1
|
Wang J, Shi F, Yu L. Effects of acute stress on biological motion perception. PLoS One 2024; 19:e0310502. [PMID: 39292714 PMCID: PMC11410201 DOI: 10.1371/journal.pone.0310502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Biological motion perception is an essential part of the cognitive process. Stress can affect the cognitive process. The present study explored the intrinsic ERP features of the effects of acute psychological stress on biological motion perception. The results contributed scientific evidence for the adaptive behavior changes under acute stress. After a mental arithmetic task was used to induce stress, the paradigm of point-light displays was used to evaluate biological motion perception. Longer reaction time and lower accuracy were found in the inverted walking condition than in the upright walking condition, which was called the "inversion effect". The P2 peak amplitude and the LPP mean amplitude were significantly higher in the local inverted perception than in the local upright walking condition. Compared to the control condition, the stress condition induced lower RT, shorter P1 peak latency of biological motion perception, lower P2 peak amplitude and LPP mean amplitude, and higher N330 peak amplitude. There was an "inversion effect" in biological motion perception. This effect was related to the structural characteristics of biological motion perception but unrelated to the state of acute psychological stress. Acute psychological stress accelerated the reaction time and enhanced attention control of biological motion perception. Attention resources were used earlier, and less attentional investment was made in the early stage of biological motion perception processing. In the late stage, a continuous weakening of inhibition was shown in the parieto-occipital area.
Collapse
Affiliation(s)
- Jifu Wang
- College of Education and Physical Education, Yangtze University, Jingzhou, China
| | - Fang Shi
- College of Education and Physical Education, Yangtze University, Jingzhou, China
| | - Lin Yu
- Neurocognition and Action-Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Siemann J, Kroeger A, Bender S, Muthuraman M, Siniatchkin M. Segregated Dynamical Networks for Biological Motion Perception in the Mu and Beta Range Underlie Social Deficits in Autism. Diagnostics (Basel) 2024; 14:408. [PMID: 38396447 PMCID: PMC10887711 DOI: 10.3390/diagnostics14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Biological motion perception (BMP) correlating with a mirror neuron system (MNS) is attenuated in underage individuals with autism spectrum disorder (ASD). While BMP in typically-developing controls (TDCs) encompasses interconnected MNS structures, ASD data hint at segregated form and motion processing. This coincides with less fewer long-range connections in ASD than TDC. Using BMP and electroencephalography (EEG) in ASD, we characterized directionality and coherence (mu and beta frequencies). Deficient BMP may stem from desynchronization thereof in MNS and may predict social-communicative deficits in ASD. Clinical considerations thus profit from brain-behavior associations. METHODS Point-like walkers elicited BMP using 15 white dots (walker vs. scramble in 21 ASD (mean: 11.3 ± 2.3 years) vs. 23 TDC (mean: 11.9 ± 2.5 years). Dynamic Imaging of Coherent Sources (DICS) characterized the underlying EEG time-frequency causality through time-resolved Partial Directed Coherence (tPDC). Support Vector Machine (SVM) classification validated the group effects (ASD vs. TDC). RESULTS TDC showed MNS sources and long-distance paths (both feedback and bidirectional); ASD demonstrated distinct from and motion sources, predominantly local feedforward connectivity, and weaker coherence. Brain-behavior correlations point towards dysfunctional networks. SVM successfully classified ASD regarding EEG and performance. CONCLUSION ASD participants showed segregated local networks for BMP potentially underlying thwarted complex social interactions. Alternative explanations include selective attention and global-local processing deficits. SIGNIFICANCE This is the first study applying source-based connectivity to reveal segregated BMP networks in ASD regarding structure, cognition, frequencies, and temporal dynamics that may explain socio-communicative aberrancies.
