1
|
Bucher M, Endesfelder D, Pojtinger S, Baeyens A, Barquinero JF, Beinke C, Bobyk L, Gregoire E, Hristova R, Martinez JS, Meher PK, Milanova M, Gil OM, Montoro A, Moquet J, Moreno Domene M, Prieto MJ, Pujol-Canadell M, Sun M, Terzoudi GI, Tichy A, Triantopoulou S, Valente M, Vral A, Wojcik A, Oestreicher U. RENEB interlaboratory comparison for biological dosimetry based on dicentric chromosome analysis and cobalt-60 exposures higher than 2.5 Gy. Sci Rep 2025; 15:5485. [PMID: 39952996 PMCID: PMC11828874 DOI: 10.1038/s41598-025-89966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
In previous RENEB interlaboratory comparisons based on the manual scoring of dicentric chromosomes, a tendency for systematic overestimation for doses > 2.5 Gy was found. However, these exercises included only very few doses in the high dose range, and they were heterogeneous in terms of radiation quality and evaluation mode, and comparable only to a limited extent. Here, this presumed deviation was explored by investigating three doses > 2.5 Gy. Blood samples were irradiated (2.56, 3.41 and 4.54 Gy) using a 60Co source and sent to 14 member laboratories of the RENEB network, which performed the dicentric chromosome assay (manual and/or semi-automatic scoring) and reported dose estimates. Most participants provided estimates that agreed very well with the physical reference doses and all provided dose estimates were in the correct clinical category (> 2 Gy). The previously observed tendency for a systematic bias across all laboratories was not confirmed. However, tendencies for systematic underestimation were detected for dose estimations for reference doses given in terms of absorbed dose to blood and for some participants, a laboratory-specific trend of systematic under- or overestimation was observed. The importance of regularly performed quality checks for a broad dose range became obvious to avoid misinterpretation of results.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Lonising and Non-Ionising Radiation, Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany.
| | - David Endesfelder
- Department of Effects and Risks of Lonising and Non-Ionising Radiation, Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Stefan Pojtinger
- Department for Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch- Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Ans Baeyens
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Catalonia, Spain
| | | | - Laure Bobyk
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE / SERAMED / LRAcc, Fontenay-aux-Roses, F- 92260, France
| | - Rositsa Hristova
- Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Juan S Martinez
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE / SERAMED / LRAcc, Fontenay-aux-Roses, F- 92260, France
| | - Prabodha Kumar Meher
- Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner- Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marcela Milanova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa, Portugal
| | - Alegria Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Jayne Moquet
- Radiation Effects Department, UK Health Security Agency, Radiation, Chemicals, Climate and Environmental Hazards Directorate, Chilton, UK
| | - Mercedes Moreno Domene
- Laboratorio de Dosimetría Biológica. Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica. Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Monica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Catalonia, Spain
| | - Mingzhu Sun
- Radiation Effects Department, UK Health Security Agency, Radiation, Chemicals, Climate and Environmental Hazards Directorate, Chilton, UK
| | - Georgia I Terzoudi
- Health Physics, Radiobiology and Cytogenetics Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Ales Tichy
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Sotiria Triantopoulou
- Health Physics, Radiobiology and Cytogenetics Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Marco Valente
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Anne Vral
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - Andrzej Wojcik
- Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Ursula Oestreicher
- Department of Effects and Risks of Lonising and Non-Ionising Radiation, Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
2
|
González Mesa JE, Alem Glison D, Chaves-Campos FA, Ortíz Morales F, Valle Bourrouet L, Abarca Ramírez M, Verdejo V, Di Giorgio M, Radl A, Taja MR, Deminge M, Rada-Tarifa A, Lafuente-Alvarez E, Lima FFD, Hwang S, Esposito Mendes M, Mandina-Cardoso T, Muñoz-Velastegui G, Guerrero-Carbajal YC, Arceo Maldonado C, Monjagata N, Aguilar-Coronel S, Espinoza-Zevallos M, Falcon de Vargas A, Vittoria Di Tomaso M, Holladay B, Lima OG, Martínez-López W. LBDNet interlaboratory comparison for the dicentric chromosome assay by digitized image analysis applying weighted robust statistical methods. Int J Radiat Biol 2024; 100:1019-1028. [PMID: 38810111 DOI: 10.1080/09553002.2024.2356556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE This interlaboratory comparison was conducted to evaluate the performance of the Latin-American Biodosimetry Network (LBDNet) in analyzing digitized images for scoring dicentric chromosomes from in vitro irradiated blood samples. The exercise also assessed the use of weighted robust algorithms to compensate the uneven expertise among the participating laboratories. METHODS Three sets of coded images obtained through the dicentric chromosome assay from blood samples irradiated at 1.5 Gy (sample A) and 4 Gy (sample B), as well as a non-irradiated whole blood sample (sample C), were shared among LBDNet laboratories. The images were captured using the Metafer4 platform coupled with the AutoCapt module. The laboratories were requested to perform triage scoring, conventional scoring, and dose estimation. The dose estimation was carried out using either their laboratory calibration curve or a common calibration curve. A comparative statistical analysis was conducted using a weighted robust Hampel algorithm and z score to compensate for uneven expertise in dicentric analysis and dose assessment among all laboratories. RESULTS Out of twelve laboratories, one had unsatisfactory estimated doses at 0 Gy, and two had unsatisfactory estimated doses at 1.5 Gy when using their own calibration curve and triage scoring mode. However, all doses were satisfactory at 4 Gy. Six laboratories had estimated doses within 95% uncertainty limits at 0 Gy, seven at 1.5 Gy, and four at 4 Gy. While the mean dose for sample C was significantly biased using robust algorithms, applying weights to compensate for the laboratory's analysis expertise reduced the bias by half. The bias from delivered doses was only notable for sample C. Using the common calibration curve for dose estimation reduced the standard deviation (s*) estimated by robust methods for all three samples. CONCLUSIONS The results underscore the significance of performing interlaboratory comparison exercises that involve digitized and electronically transmitted images, even when analyzing non-irradiated samples. In situations where the participating laboratories possess different levels of proficiency, it may prove essential to employ weighted robust algorithms to achieve precise outcomes.
