared a set of tooth enamel samples, consisting of seven standard aliquots irradiated from 100 to 2000 mGy and three samples with an 'unknown' dose between 140 and 960 mGy, were intended to eliminate bias from sample preparation. Although not all seven laboratories measured all four sets of samples, the major finding was that systematic biases in estimating doses may be caused by differences in laboratory measurements rather than by the enamel extracting procedures. When doses were averaged by measurements made by multiple laboratories, the averaged values were close to the actual values. Scattering in the intercepts in the standard dose response would be a serious problem in actual dosimetry where no background sample is available.
Collapse
Affiliation(s)
- Shin Toyoda
- Institute of Palaeontology and Geochronology, Okayama University of Science, 1-1 Ridai, Kita-ku, Okayama 700-0005, Japan
| | - Kazuhiko Inoue
- Laboratory of Environmental infection Control, Louis Pasteur Center for Medical Research, 103-5 Tanaka Monzencho, Sakyo Ward, Kyoto 606-8225, Japan
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
| | - Ichiro Yamaguchi
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
| | - Masaharu Hoshi
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Seiko Hirota
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Toshitaka Oka
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Tatsuya Shimazaki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto-shi 860-0811, Japan
| | - Hideyuki Mizuno
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Atsushi Tani
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Hiroshi Yasuda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Chryzel A B Gonzales
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kenichi Okutsu
- Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Atsushi Takahashi
- Tohoku University Hospital, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Nao Tanaka
- Institute of Palaeontology and Geochronology, Okayama University of Science, 1-1 Ridai, Kita-ku, Okayama 700-0005, Japan
| | - Azumi Todaka
- Institute of Palaeontology and Geochronology, Okayama University of Science, 1-1 Ridai, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
4
|
Tuner H. The use of double-integral of experimental EPR spectra for tooth enamel EPR dosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1472-1476. [PMID: 37721061 DOI: 10.1093/rpd/ncad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 09/19/2023]
Abstract
The presence of background signal in tooth enamel EPR dosimetry is the most challenging situation to overcome. This becomes even more important because it obscures the radiation-induced signal, especially at radiation doses below 1 Gy. In order to overcome this problem, subtraction of the unirradiated sample signal from the irradiated one and the simulation methods are the most widely used methods in the literature. These methods have their own difficulties. Obtaining the double integral of the experimental EPR spectra (first derivative) of tooth enamel and its advantages are presented in the present work. This method offers the opportunity to handle the whole experimental spectrum, both background, and radiation-induced signals, without performing any subtraction or simulation operations, and to overcome the signal-to-noise effects.
Collapse
Affiliation(s)
- Hasan Tuner
- Department of Physics, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey
| |
Collapse
|
5
|
Romanyukha A, Tolmachev SY. Electron paramagnetic resonance dose measurements in teeth of tissue donors to the United States Transuranium and Uranium Registries. RADIATION PROTECTION DOSIMETRY 2023; 199:1578-1585. [PMID: 37721075 DOI: 10.1093/rpd/ncac261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 09/19/2023]
Abstract
The United States Transuranium and Uranium Registries (USTUR) is a research program that studies actinide biokinetics in occupationally exposed individuals with known intakes of these elements. Electron paramagnetic resonance (EPR) in tooth enamel was applied to reconstruct external doses of nine USTUR registrants. Only in two cases there is a reasonable agreement between the EPR-measured dose and the worksite external dose record. For two registrants, high EPR doses can be explained by possible cancer radiotherapy. For the remaining five cases, EPR doses significantly exceed official occupational doses with no plausible explanation for the observed discrepancy. More EPR dose measurements need to be done to explain this anomaly.