Collapse
Affiliation(s)
- Julia Siemann
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Evangelical Hospital Bielefeld, 33617 Bielefeld, Germany;
| | - Anne Kroeger
- Clinic of Child and Adolescent Psychiatry, Goethe-University of Frankfurt am Main, 60389 Frankfurt, Germany (S.B.)
| | - Stephan Bender
- Clinic of Child and Adolescent Psychiatry, Goethe-University of Frankfurt am Main, 60389 Frankfurt, Germany (S.B.)
- Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), University Clinic Würzburg, 97080 Würzburg, Germany;
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Evangelical Hospital Bielefeld, 33617 Bielefeld, Germany;
- University Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Tong X, Xie H, Fonzo GA, Zhao K, Satterthwaite TD, Carlisle N, Zhang Y. Dissecting Symptom-linked Dimensions of Resting-State Electroencephalographic Functional Connectivity in Autism with Contrastive Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541841. [PMID: 37292736 PMCID: PMC10245871 DOI: 10.1101/2023.05.22.541841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by social interaction deficits, communication difficulties, and restricted/repetitive behaviors or fixated interests. Despite its high prevalence, development of effective therapy for ASD is hindered by its symptomatic and neurophysiological heterogeneities. To collectively dissect the ASD heterogeneity in neurophysiology and symptoms, we develop a new analytical framework combining contrastive learning and sparse canonical correlation analysis to identify resting-state EEG connectivity dimensions linked to ASD behavioral symptoms within 392 ASD samples. Two dimensions are successfully identified, showing significant correlations with social/communication deficits (r = 0.70) and restricted/repetitive behaviors (r = 0.45), respectively. We confirm the robustness of these dimensions through cross-validation and further demonstrate their generalizability using an independent dataset of 223 ASD samples. Our results reveal that the right inferior parietal lobe is the core region displaying EEG activity associated with restricted/repetitive behaviors, and functional connectivity between the left angular gyrus and the right middle temporal gyrus is a promising biomarker of social/communication deficits. Overall, these findings provide a promising avenue to parse ASD heterogeneity with high clinical translatability, paving the way for treatment development and precision medicine for ASD.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, TX, USA
| | - Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Nancy Carlisle
- Department of Psychology, Lehigh University, Bethlehem, PA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
4
|
Knight EJ, Freedman EG, Myers EJ, Berruti AS, Oakes LA, Cao CZ, Molholm S, Foxe JJ. Severely Attenuated Visual Feedback Processing in Children on the Autism Spectrum. J Neurosci 2023; 43:2424-2438. [PMID: 36859306 PMCID: PMC10072299 DOI: 10.1523/jneurosci.1192-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.
Collapse
Affiliation(s)
- Emily J Knight
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Development and Behavioral Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, New York 14642
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Evan J Myers
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Alaina S Berruti
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leona A Oakes
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Cody Zhewei Cao
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sophie Molholm
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
5
|
Webb SJ, Naples AJ, Levin AR, Hellemann G, Borland H, Benton J, Carlos C, McAllister T, Santhosh M, Seow H, Atyabi A, Bernier R, Chawarska K, Dawson G, Dziura J, Faja S, Jeste S, Murias M, Nelson CA, Sabatos-DeVito M, Senturk D, Shic F, Sugar CA, McPartland JC. The Autism Biomarkers Consortium for Clinical Trials: Initial Evaluation of a Battery of Candidate EEG Biomarkers. Am J Psychiatry 2023; 180:41-49. [PMID: 36000217 PMCID: PMC10027395 DOI: 10.1176/appi.ajp.21050485] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Numerous candidate EEG biomarkers have been put forward for use in clinical research on autism spectrum disorder (ASD), but biomarker development has been hindered by limited attention to the psychometric properties of derived variables, inconsistent results across small studies, and variable methodology. The authors evaluated the basic psychometric properties of a battery of EEG assays for their potential suitability as biomarkers in clinical trials. METHODS This was a large, multisite, naturalistic study in 6- to 11-year-old children who either had an ASD diagnosis (N=280) or were typically developing (N=119). The authors evaluated an EEG battery composed of well-studied assays of resting-state activity, face perception (faces task), biological motion perception, and visual evoked potentials (VEPs). Biomarker psychometrics were evaluated in terms of acquisition rates, construct performance, and 6-week stability. Preliminary evaluation of use was explored through group discrimination and phenotypic correlations. RESULTS Three assays (resting state, faces task, and VEP) show promise in terms of acquisition rates and construct performance. Six-week stability values in the ASD group were moderate (intraclass correlations ≥0.66) for the faces task latency of the P1 and N170, the VEP amplitude of N1 and P1, and resting alpha power. Group discrimination and phenotype correlations were primarily observed for the faces task P1 and N170. CONCLUSIONS In the context of a large-scale, rigorous evaluation of candidate EEG biomarkers for use in ASD clinical trials, neural response to faces emerged as a promising biomarker for continued evaluation. Resting-state activity and VEP yielded mixed results. The study's biological motion perception assay failed to display construct performance. The results provide information about EEG biomarker performance that is relevant for the next stage of biomarker development efforts focused on context of use.