Collapse
Affiliation(s)
| | - Diego Alem Glison
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | - Valentina Verdejo
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Marina Di Giorgio
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Analía Radl
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - María Rosa Taja
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Mayra Deminge
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Ana Rada-Tarifa
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Erika Lafuente-Alvarez
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Fabiana Farias de Lima
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Suy Hwang
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Mariana Esposito Mendes
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Tania Mandina-Cardoso
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | | | | | | | - Norma Monjagata
- Instituto de Investigaciones en Ciencias de la Salud, Asunción, Paraguay
| | | | - Marco Espinoza-Zevallos
- Cytogenetics and Radiobiology Laboratory, Directorate of Services, Peruvian Institute of Nuclear Energy, San Borja, Peru
| | - Aida Falcon de Vargas
- Vargas Hospital of Caracas. Hospital de Clínicas Caracas. Central University of Venezuela, Caracas, Venezuela
| | - Maria Vittoria Di Tomaso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Bret Holladay
- Statistics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Omar García Lima
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | - Wilner Martínez-López
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
3
|
Beinke C, Port M, Scherthan H. Postirradiation temperature influences DSB repair and dicentric chromosome formation-potential impact for dicentric chromosome analysis in interlaboratory comparisons. RADIATION PROTECTION DOSIMETRY 2023; 199:1485-1494. [PMID: 37721069 DOI: 10.1093/rpd/ncad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 09/19/2023]
Abstract
The objective was to investigate the influence of different pre-storage temperatures in the dicentric chromosome analysis (DCA) protocol (22°C vs. 37°C) by using γ-H2AX + 53BP1 foci as a marker for deoxyribonucleic acid (DNA) double-strand break (DSB) damage induction and repair and the formation of dicentric chromosomes as a result of mis-repair. Repair of γ-H2AX + 53BP1 DSB foci was absent in samples that were incubated for 2 h at 22°C after exposure of 0.5 and 1.2 Gy. When 0.5- and 1.2-Gy-exposed samples were incubated at 37°C for 2 h, there was an average decline of 31 and 52% of DSB foci, respectively. This indicated that DNA repair occurred. There was a 27% decrease in dicentric chromosome yield at 1.2 Gy and a 15% decrease at 3.5 Gy after post-irradiation incubation for 2 h at 37°C relative to the observed dicentric frequencies at 22°C. Recommended to re-phase: our data suggested that there were more open DSBs after a 2-h incubation at 22°C, which contributed to more mis-repair and dicentric formation from the start of culture. Our findings are corroborated by publications showing that lesion interaction based on enzymatic activity is suppressed below 21°C. As such temperature variations can be a source of variation in DCA during interlaboratory comparison studies, we propose to establish a common guide for the standardisation of pre-culture conditions in cytogenetic dosimetry proficiency testing.
Collapse
Affiliation(s)
- Christina Beinke
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr.11, D-80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr.11, D-80937 Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr.11, D-80937 Munich, Germany
| |
Collapse
|
4
|
Port M, Barquinero JF, Endesfelder D, Moquet J, Oestreicher U, Terzoudi G, Trompier F, Vral A, Abe Y, Ainsbury L, Alkebsi L, Amundson S, Badie C, Baeyens A, Balajee A, Balázs K, Barnard S, Bassinet C, Beaton-Green L, Beinke C, Bobyk L, Brochard P, Brzoska K, Bucher M, Ciesielski B, Cuceu C, Discher M, D,Oca M, Domínguez I, Doucha-Senf S, Dumitrescu A, Duy P, Finot F, Garty G, Ghandhi S, Gregoire E, Goh V, Güçlü I, Hadjiiska L, Hargitai R, Hristova R, Ishii K, Kis E, Juniewicz M, Kriehuber R, Lacombe J, Lee Y, Lopez Riego M, Lumniczky K, Mai T, Maltar-Strmečki N, Marrale M, Martinez J, Marciniak A, Maznyk N, McKeever S, Meher P, Milanova M, Miura T, Gil OM, Montoro A, Domene MM, Mrozik A, Nakayama R, O’Brien G, Oskamp D, Ostheim P, Pajic J, Pastor N, Patrono C, Pujol-Canadell M, Rodriguez MP, Repin M, Romanyukha A, Rößler U, Sabatier L, Sakai A, Scherthan H, Schüle S, Seong K, Sevriukova O, Sholom S, Sommer S, Suto Y, Sypko T, Szatmári T, Takahashi-Sugai M, Takebayashi K, Testa A, Testard I, Tichy A, Triantopoulou S, Tsuyama N, Unverricht-Yeboah M, Valente M, Van Hoey O, Wilkins R, Wojcik A, Wojewodzka M, Younghyun L, et alPort M, Barquinero JF, Endesfelder D, Moquet J, Oestreicher U, Terzoudi G, Trompier F, Vral A, Abe Y, Ainsbury L, Alkebsi L, Amundson S, Badie C, Baeyens A, Balajee A, Balázs K, Barnard S, Bassinet C, Beaton-Green L, Beinke C, Bobyk L, Brochard P, Brzoska K, Bucher M, Ciesielski B, Cuceu C, Discher M, D,Oca M, Domínguez I, Doucha-Senf S, Dumitrescu A, Duy P, Finot F, Garty G, Ghandhi S, Gregoire E, Goh V, Güçlü I, Hadjiiska L, Hargitai R, Hristova R, Ishii K, Kis E, Juniewicz M, Kriehuber R, Lacombe J, Lee Y, Lopez Riego M, Lumniczky K, Mai T, Maltar-Strmečki N, Marrale M, Martinez J, Marciniak A, Maznyk N, McKeever S, Meher P, Milanova M, Miura T, Gil OM, Montoro A, Domene MM, Mrozik A, Nakayama R, O’Brien G, Oskamp D, Ostheim P, Pajic J, Pastor N, Patrono C, Pujol-Canadell M, Rodriguez MP, Repin M, Romanyukha A, Rößler U, Sabatier L, Sakai A, Scherthan H, Schüle S, Seong K, Sevriukova O, Sholom S, Sommer S, Suto Y, Sypko T, Szatmári T, Takahashi-Sugai M, Takebayashi K, Testa A, Testard I, Tichy A, Triantopoulou S, Tsuyama N, Unverricht-Yeboah M, Valente M, Van Hoey O, Wilkins R, Wojcik A, Wojewodzka M, Younghyun L, Zafiropoulos D, Abend M. RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays. Radiat Res 2023; 199:535-555. [PMID: 37310880 PMCID: PMC10508307 DOI: 10.1667/rade-22-00207.1] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/15/2023]
Abstract
Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
Collapse
Affiliation(s)
- M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | - J. Moquet
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | | | - G. Terzoudi
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - F. Trompier
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Vral
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - Y. Abe
- Department of Radiation Biology and Protection, Nagasaki University, Japan
| | - L. Ainsbury
- UK Health Security Agency and Office for Health Improvement and Disparities, Cytogenetics and Pathology Group, Oxfordshire, England
| | - L Alkebsi
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - S.A. Amundson
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - A. Baeyens
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - A.S. Balajee
- Cytogenetic Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - K. Balázs
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - S. Barnard
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - C. Bassinet
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | | | - C. Beinke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - L. Bobyk
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny Sur Orge, France
| | | | - K. Brzoska
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - M. Bucher
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - B. Ciesielski
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - C. Cuceu
- Genevolution, Porcheville, France
| | - M. Discher
- Paris-Lodron-University of Salzburg, Department of Environment and Biodiversity, 5020 Salzburg, Austria
| | - M.C. D,Oca
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - I. Domínguez
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | | | - A. Dumitrescu
- National Institute of Public Health, Radiation Hygiene Laboratory, Bucharest, Romania
| | - P.N. Duy
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - F. Finot
- Genevolution, Porcheville, France
| | - G. Garty
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - S.A. Ghandhi
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - E. Gregoire
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - V.S.T. Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore
| | - I. Güçlü
- TENMAK, Nuclear Energy Research Institute, Technology Development and Nuclear Research Department, Türkey
| | - L. Hadjiiska
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R. Hargitai
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - R. Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - K. Ishii
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - E. Kis
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Juniewicz
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - R. Kriehuber
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - J. Lacombe