Collapse
Affiliation(s)
- A Romanyukha
- Naval Dosimetry Center, 4975 North Palmer Road, Bethesda, MD 20889, USA
| | - S Y Tolmachev
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, 1845 Terminal Drive, Suite 201, Richland, WA 99354, USA
| |
Collapse
|
6
|
Ghimire L, Waller E. The Dose Spiking Technique for Measuring Low Doses in Deciduous Teeth Enamel Using EPR Spectroscopy for Retrospective and Accident Dosimetry. HEALTH PHYSICS 2023; 124:192-199. [PMID: 36719934 DOI: 10.1097/hp.0000000000001657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
ABSTRACT Dose estimation by electron paramagnetic resonance (EPR) has been accomplished using the standard EPR dosimetry technique (ISO protocol 13304-1 for EPR retrospective dosimetry). However, different studies showed that these techniques have high measurement errors in measuring the low doses (10-100 mGy) in enamel. This work proposes a new method to make a dosimetric signal visible and measurable at low doses. The sample was purified using both chemical and mechanical processes. The pure sample mass and position and the EPR acquisition parameters were optimized to enhance the spectrometer's sensitivity for the quantitative low dose measurements. At the same time to reduce errors from the sample and spectrum anisotropy, the total doses (low plus spike) and the spike dose (4 Gy) were measured by rotating 0 to 360 degrees (i.e., 40 degrees at a time) relative to constant magnetic field direction using a goniometer. Subsequently, the spectra were averaged after their g-factor normalization. However, at low doses (<30 mGy), the radiation induced signal (RIS) was obscured by the background signal (BGS). So, the dose spiking technique was used as an alternative method. Ten low-dose deciduous molar tooth enamel (10-100 mGy) samples were spiked to the higher doses by delivering 4 Gy and measured using the X-band continuous wave (CW) EPR (Bruker EMXmicro) spectrometer. The total dose EPR signal was distinctly visible, and the peak-to-peak (P2P) amplitude height was measured. Then, the total dose was subtracted with the spike, often called a reference sample, to determine the initial low doses. The measurement errors using this method were lower than the previous methods. These results demonstrated that this method could be promising for solving low dose measurement problems in EPR dosimetry with deciduous and permanent tooth enamel.
Collapse
Affiliation(s)
- Lekhnath Ghimire
- Faculty of Energy Systems and Nuclear Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
| | | |
Collapse
|
7
|
Endesfelder D, Oestreicher U, Kulka U, Ainsbury EA, Moquet J, Barnard S, Gregoire E, Martinez JS, Trompier F, Ristic Y, Woda C, Waldner L, Beinke C, Vral A, Barquinero JF, Hernandez A, Sommer S, Lumniczky K, Hargitai R, Montoro A, Milic M, Monteiro Gil O, Valente M, Bobyk L, Sevriukova O, Sabatier L, Prieto MJ, Moreno Domene M, Testa A, Patrono C, Terzoudi G, Triantopoulou S, Histova R, Wojcik A. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int J Radiat Biol 2021; 97:1181-1198. [PMID: 34138666 DOI: 10.1080/09553002.2021.1941380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.
Collapse
Affiliation(s)
| | | | - Ulrike Kulka
- Bundesamt für Strahlenschutz, BfS, Oberschleissheim, Germany
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Yoann Ristic
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Clemens Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - Lovisa Waldner
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | | | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Joan-Francesc Barquinero
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfredo Hernandez
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Independent Researcher, London, UK
| | | | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Rita Hargitai
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Alegría Montoro
- Laboratorio de Dosimetría Biológica, Servicio de Protección Radiológica Hospital, Universitario Politécnico la Fe, Valencia, Spain
| | - Mirta Milic
- Institute for Medical Research and Occupational Health Mutagenesis Unit, Zagreb, Croatia
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Marco Valente
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Laure Bobyk
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Olga Sevriukova
- Department of Expertise and Exposure Monitoring, Radiation Protection Centre, Vilnius, Lithuania
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France
- Graduate School Life Science and Health, Université Paris, Saclay, France
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Moreno Domene