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - Y. Lee
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - K. Lumniczky
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - T.T. Mai
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - N. Maltar-Strmečki
- Ruðer Boškovic Institute, Division of Physical Chemistry, Zagreb, Croatia
| | - M. Marrale
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - J.S. Martinez
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Marciniak
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - N. Maznyk
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - S.W.S. McKeever
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | | | - M. Milanova
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - T. Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - O. Monteiro Gil
- Instituto Superior Técnico/ Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - A. Montoro
- Servicio de Protección Radiológica. Laboratorio de Dosimetría Biológica, Valencia, Spain
| | - M. Moreno Domene
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - A. Mrozik
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - R. Nakayama
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - G. O’Brien
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - D. Oskamp
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Pajic
- Serbian Institute of Occupational Health, Belgrade, Serbia
| | - N. Pastor
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | - C. Patrono
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - M.J. Prieto Rodriguez
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - M. Repin
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | | | - U. Rößler
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | | | - A. Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - H. Scherthan
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - K.M. Seong
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - S. Sholom
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - S. Sommer
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Y. Suto
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - T. Sypko
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - T. Szatmári
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Takahashi-Sugai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K. Takebayashi
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - A. Testa
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - I. Testard
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - A. Tichy
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - S. Triantopoulou
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - N. Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - M. Unverricht-Yeboah
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - M. Valente
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - O. Van Hoey
- Belgian Nuclear Research Center SCK CEN, Mol, Belgium
| | | | - A. Wojcik
- Stockholm University, Stockholm, Sweden
| | - M. Wojewodzka
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lee Younghyun
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - D. Zafiropoulos
- Laboratori Nazionali di Legnaro - Istituto Nazionale di Fisica Nucleare, Legnaro, Italy
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
5
|
Zhao H, Qu M, Li Y, Wen K, Xu H, Song M, Xie D, Ao X, Gong Y, Sui L, Guan H, Zhou P, Xie J. An estimate assay for low-level exposure to ionizing radiation based on mass spectrometry quantification of γ-H2AX in human peripheral blood lymphocytes. Front Public Health 2022; 10:1031743. [PMID: 36388350 PMCID: PMC9651621 DOI: 10.3389/fpubh.2022.1031743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023] Open
Abstract
Exposure to environmental ionizing radiation (IR) is ubiquitous, and large-dose exposure to IR is known to cause DNA damage and genotoxicity which is associated with an increased risk of cancer. Whether such detrimental effects are caused by exposure to low-dose IR is still debated. Therefore, rapid and early estimation of absorbed doses of IR in individuals, especially at low levels, using radiation response markers is a pivotal step for early triage during radiological incidents to provide adequate and timely clinical interventions. However, there is currently a crucial shortage of methods capable of determining the extent of low-dose IR exposure to human beings. The phosphorylation of histone H2AX on serine 139 (designated γ-H2AX), a classic biological dosimeter, can be used to evaluate the DNA damage response. We have developed an estimation assay for low-level exposure to IR based on the mass spectrometry quantification of γ-H2AX in blood. Human peripheral blood lymphocytes sensitive to low-dose IR, maintaining low temperature (4°C) and adding enzyme inhibitor are proven to be key steps, possibly insuring that a stable and marked γ-H2AX signal in blood cells exposed to low-dose IR could be detected. For the first time, DNA damage at low dose exposures to IR as low as 0.01 Gy were observed using the sensitive variation of γ-H2AX with high throughput mass spectrometry quantification in human peripheral blood, which is more accurate than the previously reported methods by virtue of isotope-dilution mass spectrometry, and can observe the time effect of DNA damage. These in vitro cellular dynamic monitoring experiments show that DNA damage occurred rapidly and then was repaired slowly over the passage of post-irradiation time even after exposure to very low IR doses. This assay was also used to assess different radiation exposures at the in vitro cellular level. These results demonstrate the potential utility of this assay in radiation biodosimetry and environmental risk assessment.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Minmin Qu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuchen Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ke Wen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing, China
| | - Man Song
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xingkun Ao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yihao Gong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China,*Correspondence: Hua Guan
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China,Pingkun Zhou
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing, China,Jianwei Xie
| |
Collapse
|
6
|
Sholom S, McKeever SWS, Escalona MB, Ryan TL, Balajee AS. A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021515. [PMID: 35196651 DOI: 10.1088/1361-6498/ac5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Large-scale radiological accidents or nuclear terrorist incidents involving radiological or nuclear materials can potentially expose thousands, or hundreds of thousands, of people to unknown radiation doses, requiring prompt dose reconstruction for appropriate triage. Two types of dosimetry methods namely, biodosimetry and physical dosimetry are currently utilized for estimating absorbed radiation dose in humans. Both methods have been tested separately in several inter-laboratory comparison exercises, but a direct comparison of physical dosimetry with biological dosimetry has not been performed to evaluate their dose prediction accuracies. The current work describes the results of the direct comparison of absorbed doses estimated by physical (smartphone components) and biodosimetry (dicentric chromosome assay (DCA) performed in human peripheral blood lymphocytes) methods. For comparison, human peripheral blood samples (biodosimetry) and different components of smartphones, namely surface mount resistors (SMRs), inductors and protective glasses (physical dosimetry) were exposed to different doses of photons (0-4.4 Gy; values refer to dose to blood after correction) and the absorbed radiation doses were reconstructed by biodosimetry (DCA) and physical dosimetry (optically stimulated luminescence (OSL)) methods. Additionally, LiF:Mg,Ti (TLD-100) chips and Al2O3:C (Luxel) films were used as reference TL and OSL dosimeters, respectively. The best coincidence between biodosimetry and physical dosimetry was observed for samples of blood and SMRs exposed toγ-rays. Significant differences were observed in the reconstructed doses by the two dosimetry methods for samples exposed to x-ray photons with energy below 100 keV. The discrepancy is probably due to the energy dependence of mass energy-absorption coefficients of the samples extracted from the phones. Our results of comparative validation of the radiation doses reconstructed by luminescence dosimetry from smartphone components with biodosimetry using DCA from human blood suggest the potential use of smartphone components as an effective emergency triage tool for high photon energies.
Collapse
Affiliation(s)
- Sergey Sholom
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
| | - Stephen W S McKeever
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| |
Collapse
|
7
|
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed.