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Sotiria Triantopoulou
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Rositsa Histova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
8
|
Toyoda S, Murahashi M, Ivannikov A. ESR tooth enamel retrospective dosimetry quoted as spin numbers. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Shishkina EA, Volchkova AY, Ivanov DV, Fattibene P, Wieser A, Krivoschapov VA, Degteva MO, Napier BA. APPLICATION OF EPR TOOTH DOSIMETRY FOR VALIDATION OF THE CALCULATED EXTERNAL DOSES: EXPERIENCE IN DOSIMETRY FOR THE TECHA RIVER COHORT. RADIATION PROTECTION DOSIMETRY 2019; 186:70-77. [PMID: 30561681 DOI: 10.1093/rpd/ncy258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
This study applies EPR tooth dosimetry for validation of external doses calculated with the TRDS-2016. EPR-based external dose in tooth enamel is calculated by subtraction of the contributions of natural and anthropogenic sources from the exposure of interest. These subtracted terms may contribute substantially to the overall uncertainty of the EPR-derived external dose. The validation method strongly depends on the uncertainties. The current study combines the results of a number of previous papers to propagate the uncertainty of EPR-derived external doses. It is concluded that the overall uncertainties of D ≥ 500 mGy are comparable with measurement uncertainties (≤30%); the overall uncertainties of D < 500 mGy become higher as the EPR-dose decreases because they are strongly effected by all other factors of influence. More than 70% of investigated individuals were exposed externally to doses <100 mGy with uncertainties >100%. Therefore, the validation task can be solved only based on statistical approaches. The validation of the TRDS-2016 predictions demonstrates good convergence of group-averages with EPR-based doses. The method for validation of the uncertainty of TRDS-2016 predictions should be also designed based on statistical approaches.
Collapse
Affiliation(s)
- E A Shishkina
- Biophys Lab, Urals Research Centre for Radiation Medicine (URCRM), 68-A Vorovsky Street, Chelyabinsk, Russia
- Department of Radiobiology, Chelyabinsk State University (ChelSU), 129, Bratiev Kashirinih Street, Chelyabinsk, Russia
| | - A Yu Volchkova
- Biophys Lab, Urals Research Centre for Radiation Medicine (URCRM), 68-A Vorovsky Street, Chelyabinsk, Russia
| | - D V Ivanov
- Department of Nanospintronics, M. N. Miheev Institute of Metal Physics (IMP), Urals Division of Russian Academy of Sciences, 18, S. Kovalevskaya Str., Yekaterinburg, Russia
- Institute of Physics and Technology, Ural Federal University (UrFU), 19, Mira str., Yekaterinburg, Russia
| | - P Fattibene
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena 299, Rome, Italy
| | - A Wieser
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - V A Krivoschapov
- Biophys Lab, Urals Research Centre for Radiation Medicine (URCRM), 68-A Vorovsky Street, Chelyabinsk, Russia
| | - M O Degteva
- Biophys Lab, Urals Research Centre for Radiation Medicine (URCRM), 68-A Vorovsky Street, Chelyabinsk, Russia
| | - B A Napier
- Energy and Environment Department, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
10
|
El-Faramawy NA, El-Somany I, Mansour A, Maghraby AM, Eissa H, Wieser A. Camel molar tooth enamel response to gamma rays using EPR spectroscopy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:63-68. [PMID: 29027002 DOI: 10.1007/s00411-017-0718-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.
Collapse
Affiliation(s)
- N A El-Faramawy
- Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - I El-Somany
- Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - A Mansour
- National Center for Radiation Research and Technology, Atomic Energy Authority, P.O.B 8029, Nasr City, Cairo, 11371, Egypt
| | - A M Maghraby
- Ionizing Radiation Metrology Laboratory, National Institute of Standards (NIS), P.O.B 136, Giza, 12211, Egypt
| | - H Eissa
- Ionizing Radiation Metrology Laboratory, National Institute of Standards (NIS), P.O.B 136, Giza, 12211, Egypt
| | - A Wieser
- Helmholtz Zentrum München-German Research Center for Environmental Health, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg, Germany
| |
Collapse
|
11
|
Kinoshita A, Baffa O, Mascarenhas S. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim. PLoS One 2018; 13:e0192444. [PMID: 29408890 PMCID: PMC5800652 DOI: 10.1371/journal.pone.0192444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/11/2018] [Indexed: 12/05/2022] Open
Abstract
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims’ bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims’ bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.
Collapse
Affiliation(s)
- Angela Kinoshita
- Departmento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Pró Reitoria de Pesquisa e Pós-Graduação, Universidade Sagrado Coração, Bauru, São Paulo, Brazil
- * E-mail:
| | - Oswaldo Baffa
- Departmento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Mascarenhas
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
12
|
Murahashi M, Toyoda S, Hoshi M, Ohtaki M, Endo S, Tanaka K, Yamada Y. The sensitivity variation of the radiation induced signal in deciduous teeth to be used in ESR tooth enamel dosimetry. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Blackwell BAB, Kim DMK, Curry BB, Grimley DA, Blickstein JIB, Skinner AR. Shell We Date? ESR Dating Sangamon Interglacial Episode Deposits at Hopwood Farm, IL. RADIATION PROTECTION DOSIMETRY 2016; 172:283-295. [PMID: 27683396 DOI: 10.1093/rpd/ncw213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the Sangamon Episode, North America occasionally experienced warm climates. At Hopwood Farm, IL, a small kettle lake filled with sediment after the Illinois Episode glaciers retreated from southern Illinois. To date those deposits, 14 mollusc samples newly collected with associated sediment from three depths at Hopwood Farm were dated by standard electron spin resonance (ESR) dating. ESR can date molluscs from ~0.5 ka to >2 Ma in age with 5-10% precision, by comparing the accumulated radiation dose with the total radiation dose rate from the mollusc and its environment. Because all molluscs contained ≤0.6 ppm U, their ages do not depend on the assumed U uptake model. Using five different species, ESR analyses for 14 mollusc subsamples from Hopwood Farm showed that Unit 3, a layer rich in lacustrine molluscs, dates at 102 ± 7 ka to 90 ± 6 ka, which correlates with Marine (Oxygen) Isotope Stage 5c-b. Thus, the period with the highest non-arboreal pollen at Hopwood also correlates with the European Brørup, Dansgaard-Oeschger Event DO 23, a time period when climates were cooling and drying somewhat over the same period.
Collapse
Affiliation(s)
- Bonnie A B Blackwell
- Department of Chemistry, Williams College, Williamstown, MA 01267-2962, USA
- RFK Science Research Institute, Box 866, Glenwood Landing, NY 11547-0866, USA
| | - Danny M K Kim
- RFK Science Research Institute, Box 866, Glenwood Landing, NY 11547-0866, USA
- Present Address: Dartmouth College, Hanover, NH 03755, USA
| | - B Brandon Curry
- Illinois State Geological Survey & Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - David A Grimley
- Illinois State Geological Survey & Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Joel I B Blickstein
- Department of Chemistry, Williams College, Williamstown, MA 01267-2962, USA
- RFK Science Research Institute, Box 866, Glenwood Landing, NY 11547-0866, USA
| | - Anne R Skinner
- Department of Chemistry, Williams College, Williamstown, MA 01267-2962, USA
- RFK Science Research Institute, Box 866, Glenwood Landing, NY 11547-0866, USA
| |
Collapse
|
14
|
Ciesielski B, Marciniak A, Zientek A, Krefft K, Cieszyński M, Boguś P, Prawdzik-Dampc A. THE EFFECT OF BACKGROUND SIGNAL AND ITS REPRESENTATION IN DECONVOLUTION OF EPR SPECTRA ON ACCURACY OF EPR DOSIMETRY IN BONE. RADIATION PROTECTION DOSIMETRY 2016; 172:275-282. [PMID: 27412512 DOI: 10.1093/rpd/ncw171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study is about the accuracy of EPR dosimetry in bones based on deconvolution of the experimental spectra into the background (BG) and the radiation-induced signal (RIS) components. The model RIS's were represented by EPR spectra from irradiated enamel or bone powder; the model BG signals by EPR spectra of unirradiated bone samples or by simulated spectra. Samples of compact and trabecular bones were irradiated in the 30-270 Gy range and the intensities of their RIS's were calculated using various combinations of those benchmark spectra. The relationships between the dose and the RIS were linear (R2 > 0.995), with practically no difference between results obtained when using signals from irradiated enamel or bone as the model RIS. Use of different experimental spectra for the model BG resulted in variations in intercepts of the dose-RIS calibration lines, leading to systematic errors in reconstructed doses, in particular for high- BG samples of trabecular bone. These errors were reduced when simulated spectra instead of the experimental ones were used as the benchmark BG signal in the applied deconvolution procedures.