Collapse
|
8
|
Swartz HM, Wilkins RC, Ainsbury E, Port M, Barry Flood A, Trompier F, Roy L, Swarts SG. What if a major radiation incident happened during a pandemic? - Considerations of the impact on biodosimetry. Int J Radiat Biol 2021; 98:825-830. [PMID: 34730484 DOI: 10.1080/09553002.2021.2000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Harold M Swartz
- Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Elizabeth Ainsbury
- Public Health England Centre for Radiation, Chemical and Environmental Hazards, Oxford, UK
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Ann Barry Flood
- Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - François Trompier
- Department for Research on Dosimetry, IRSN, Fontenay-aux-roses, France
| | - Laurence Roy
- Department for Research on the Biological and Health Effects of Ionising Radiation, IRSN, Fontenay-aux-roses, France
| | - Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Ainsbury EA, Moquet J, Sun M, Barnard S, Ellender M, Lloyd D. The future of biological dosimetry in mass casualty radiation emergency response, personalized radiation risk estimation and space radiation protection. Int J Radiat Biol 2021; 98:421-427. [PMID: 34515621 DOI: 10.1080/09553002.2021.1980629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this brief personal, high level review is to consider the state of the art for biological dosimetry for radiation routine and emergency response, and the potential future progress in this fascinating and active field. Four areas in which biomarkers may contribute to scientific advancement through improved dose and exposure characterization, as well as potential contributions to personalized risk estimation, are considered: emergency dosimetry, molecular epidemiology, personalized medical dosimetry, and space travel. CONCLUSION Ionizing radiation biodosimetry is an exciting field which will continue to benefit from active networking and collaboration with the wider fields of radiation research and radiation emergency response to ensure effective, joined up approaches to triage; radiation epidemiology to assess long term, low dose, radiation risk; radiation protection of workers, optimization and justification of radiation for diagnosis or treatment of patients in clinical uses, and protection of individuals traveling to space.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK.,Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Mingzhu Sun
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - David Lloyd
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| |
Collapse
|
10
|
Endesfelder D, Oestreicher U, Kulka U, Ainsbury EA, Moquet J, Barnard S, Gregoire E, Martinez JS, Trompier F, Ristic Y, Woda C, Waldner L, Beinke C, Vral A, Barquinero JF, Hernandez A, Sommer S, Lumniczky K, Hargitai R, Montoro A, Milic M, Monteiro Gil O, Valente M, Bobyk L, Sevriukova O, Sabatier L, Prieto MJ, Moreno Domene M, Testa A, Patrono C, Terzoudi G, Triantopoulou S, Histova R, Wojcik A. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int J Radiat Biol 2021; 97:1181-1198. [PMID: 34138666 DOI: 10.1080/09553002.2021.1941380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.
Collapse
Affiliation(s)
| | | | - Ulrike Kulka
- Bundesamt für Strahlenschutz, BfS, Oberschleissheim, Germany
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Yoann Ristic
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Clemens Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - Lovisa Waldner
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | | | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Joan-Francesc Barquinero
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfredo Hernandez
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Independent Researcher, London, UK
| | | | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Rita Hargitai
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Alegría Montoro
- Laboratorio de Dosimetría Biológica, Servicio de Protección Radiológica Hospital, Universitario Politécnico la Fe, Valencia, Spain
| | - Mirta Milic
- Institute for Medical Research and Occupational Health Mutagenesis Unit, Zagreb, Croatia
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Marco Valente
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Laure Bobyk
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Olga Sevriukova
- Department of Expertise and Exposure Monitoring, Radiation Protection Centre, Vilnius, Lithuania
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France
- Graduate School Life Science and Health, Université Paris, Saclay, France
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Moreno Domene
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Sotiria Triantopoulou
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Rositsa Histova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
11
|
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, Balajee A, Beukes P, Blakely WF, Dominguez I, Duy PN, Gil OM, Güçlü I, Guogyte K, Hadjidekova SP, Hadjidekova V, Hande P, Jang S, Lumniczky K, Meschini R, Milic M, Montoro A, Moquet J, Moreno M, Norton FN, Oestreicher U, Pajic J, Sabatier L, Sommer S, Testa A, Terzoudi G, Valente M, Venkatachalam P, Vral A, Wilkins RC, Wojcik A, Zafiropoulos D, Kulka U. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol 2021; 97:888-905. [PMID: 33970757 DOI: 10.1080/09553002.2021.1928782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
Collapse
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Gaetan Gruel
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Adayabalam Balajee
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health, Sciences, Bethesda, MD, USA
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | | | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | | | - Alegria Montoro
- Fundación para la Investigación del Hospital Universitario LA FE de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud - Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Farrah N Norton
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ursula Oestreicher
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux-Roses, France and Université Paris-Saclay, France
| | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L´Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research "Demokritos", NCSR"D", Athens, Greece
| | | | | | - Anne Vral
- Radiobiology Research Unit, Gent University, Gent, Belgium
| | | | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | | | - Ulrike Kulka
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
12
|
Waldner L, Bernhardsson C, Woda C, Trompier F, Van Hoey O, Kulka U, Oestreicher U, Bassinet C, Rääf C, Discher M, Endesfelder D, Eakins JS, Gregoire E, Wojcik A, Ristic Y, Kim H, Lee J, Yu H, Kim MC, Abend M, Ainsbury E. The 2019-2020 EURADOS WG10 and RENEB Field Test of Retrospective Dosimetry Methods in a Small-Scale Incident Involving Ionizing Radiation. Radiat Res 2021; 195:253-264. [PMID: 33347576 DOI: 10.1667/rade-20-00243.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 11/03/2022]
Abstract
With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.
Collapse
Affiliation(s)
- L Waldner
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - C Bernhardsson
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - C Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - F Trompier
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - O Van Hoey
- Institute for Environment, Health and Safety, Belgian Nuclear Research Center (SCK•CEN), Belgium
| | - U Kulka
- Bundesamt für Strahlenschutz, BfS, Department of Radiation Protection and Health, Oberschleissheim, Germany
| | - U Oestreicher
- Bundesamt für Strahlenschutz, BfS, Department of Radiation Protection and Health, Oberschleissheim, Germany
| | - C Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - C Rääf
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - M Discher
- Paris-Lodron-University of Salzburg, Department of Geography and Geology, Salzburg, Austria
| | - D Endesfelder
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - J S Eakins
- Public Health England, CRCE, Chilton, Didcot, Oxon, United Kingdom
| | - E Gregoire
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - A Wojcik
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Sweden and Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Y Ristic
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - H Kim
- Korea Atomic Energy Research Institute, Division of Radiation Safety Management, Daejeon, South Korea
| | - J Lee
- Korea Atomic Energy Research Institute, Division of Radiation Safety Management, Daejeon, South Korea
| | - H Yu
- Korea Institute of Nuclear Safety, Department of Radiological Emergency Preparedness, Daejeon, South Korea
| | - M C Kim
- Korea Atomic Energy Research Institute, Division of Radiation Safety Management, Daejeon, South Korea
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - E Ainsbury
- Public Health England, CRCE, Chilton, Didcot, Oxon, United Kingdom
| |
Collapse
|
13
|
Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiat Res 2020; 196:491-500. [PMID: 33064820 PMCID: PMC8944909 DOI: 10.1667/rade-20-00042.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs-elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, were used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 and root mean squared error (RMSE) was 0.95 MBq. These metrics remained stable when the model was fitted to a randomly-selected half of the data and tested on the other half, repeated 100 times. Model performance was significantly better when compared to our previous analysis using γ-H2AX alone, and when compared to an analysis where genes are used without γ-H2AX, suggesting that integrating γ-H2AX with gene expression provides an important advantage. Our findings show a proof of principle that integration of radiation-responsive biomarkers from different fields is promising for radiation biodosimetry of internal emitters.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, New Mexico, 87108
| | | | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
14
|
Klokov D. Plasma levels of serum amyloid A1 and mortality after exposure to high-dose radiation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:661. [PMID: 32617281 PMCID: PMC7327329 DOI: 10.21037/atm.2020.03.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Dmitry Klokov
- Laboratory of Radiobiology and Radiotoxicology, Department of Research on Biological and Health Effects of Ionizing Radiation, Institute of Radioprotection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Testa A, Palma V, Patrono C. A NOVEL BIOLOGICAL DOSIMETRY ASSAY AS A POTENTIAL TOOL FOR TRIAGE DOSE ASSESSMENT IN CASE OF LARGE-SCALE RADIOLOGICAL EMERGENCY. RADIATION PROTECTION DOSIMETRY 2019; 186:9-11. [PMID: 30726995 DOI: 10.1093/rpd/ncz001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/11/2018] [Indexed: 06/09/2023]
Abstract
In case of mass radiological emergencies, new strategies involving biological and clinical endpoints are requested for an efficient triage classification of casualties. For this purpose, we developed a novel protocol combining the two most established cytogenetic methods used in biological dosimetry (dicentric and micronucleus assays) into a single one, in order to have a time-saving, inexpensive and potentially automatable instrument to be used for triage purposes in case of large-scale radiological events. This method could be considered as a 'three in one' assay allowing the simultaneous scoring of chromosome aberrations and micronuclei on a single slide, and also enabling to discriminate between metaphases in first and second cell division without the Fluorescence plus Giemsa staining. This method needs further validation through inter-comparisons involving biological dosimetry laboratories, to verify its reproducibility. Moreover, the possibility to apply the already existing software for automation for dicentric and micronucleus assays could be also verified.
Collapse
Affiliation(s)
- A Testa
- ENEA Casaccia Research Center, Department for Sustainability, Division Health Protection Technologies, Via Anguillarese, 301 Rome, Italy
| | - V Palma
- ENEA Casaccia Research Center, Department for Sustainability, Division Health Protection Technologies, Via Anguillarese, 301 Rome, Italy
| | - C Patrono
- ENEA Casaccia Research Center, Department for Sustainability, Division Health Protection Technologies, Via Anguillarese, 301 Rome, Italy
| |
Collapse
|
16
|
Kortmiš MV, Maltar-Strmečki N. DOSE RECONSTRUCTION FROM ESR SIGNAL OF GAMMA-IRRADIATED SODA-LIME GLASS FOR TRIAGE APPLICATION. RADIATION PROTECTION DOSIMETRY 2019; 186:88-93. [PMID: 30649472 DOI: 10.1093/rpd/ncy290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
In this work, we report some preliminary results regarding the analysis of electron spin resonance (ESR) response of soda-lime samples used for retrospective dosimetry. Six different soda-lime glass batches were evaluated after irradiation. We compared several dose reconstruction techniques: saturation method, subtraction method and g-effective, geff, approach. The differences were observed and discussed. ESR signal responses of soda-lime glass samples to different radiation doses for the triage application were investigated. Results confirmed that geff approach has potential for the identification and dosimetry of irradiated soda-lime glass samples using either additive dose method or only calibration curve.
Collapse
Affiliation(s)
- Maja Vojnić Kortmiš
- Department of Occupational Safety and Health, Fire and Radiation Protection, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Nadica Maltar-Strmečki
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| |
Collapse
|
17
|
Monzen S, Ueno T, Chiba M, Mariya Y. [15. Predictive Biomarker for the Detection of Ionizing Radiation Toxicity]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:480-485. [PMID: 31105097 DOI: 10.6009/jjrt.2019_jsrt_75.5.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Satoru Monzen
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences
| | - Tatsuya Ueno
- Department of Radiology, Southern TOHOKU General Hospital
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences
| | | |
Collapse
|
18
|
Kulka U, Wojcik A, Di Giorgio M, Wilkins R, Suto Y, Jang S, Quing-Jie L, Jiaxiang L, Ainsbury E, Woda C, Roy L, Li C, Lloyd D, Carr Z. BIODOSIMETRY AND BIODOSIMETRY NETWORKS FOR MANAGING RADIATION EMERGENCY. RADIATION PROTECTION DOSIMETRY 2018; 182:128-138. [PMID: 30423161 DOI: 10.1093/rpd/ncy137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/09/2023]
Abstract
Biological dosimetry enables individual dose reconstruction in the case of unclear or inconsistent radiation exposure situations, especially when a direct measurement of ionizing radiation is not or is no longer possible. To be prepared for large-scale radiological incidents, networking between well-trained laboratories has been identified as a useful approach for provision of the fast and trustworthy dose assessments needed in such circumstances. To this end, various biodosimetry laboratories worldwide have joined forces and set up regional and/or nationwide networks either on a formal or informal basis. Many of these laboratories are also a part of global networks such as those organized by World Health Organization, International Atomic Energy Agency or Global Health Security Initiative. In the present report, biodosimetry networks from different parts of the world are presented, and the partners, activities and cooperation actions are detailed. Moreover, guidance for situational application of tools used for individual dosimetry is given.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | - A Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| | - M Di Giorgio
- Autoridad Regulatoria Nuclear, C1429BNP CABA, Buenos Aires, Argentina
| | - R Wilkins
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - Y Suto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Jang
- Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - L Quing-Jie
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Jiaxiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - E Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - C Woda
- HelmholtzZentrum München, Institute of Radiation Protection, Oberschleissheim, Germany
| | - L Roy
- Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses, France
| | - C Li
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - D Lloyd
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Z Carr
- World Health Organization, Department of Public Health, Environmental and Social Determinants of Health, Geneva-27, Switzerland
| |
Collapse
|
19
|
Bensimon Etzol J, Bouvet S, Bettencourt C, Altmeyer S, Paget V, Ugolin N, Chevillard S. DosiKit, a New Immunoassay for Fast Radiation Biodosimetry of Hair and Blood Samples. Radiat Res 2018; 190:473-482. [DOI: 10.1667/rr15136.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | - Vincent Paget
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses France
| | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses France
| | | |
Collapse
|
20
|
Unverricht-Yeboah M, Giesen U, Kriehuber R. Comparative gene expression analysis after exposure to 123I-iododeoxyuridine, γ- and α-radiation-potential biomarkers for the discrimination of radiation qualities. JOURNAL OF RADIATION RESEARCH 2018; 59:411-429. [PMID: 29800458 PMCID: PMC6054186 DOI: 10.1093/jrr/rry038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Gene expression analysis was carried out in Jurkat cells in order to identify candidate genes showing significant gene expression alterations allowing robust discrimination of the Auger emitter 123I, incorporated into the DNA as 123I-iododeoxyuridine (123IUdR), from α- and γ-radiation. The γ-H2AX foci assay was used to determine equi-effect doses or activity, and gene expression analysis was carried out at similar levels of foci induction. Comparative gene expression analysis was performed employing whole human genome DNA microarrays. Candidate genes had to show significant expression changes and no altered gene regulation or opposite regulation after exposure to the radiation quality to be compared. The gene expression of all candidate genes was validated by quantitative real-time PCR. The functional categorization of significantly deregulated genes revealed that chromatin organization and apoptosis were generally affected. After exposure to 123IUdR, α-particles and γ-rays, at equi-effect doses/activity, 155, 316 and 982 genes were exclusively regulated, respectively. Applying the stringent requirements for candidate genes, four (PPP1R14C, TNFAIP8L1, DNAJC1 and PRTFDC1), one (KLF10) and one (TNFAIP8L1) gene(s) were identified, respectively allowing reliable discrimination between γ- and 123IUdR exposure, γ- and α-radiation, and α- and 123IUdR exposure, respectively. The Auger emitter 123I induced specific gene expression patterns in Jurkat cells when compared with γ- and α-irradiation, suggesting a unique cellular response after 123IUdR exposure. Gene expression analysis might be an effective tool for identifying biomarkers for discriminating different radiation qualities and, furthermore, might help to explain the varying biological effectiveness at the mechanistic level.