Collapse
Affiliation(s)
- Bartlomiej Ciesielski
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Agnieszka Marciniak
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Agnieszka Zientek
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Karolina Krefft
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Mateusz Cieszyński
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Piotr Boguś
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Anita Prawdzik-Dampc
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| |
Collapse
|
15
|
Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. RADIATION PROTECTION DOSIMETRY 2016; 172:58-71. [PMID: 27886989 DOI: 10.1093/rpd/ncw295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The U.S. Department of Defense (USDOD) service members are at risk of exposure to ionizing radiation due to radiation accidents, terrorist attacks and national defense activities. The use of biodosimetry is a standard of care for the triage and treatment of radiation injuries. Resources and procedures need to be established to implement a multiple-parameter biodosimetry system coupled with expert medial guidance to provide an integrated radiation diagnostic system to meet USDOD requirements. Current USDOD biodosimetry capabilities were identified and recommendations to fill the identified gaps are provided. A USDOD Multi-parametric Biodosimetry Network, based on the expertise that resides at the Armed Forces Radiobiology Research Institute and the Naval Dosimetry Center, was designed. This network based on the use of multiple biodosimetry modalities would provide diagnostic and triage capabilities needed to meet USDOD requirements. These are not available with sufficient capacity elsewhere but could be needed urgently after a major radiological/nuclear event.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | | | - Ricardo A Reyes
- Defense Health Agency, Walter Reed National Military Medical Command, Bethesda, MD 20889, USA
| | | | - Matthew H Hoefer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | - Thad Sharp
- Naval Dosimetry Center, Bethesda, MD 20889, USA
| | - L Andrew Huff
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
16
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Shishkina EA, Volchkova AY, Timofeev YS, Fattibene P, Wieser A, Ivanov DV, Krivoschapov VA, Zalyapin VI, Della Monaca S, De Coste V, Degteva MO, Anspaugh LR. External dose reconstruction in tooth enamel of Techa riverside residents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:477-499. [PMID: 27600653 DOI: 10.1007/s00411-016-0666-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
This study summarizes the 20-year efforts for dose reconstruction in tooth enamel of the Techa riverside residents exposed to ionizing radiation as a result of radionuclide releases into the river in 1949-1956. It represents the first combined analysis of all the data available on EPR dosimetry with teeth of permanent residents of the Techa riverside territory. Results of electron paramagnetic resonance (EPR) measurements of 302 teeth donated by 173 individuals living permanently in Techa riverside settlements over the period of 1950-1952 were analyzed. These people were residents of villages located at the free-flowing river stream or at the banks of stagnant reservoirs such as ponds or blind river forks. Cumulative absorbed doses measured using EPR are from several sources of exposure, viz., background radiation, internal exposure due to bone-seeking radionuclides (89Sr, 90Sr/90Y), internal exposure due to 137Cs/137mBa incorporated in soft tissues, and anthropogenic external exposure. The purpose of the present study was to evaluate the contribution of different sources of enamel exposure and to deduce external doses to be used for validation of the Techa River Dosimetry System (TRDS). Since various EPR methods were used, harmonization of these methods was critical. Overall, the mean cumulative background dose was found to be 63 ± 47 mGy; cumulative internal doses due to 89Sr and 90Sr/90Y were within the range of 10-110 mGy; cumulative internal doses due to 137Cs/137mBa depend on the distance from the site of releases and varied from 1 mGy up to 90 mGy; mean external doses were maximum for settlements located at the banks of stagnant reservoirs (~500 mGy); in contrast, external doses for settlements located along the free-flowing river stream did not exceed 160 mGy and decreased downstream with increasing distance from the site of release. External enamel doses calculated using the TRDS code and derived from the EPR measurements were found to be in good agreement.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076.