Collapse
Affiliation(s)
- Marcus Unverricht-Yeboah
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ralf Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
21
|
Eakins JS, Ainsbury EA. Quantities for assessing high doses to the body: a short review of the current status. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:731-742. [PMID: 29692365 DOI: 10.1088/1361-6498/aabffe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue reactions are the most clinically significant consequences of high-dose exposures to ionizing radiation. However, there is currently no universally recognized or recommended dose quantity that can be used to assess generalized risks to individuals following whole body exposures in the high-dose range. This is particularly problematic in emergency response situations, for example, following external exposures of large numbers of individuals: in attempts to relate the triage dosemeter absorbed dose to the risk to the individual, such that a 'dose' may subsequently be reported to medical professionals, it is necessary to first agree on the quantity to be reported. The current paper presents a brief review of the likely scenarios and emergency dosimetry techniques that require such a quantity, before examining the biological constraints and requirements that might underpin any future definition. The aim of this work is to outline the arguments for developing a commonly agreed dose quantity for reporting high-dose radiation exposures.
Collapse
|
22
|
Eakins JS, Ainsbury EA. Quantities for assessing high photon doses to the body: a calculational approach. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:743-762. [PMID: 29692366 DOI: 10.1088/1361-6498/aabffc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue reactions are the most clinically significant consequences of high-dose exposures to ionising radiation. However, currently there is no universally recognized dose quantity that can be used to assess and report generalised risks to individuals following whole body exposures in the high-dose range. In this work, a number of potential dose quantities are presented and discussed, with mathematical modelling techniques employed to compare them and explore when their differences are most or least manifest. The results are interpreted to propose the average (D GRB) of the absorbed doses to the stomach, small intestine, red bone marrow, and brain as the optimum quantity for informing assessments of risk. A second, maximally conservative dose quantity (D Max) is also suggested, which places limits on any under-estimates resulting from the adoption of D GRB. The primary aim of this work is to spark debate, with further work required to refine the final choice of quantity or quantities most appropriate for the full range of different potential exposure scenarios.
Collapse
|
23
|
Development of an automatable micro-PCC biodosimetry assay for rapid individualized risk assessment in large-scale radiological emergencies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:65-71. [PMID: 30389164 DOI: 10.1016/j.mrgentox.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023]
Abstract
In radiation accidents and large-scale radiological emergencies, a fast and reliable triage of individuals according to their degree of exposure is important for accident management and identification of those who need medical assistance. In this work, the applicability of cell-fusion-mediated premature chromosome condensation (PCC) in G0-lymphocytes is examined for the development of a rapid, minimally invasive and automatable micro-PCC assay, which requires blood volumes of only 100 μl and can be performed in 96-well plates, towards risk assessments and categorization of individuals based on dose estimates. Chromosomal aberrations are visualized for dose-estimation analysis within two hours, without the need of blood culturing for two days, as required by conventional cytogenetics. The various steps of the standard-PCC procedure were adapted and, for the first time, lymphocytes in blood volumes of 100 μl were successfully fused with CHO-mitotics in 96-well plates of 2 ml/well. The plates are advantageous for high-throughput analysis since the various steps required are applied to all 96-wells simultaneously. Interestingly, the use of only 1.5 ml hypotonic and Carnoy's fixative per well offers high quality PCC-images, and the morphology of lymphocyte PCCs is identical to that obtained using the conventional PCC-assay, which requires much larger blood volumes and 15 ml tubes. For dose assessments, appropriate calibration curves were constructed and for PCC analysis specialized software (MetaSystems) was used. The micro-PCC assay can be combined with fluorescence in situ hybridization (FISH), using simultaneously centromeric/telomeric (C/T) peptide nucleic acid (PNA) probes. This allows dose assessments on the basis of accurate scoring of dicentric and centric ring chromosomes in G0-lymphocyte PCCs, which is particularly helpful when further evaluation into treatment-level categories of exposed individuals is needed. The micro-PCC assay has significant advantages for early triage biodosimetry when compared to other cytogenetic biodosimetry assays. It is rapid, cost-effective, and could pave the way to its subsequent automation.
Collapse
|
24
|
Ainsbury EA, Samaga D, Della Monaca S, Marrale M, Bassinet C, Burbidge CI, Correcher V, Discher M, Eakins J, Fattibene P, Güçlü I, Higueras M, Lund E, Maltar-Strmecki N, McKeever S, Rääf CL, Sholom S, Veronese I, Wieser A, Woda C, Trompier F. UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS. RADIATION PROTECTION DOSIMETRY 2018; 178:382-404. [PMID: 28981844 DOI: 10.1093/rpd/ncx125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 05/16/2023]
Abstract
Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 ORQ, UK
| | - Daniel Samaga
- Bundesamt für Strahlenschutz, Ingolstaedter Landstr. 1, 85764 Oberschleissheim, Germany
| | - Sara Della Monaca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry and Advanced Technologies Network Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Celine Bassinet
- Institut de radioprotection et de sûreté nucléaire, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, Avenue de la Division Leclerc 92260 Fontenay-aux-Roses, Paris, France
| | - Christopher I Burbidge
- Environmental Protection Agency, Office of Radiological Protection, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland
| | - Virgilio Correcher
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de la Moncloa, Complutense, 40, 28040 Madrid, Spain
| | - Michael Discher
- University of Salzburg, Department of Geography and Geology, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Jon Eakins
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 ORQ, UK
| | - Paola Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Mustafa Kemal Mahallesi, Dumlupinar Bulvari, No: 192, 06510, Çankaya - Ankara, Turkey
| | - Manuel Higueras
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
| | - Eva Lund
- Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Nadica Maltar-Strmecki
- Ruder Boškovic Institute, Division of Physical Chemistry, Laboratory for Magnetic Resonances, Bijenicka cesta 54,10000 Zagreb, Croatia
| | - Stephen McKeever
- Oklahoma State University, 145 Physical Sciences, Campus, Stillwater, OK 74078, USA
| | - Christopher L Rääf
- Medicinsk strålningsfysik, Institutionen för Translationell Medicin, Lunds universitet, Skånes universitetssjukhus SUS, SE-205 02 Malmö, Sweden
| | - Sergey Sholom
- Oklahoma State University, 145 Physical Sciences, Campus, Stillwater, OK 74078, USA
| | - Ivan Veronese
- Università degli Studi di Milano, Department of Physics and National Institute of Nuclear Physics, Section of Milan, Via Celoria 16, 20133 - Milano, Italy
| | - Albrecht Wieser
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Clemens Woda
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Francois Trompier
- Institut de radioprotection et de sûreté nucléaire, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, Avenue de la Division Leclerc 92260 Fontenay-aux-Roses, Paris, France
| |
Collapse
|
25
|
Bensimon Etzol J, Valente M, Altmeyer S, Bettencourt C, Bouvet S, Cosler G, Desangles F, Drouet M, Entine F, Hérodin F, Jourquin F, Lecompte Y, Martigne P, Michel X, Pateux J, Ugolin N, Chevillard S. DosiKit, a New Portable Immunoassay for Fast External Irradiation Biodosimetry. Radiat Res 2017; 190:176-185. [DOI: 10.1667/rr14760.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marco Valente
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | | | | | - Guillaume Cosler
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | - Michel Drouet
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Fabrice Entine
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Francis Hérodin
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Flora Jourquin
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Yannick Lecompte
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Patrick Martigne
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Xavier Michel
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Jérôme Pateux
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | |
Collapse
|
26
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
27
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Oestreicher U, Samaga D, Ainsbury E, Antunes AC, Baeyens A, Barrios L, Beinke C, Beukes P, Blakely WF, Cucu A, De Amicis A, Depuydt J, De Sanctis S, Di Giorgio M, Dobos K, Dominguez I, Duy PN, Espinoza ME, Flegal FN, Figel M, Garcia O, Monteiro Gil O, Gregoire E, Guerrero-Carbajal C, Güçlü İ, Hadjidekova V, Hande P, Kulka U, Lemon J, Lindholm C, Lista F, Lumniczky K, Martinez-Lopez W, Maznyk N, Meschini R, M’kacher R, Montoro A, Moquet J, Moreno M, Noditi M, Pajic J, Radl A, Ricoul M, Romm H, Roy L, Sabatier L, Sebastià N, Slabbert J, Sommer S, Stuck Oliveira M, Subramanian U, Suto Y, Que T, Testa A, Terzoudi G, Vral A, Wilkins R, Yanti L, Zafiropoulos D, Wojcik A. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int J Radiat Biol 2016; 93:20-29. [DOI: 10.1080/09553002.2016.1233370] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Daniel Samaga
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | | | | | - Julie Depuydt
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | | | - Katalin Dobos
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | | | - Farrah N. Flegal
- Canadian Nuclear Laboratories, Radiobiology & Health, Chalk River, Ontario, Canada
| | - Markus Figel
- Helmholtz Zentrum München, Auswertungsstelle für Strahlendosimeter
| | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones (CPHR), La Havana. Cuba
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - İnci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Traning Center Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine: National University of Singapore, Singapore
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Nataliya Maznyk
- Institute for Medical Radiology of National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| | | | - Radia M’kacher
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Alegria Montoro
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Spain
| | | | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Analía Radl
- Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina
| | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Horst Romm
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Natividad Sebastià
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - Uma Subramanian
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | - Yumiko Suto
- National Institute of Radiological Sciences, Chiba, Japan
| | - Tran Que
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research “Demokritos”, NCSR”D”, Greece
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | - LusiYanti Yanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Batan, Indonesia
| | | | - Andrzej Wojcik
- Stockholm University, Institute Molecular Biosciences, Stockholm, Sweden
| |
Collapse
|
29
|
Kulka U, Abend M, Ainsbury E, Badie C, Barquinero JF, Barrios L, Beinke C, Bortolin E, Cucu A, De Amicis A, Domínguez I, Fattibene P, Frøvig, AM, Gregoire E, Guogyte K, Hadjidekova V, Jaworska A, Kriehuber R, Lindholm C, Lloyd D, Lumniczky K, Lyng F, Meschini R, Mörtl S, Della Monaca S, Monteiro Gil O, Montoro A, Moquet J, Moreno M, Oestreicher U, Palitti F, Pantelias G, Patrono C, Piqueret-Stephan L, Port M, Prieto MJ, Quintens R, Ricoul M, Romm H, Roy L, Sáfrány G, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Turai I, Trompier F, Valente M, Vaz P, Voisin P, Vral A, Woda C, Zafiropoulos D, Wojcik A. RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol 2016; 93:2-14. [DOI: 10.1080/09553002.2016.1230239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | - David Lloyd
- affiliated to Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Fiona Lyng
- Dublin Institute of Technology, Dublin, Ireland
| | | | - Simone Mörtl
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montoro
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Laure Piqueret-Stephan
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - María Jesus Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Géza Sáfrány
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Natividad Sebastià
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | - Georgia Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Istvan Turai
- affiliated to National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Philippe Voisin
- affiliated to Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Anne Vral
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Clemens Woda
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Andrzej Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| |
Collapse
|
30
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
31
|
Ainsbury EA, Higueras M, Puig P, Einbeck J, Samaga D, Barquinero JF, Barrios L, Brzozowska B, Fattibene P, Gregoire E, Jaworska A, Lloyd D, Oestreicher U, Romm H, Rothkamm K, Roy L, Sommer S, Terzoudi G, Thierens H, Trompier F, Vral A, Woda C. Uncertainty of fast biological radiation dose assessment for emergency response scenarios. Int J Radiat Biol 2016; 93:127-135. [PMID: 27572921 DOI: 10.1080/09553002.2016.1227106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. MATERIALS AND METHODS Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. RESULTS The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. CONCLUSIONS Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK
| | - Manuel Higueras
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK.,b Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Pedro Puig
- b Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Jochen Einbeck
- c Department of Mathematical Sciences , Durham University , Durham , UK
| | - Daniel Samaga
- d Bundesamt für Strahlenschutz (BfS) , Munich , Germany
| | | | | | - Beata Brzozowska
- e Stockholm University , Centre for Radiation Protection Research, Department of Molecular Bioscience, The Wenner-Gren Institute , Stockholm , Sweden.,f University of Warsaw , Faculty of Physics, Department of Biomedical Physics , Warsaw , Poland
| | | | - Eric Gregoire
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Alicja Jaworska
- i Norwegian Radiation Protection Authority (NRPA) , Østerås , Norway
| | - David Lloyd
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK
| | | | - Horst Romm
- d Bundesamt für Strahlenschutz (BfS) , Munich , Germany
| | - Kai Rothkamm
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK.,j University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Laurence Roy
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Sylwester Sommer
- k Institute of Nuclear Chemistry and Technology (ICHTJ) , Warsaw , Poland
| | - Georgia Terzoudi
- l National Centre for Scientific Research Demokritos , Athens , Greece
| | | | - Francois Trompier
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Anne Vral
- m Ghent University , Ghent , Belgium
| | - Clemens Woda
- n Helmholtz Zentrum München (HMGU) , Neuherberg , Germany
| |
Collapse
|
32
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
33
|
McKeever S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Sholom S, McKeever SWS. INTEGRATED CIRCUITS FROM MOBILE PHONES AS POSSIBLE EMERGENCY OSL/TL DOSIMETERS. RADIATION PROTECTION DOSIMETRY 2016; 170:398-401. [PMID: 26516131 DOI: 10.1093/rpd/ncv446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this article, optically stimulated luminescence (OSL) data are presented from integrated circuits (ICs) extracted from mobile phones. The purpose is to evaluate the potential of using OSL from components in personal electronic devices such as smart phones as a means of emergency dosimetry in the event of a large-scale radiological incident. ICs were extracted from five different makes and models of mobile phone. Sample preparation procedures are described, and OSL from the IC samples following irradiation using a (90)Sr/(90)Y source is presented. Repeatability, sensitivity, dose responses, minimum measureable doses, stability and fading data were examined and are described. A protocol for measuring absorbed dose is presented, and it was concluded that OSL from these components is a viable method for assessing dose in the days following a radiological incident.