| | - A Yu Volchkova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - Y S Timofeev
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - P Fattibene
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - A Wieser
- German Research Centre for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - D V Ivanov
- M.N. Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 18 S. Kovalevskaya Street, Ekaterinburg, Russia, 620990
- Ural Federal University, 19 Mira Str, Yekaterinburg, Russia, 620002
| | - V A Krivoschapov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - V I Zalyapin
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - S Della Monaca
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - V De Coste
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - M O Degteva
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - L R Anspaugh
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| |
Collapse
|
18
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Ciesielski B, Krefft K, Penkowski M, Kaminska J, Drogoszewska B. Effects of water treatment and sample granularity on radiation sensitivity and stability of EPR signals in X-ray irradiated bone samples. RADIATION PROTECTION DOSIMETRY 2014; 159:141-148. [PMID: 24729593 DOI: 10.1093/rpd/ncu121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The article describes effects of sample conditions during its irradiation and electron paramagnetic resonance (EPR) measurements on the background (BG) and dosimetric EPR signals in bone. Intensity of the BG signal increased up to two to three times after crushing of bone to sub-millimetre grains. Immersion of samples in water caused about 50 % drop in intensity of the BG component followed by its regrowth in 1-2 months. Irradiation of bone samples produced an axial dosimetric EPR signal (radiation-induced signal) attributed to hydroxyapatite component of bone. This signal was stable and was not affected by water. In samples irradiated in dry conditions, EPR signal similar to the native BG was also generated by radiation. In samples irradiated in wet conditions, this BG-like component was initially much smaller than in bone irradiated as dry, but increased in time, reaching similar levels as in dry-irradiated samples. It is concluded that accuracy of EPR dosimetry in bones can be improved, if calibration of the samples is done by their irradiations in wet conditions.
Collapse
Affiliation(s)
- Bartlomiej Ciesielski
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Karolina Krefft
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Michal Penkowski
- Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Joanna Kaminska
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Barbara Drogoszewska
- Department of Oral and Maxillofacial Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdańsk, Poland
| |
Collapse
|
22
|
Romanyukha A, Trompier F, Reyes RA. Q-band electron paramagnetic resonance dosimetry in tooth enamel: biopsy procedure and determination of dose detection limit. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:305-310. [PMID: 24442862 DOI: 10.1007/s00411-013-0511-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
High-frequency Q-band (37 GHz) electron paramagnetic resonance (EPR) dosimetry allows to perform fast (i.e., measurement time <15 min) dose measurements using samples obtained from tooth enamel mini-biopsy procedures. We developed and tested a new procedure for taking tooth enamel biopsy for such dose measurements. Recent experience with EPR dose measurements in Q-band using mini-probes of tooth enamel has demonstrated that a small amount of tooth enamel (2-10 mg) can be quickly obtained from victims of a radiation accident. Accurate dose assessments can further be carried out in a very short time to provide important information for medical treatment. Here, the Q-band EPR dose detection limit for 5 and 10 mg samples is estimated to be 367 and 248 mGy, respectively. These values are comparable to the critical parameters determined for conventional X-band EPR in tooth enamel.
Collapse
|
23
|
Wieser A. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR. RADIATION PROTECTION DOSIMETRY 2012; 149:71-78. [PMID: 22128353 DOI: 10.1093/rpd/ncr446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.
Collapse
Affiliation(s)
- A Wieser
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Radiation Protection, D-85764 Neuherberg, Germany.
| |
Collapse
|
24
|
Ainsbury EA, Bakhanova E, Barquinero JF, Brai M, Chumak V, Correcher V, Darroudi F, Fattibene P, Gruel G, Guclu I, Horn S, Jaworska A, Kulka U, Lindholm C, Lloyd D, Longo A, Marrale M, Monteiro Gil O, Oestreicher U, Pajic J, Rakic B, Romm H, Trompier F, Veronese I, Voisin P, Vral A, Whitehouse CA, Wieser A, Woda C, Wojcik A, Rothkamm K. Review of retrospective dosimetry techniques for external ionising radiation exposures. RADIATION PROTECTION DOSIMETRY 2011; 147:573-92. [PMID: 21183550 DOI: 10.1093/rpd/ncq499] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.
Collapse
Affiliation(s)
- E A Ainsbury
- Centre for Radiation, Health Protection Agency, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 0RQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ciesielski B, Kaminska J, Emerich K. Analysis of various modifications in spectra analysis on accuracy of dose reconstructions in EPR dosimetry in tooth enamel. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Toyoda S, Kondo A, Zumadilov K, Hoshi M, Miyazawa C, Ivannikov A. ESR measurements of background doses in teeth of Japanese residents. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
|
28
|
Volchkova A, Shishkina E, Ivanov D, Timofeev Y, Fattibene P, Della Monaca S, Wieser A, Degteva M. Harmonization of dosimetric information obtained by different EPR methods: Experience of the Techa river study. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Pandey BN, Kumar A, Tiwari P, Mishra KP. Radiobiological basis in management of accidental radiation exposure. Int J Radiat Biol 2010; 86:613-35. [DOI: 10.3109/09553001003746059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Fattibene P, Callens F. EPR dosimetry with tooth enamel: A review. Appl Radiat Isot 2010; 68:2033-116. [PMID: 20599388 DOI: 10.1016/j.apradiso.2010.05.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/09/2010] [Indexed: 11/30/2022]
Abstract
When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.
Collapse
Affiliation(s)
- Paola Fattibene
- Istituto Superiore di Sanità, Department of Technology and Health, Viale Regina Elena, Rome, Italy.
| | | |
Collapse
|
31
|
Kinoshita A, José FA, Baffa O. An attempt to use sweeteners as a material for accident dosimetry. HEALTH PHYSICS 2010; 98:406-411. [PMID: 20065713 DOI: 10.1097/01.hp.0000348017.54094.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In case of a radiological accident, it is important to determine the exposure to radiation of the general population. Several materials can be used to reconstruct the exposed dose. Tooth enamel has been studied for a long time, and now the procedures to determine the dose are well established for in vitro measurements. Many materials have been investigated by different techniques: sugar, wall bricks, roof tiles, plastics, watch glass, ruby present in watches, medicines carried by persons and shell button, among others. In this work an attempt is made to use sweeteners as a possible accident dosimeter material because they are becoming increasingly common. Sweeteners based on saccharine, cyclamate, stevia, and aspartame were acquired in local stores, and ESR spectrum was recorded before and after gamma irradiation. Spectrum simulation demonstrated that there are two main radicals with g = 2.0063, A = 1.6 mT, and g = 2.0048, A = 5 mT due to lactose. For the better characterization of spectroscopic and dosimetric properties of these materials, higher microwave frequency (K-band, nu approximately 24 GHz) was also employed. Experiments in X-band (nu approximately 9 GHz) showed that low dose levels of 500 mGy can be measured with this material, demonstrating the potential use of sweeteners for retrospective dosimetry.
Collapse
Affiliation(s)
- Angela Kinoshita
- Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto-SP, Brazil
| | | | | |
Collapse
|
32
|
Ivannikov AI, Sanin D, Nalapko M, Skvortsov VF, Stepanenko VF, Tsyb AF, Trompier F, Zhumadilov K, Hoshi M. Dental enamel EPR dosimetry: comparative testing of the spectra processing methods for determination of radiation-induced signal amplitude. HEALTH PHYSICS 2010; 98:345-351. [PMID: 20065704 DOI: 10.1097/hp.0000348462.29306.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this investigation is to find out the optimal algorithm for mathematical processing of the EPR spectra of irradiated tooth enamel for estimating the amplitude of the radiation-induced signal, which is used for determination of the absorbed dose in enamel for retrospective individual dosimetry. A recently developed analytical model, which takes into account the line shape variation of the enamel EPR spectral components registered at different microwave power, was applied to spectra processing in various operation modes to simulate spectra processing techniques differing by the number of fitted parameters. The precision of dose determination at spectra processing was assessed by the root mean square deviation between experimental and nominal doses for sets of spectra of enamel samples irradiated in different doses and measured at different microwave power. It is shown that in the case of pooled enamel samples prepared as a mixture from different teeth, the higher precision of spectra processing is obtained using a model with fixed native background signal line shape (characterized by width and asymmetry parameters). In case of individual samples prepared each from a different tooth, better results are obtained using a model with variable background signal line shape.