Collapse
Affiliation(s)
- S Sholom
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
| | - S W S McKeever
- Radiation Dosimetry Group, Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
35
|
Romm H, Ainsbury EA, Barquinero JF, Barrios L, Beinke C, Cucu A, Domene MM, Filippi S, Monteiro Gil O, Gregoire E, Hadjidekova V, Hatzi V, Lindholm C, M´ kacher R, Montoro A, Moquet J, Noditi M, Oestreicher U, Palitti F, Pantelias G, Prieto MJ, Popescu I, Rothkamm K, Sebastià N, Sommer S, Terzoudi G, Testa A, Wojcik A. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int J Radiat Biol 2016; 93:110-117. [DOI: 10.1080/09553002.2016.1206228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Mercedes Moreno Domene
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Octávia Monteiro Gil
- Centro de Ciêincias e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Vasia Hatzi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Radhia M´ kacher
- Commissariat à l´ Énergie Atomique, Paris, France
- Cell Environment, Paris, France
| | | | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, UK
| | - Mihaela Noditi
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | - Fabrizio Palitti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - María Jesús Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irina Popescu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Kai Rothkamm
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Andrzej Wojcik
- Stockholm University, Department of Molecular Biosciences, Stockholm, Sweden and Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
36
|
Depuydt J, Baeyens A, Barnard S, Beinke C, Benedek A, Beukes P, Buraczewska I, Darroudi F, De Sanctis S, Dominguez I, Monteiro Gil O, Hadjidekova V, Kis E, Kulka U, Lista F, Lumniczky K, M’kacher R, Moquet J, Obreja D, Oestreicher U, Pajic J, Pastor N, Popova L, Regalbuto E, Ricoul M, Sabatier L, Slabbert J, Sommer S, Testa A, Thierens H, Wojcik A, Vral A. RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay). Int J Radiat Biol 2016; 93:36-47. [DOI: 10.1080/09553002.2016.1206231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Julie Depuydt
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ans Baeyens
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Christina Beinke
- Bundeswehr Institut für Radiobiology, Universität Ulm, Munich, Germany
| | - Anett Benedek
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Philip Beukes
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | | | | | | | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Enikő Kis
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Radhia M’kacher
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Doina Obreja
- Institutul National de Sanatate Publica, Bucuresti, Romania
| | - Ursula Oestreicher
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Jelena Pajic
- Serbian Institute of Occupational Health “Dr Dragomir Karajovic”, Radiation Protection Center, Belgrado, Serbia
| | | | - Ljubomira Popova
- National Center for Radiobiology and Radiation Protection, Sofia, Bulgaria
| | | | - Michelle Ricoul
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Jacobus Slabbert
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | | | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
37
|
Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, Rößler U, Vral A, Vandevoorde C, Wojewódzka M, Rothkamm K. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol 2016; 93:58-64. [DOI: 10.1080/09553002.2016.1207822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Albena Staynova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Carita Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Octávia Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Vanda Martins
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Ute Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Charlot Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
- Themba LABS, National Research Foundation, Somerset West, South Africa
| | - Maria Wojewódzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
- Department of Radiotherapy & Radio-Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Gregoire E, Ainsbury L, Barrios L, Bassinet C, Fattibene P, Kulka U, Oestreicher U, Pantelias G, Terzoudi G, Trompier F, Voisin P, Vral A, Wojcik A, Roy L. The harmonization process to set up and maintain an operational biological and physical retrospective dosimetry network: QA QM applied to the RENEB network. Int J Radiat Biol 2016; 93:81-86. [DOI: 10.1080/09553002.2016.1206232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Liz Ainsbury
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | | | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | | | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Neuherberg, Germany
| | - Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Neuherberg, Germany
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Francois Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Philippe Voisin
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
39
|
Beinke C, Port M, Riecke A, Ruf CG, Abend M. Adaption of the Cytokinesis-Block Micronucleus Cytome Assay for Improved Triage Biodosimetry. Radiat Res 2016; 185:461-72. [DOI: 10.1667/rr14294.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- C. Beinke
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - A. Riecke
- Department of Hematology, Federal Armed Forces Hospital, 89081 Ulm, Germany; and
| | - C. G. Ruf
- Department of Urology, Federal Armed Forces Hospital, 56072 Koblenz, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| |
Collapse
|
40
|
Bertucci A, Smilenov LB, Turner HC, Amundson SA, Brenner DJ. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:53-59. [PMID: 26791381 PMCID: PMC4792265 DOI: 10.1007/s00411-015-0628-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 11/28/2015] [Indexed: 05/29/2023]
Abstract
Developing new methods for radiation biodosimetry has been identified as a high-priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose rates due to their geographical position and sheltering conditions, and dose rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios, high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The Rapid Automated Biodosimetry Tool (RABiT) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 h. The acute dose was delivered at ~1.03 Gy/min and the low dose rate exposure at ~0.31 Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose rate starting at 2 Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5 Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose rate exposure.
Collapse
Affiliation(s)
- Antonella Bertucci
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Lubomir B Smilenov
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
41
|
Standards in biological dosimetry: A requirement to perform an appropriate dose assessment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:115-22. [DOI: 10.1016/j.mrgentox.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
42
|
Smith RW, Eakins JS, Hager LG, Rothkamm K, Tanner RJ. Development of a retrospective/fortuitous accident dosimetry service based on OSL of mobile phones. RADIATION PROTECTION DOSIMETRY 2015; 164:89-92. [PMID: 25841040 DOI: 10.1093/rpd/ncu370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Work is presented on the development of a retrospective/fortuitous accident dosimetry service using optically stimulated luminescence of resistors found in mobile phones to determine the doses of radiation to members of the public following a radiological accident or terrorist incident. The system is described and discussed in terms of its likely accuracy in a real incident.
Collapse
Affiliation(s)
- R W Smith
- Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon OX11 0RQ, UK
| | - J S Eakins
- Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon OX11 0RQ, UK
| | - L G Hager
- Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon OX11 0RQ, UK
| | - K Rothkamm
- Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon OX11 0RQ, UK
| | - R J Tanner
- Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards (CRCE), Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|