Collapse
Affiliation(s)
- A I Ivannikov
- Medical Radiological Research Center (MRRC), Koroliov str., 4, Obninsk, 249036, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fattibene P, La Civita S, De Coste V, Onori S. Analysis of sources of uncertainty of tooth enamel EPR signal amplitude. RADIAT MEAS 2008. [DOI: 10.1016/j.radmeas.2007.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
|
35
|
Veronese I, Fattibene P, Cantone M, De Coste V, Giussani A, Onori S, Shishkina E. EPR and TL-based beta dosimetry measurements in various tooth components contaminated by 90Sr. RADIAT MEAS 2008. [DOI: 10.1016/j.radmeas.2007.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wieser A, Fattibene P, Shishkina E, Ivanov D, De Coste V, Güttler A, Onori S. Assessment of performance parameters for EPR dosimetry with tooth enamel. RADIAT MEAS 2008. [DOI: 10.1016/j.radmeas.2008.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Demidenko E, Williams B, Sucheta A, Dong R, Swartz H. Radiation dose reconstruction from L-band in vivo EPR spectroscopy of intact teeth: Comparison of methods. RADIAT MEAS 2007; 42:1089-1098. [PMID: 18591987 PMCID: PMC2083575 DOI: 10.1016/j.radmeas.2007.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vivo EPR tooth dosimetry is a more challenging problem than in vitro EPR dosimetry because of several potential additional sources of variation associated with measurements that are made in the mouth of a living subject. For in vivo measurement a lower RF frequency is used and, unlike in the in vitro studies, the tooth cannot be processed to optimize the amount and configuration of the enamel that is measured. Additional factors involved with in vivo measurements include the reproducibility of positioning the resonator on the surface of the tooth in the mouth, irregular tooth geometry, and the possible influence of environmental noise. Consequently, in addition to using the theoretical and empirical models developed for analyzing data from measurements of teeth in vitro, other unconventional and more robust methods of dose reconstruction may be needed. The experimental parameter of interest is the peak-to-peak amplitude of the spectrum, which is correlated to the radiation dose through a calibration curve to derive the reconstructed dose. In this study we describe and compare the results from seven types of computations to measure the peak-to-peak amplitude for estimation of the radiation induced signal. The data utilized were from three sets of in vivo measurements of irradiated teeth. Six different teeth with different doses were placed in the mouth of a volunteer in situ and measurements of each tooth were carried out on three different days. The standard error of dose prediction (SEP) is used as a figure of merit for quantifying precision of the reconstruction. We found that many of the methods gave fairly similar results, with the best error of prediction resulting from a computation based on a Lorentzian line model whose center field corresponds to the known parameter of the radiation-induced EPR spectra of teeth, with corrections from a standard sample that was measured as part of the data acquisition scheme. When the results from the three days of measurement were pooled, the SEP decreased dramatically, which suggests that one of the principal sources of variation in the data is the ability to precisely standardize the measurements conditions within the mouth. There are very plausible ways to accomplish improvements in the existing procedures.
Collapse
Affiliation(s)
- E. Demidenko
- Dartmouth Medical School, EPR Center for Viable Systems
| | - B.B. Williams
- Dartmouth Medical School, EPR Center for Viable Systems
| | - A. Sucheta
- Dartmouth Medical School, EPR Center for Viable Systems
| | - R. Dong
- Dartmouth Medical School, EPR Center for Viable Systems
| | - H.M. Swartz
- Dartmouth Medical School, EPR Center for Viable Systems
| |
Collapse
|
38
|
BiodosEPR-2006 consensus committee report on biodosimetric methods to evaluate radiation doses at long times after exposure. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|