Collapse
Affiliation(s)
- Sara Jane Webb
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Adam J Naples
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - April R Levin
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Gerhard Hellemann
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Heather Borland
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Jessica Benton
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Carter Carlos
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Takumi McAllister
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Megha Santhosh
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Helen Seow
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Adham Atyabi
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Raphael Bernier
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Katarzyna Chawarska
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Geraldine Dawson
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - James Dziura
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Susan Faja
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Shafali Jeste
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Michael Murias
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Charles A Nelson
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Maura Sabatos-DeVito
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Damla Senturk
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Frederick Shic
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - Catherine A Sugar
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| | - James C McPartland
- Center for Child Health, Behavior, and Development and Seattle Children's Research Institute, Seattle (Webb, Borland, Benton, Santhosh, Shic); Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle (Webb, Bernier); Yale Child Study Center (Naples, Carlos, McAllister, Chawarska, McPartland), Yale Center for Clinical Investigation (Seow), and Department of Emergency Medicine (Dziura), Yale University, New Haven, Conn.; Department of Neurology, Boston Children's Hospital, Boston (Levin); Department of Neurology, Harvard Medical School, Boston (Levin); Department of Psychiatry and Biobehavioral Sciences (Hellemann, Jeste, Senturk, Sugar) and Department of Biostatistics (Senturk, Sugar), University of California Los Angeles, Los Angeles; Department of Computer Science, University of Colorado, Colorado Springs (Atyabi); Duke Center for Autism and Brain Development (Dawson, Sabatos-DeVito) and Department of Psychiatry and Behavioral Sciences (Dawson), Duke University, Durham, N.C.; Department of Pediatrics, Harvard University, Boston (Faja, Nelson); Division of Developmental Medicine, Boston Children's Hospital, Boston (Faja, Nelson); Department of Medical Social Sciences, Northwestern University, Chicago (Murias); Graduate School of Education, Harvard University, Boston (Nelson); Department of Pediatrics, University of Washington, Seattle (Shic)
| |
Collapse
|
6
|
Block CL, Eroglu O, Mague SD, Smith CJ, Ceasrine AM, Sriworarat C, Blount C, Beben KA, Malacon KE, Ndubuizu N, Talbot A, Gallagher NM, Chan Jo Y, Nyangacha T, Carlson DE, Dzirasa K, Eroglu C, Bilbo SD. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Rep 2022; 40:111161. [PMID: 35926455 PMCID: PMC9438555 DOI: 10.1016/j.celrep.2022.111161] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational exposure to environmental toxins and socioeconomic stressors is epidemiologically linked to neurodevelopmental disorders with strong male bias, such as autism. We model these prenatal risk factors in mice by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly activates the maternal immune system. Only male offspring display long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions. Cellularly, prenatal stressors diminish microglial function within the anterior cingulate cortex, a central node of the social coding network, in males during early postnatal development. Precise inhibition of microglial phagocytosis within the anterior cingulate cortex (ACC) of wild-type (WT) mice during the same critical period mimics the impact of prenatal stressors on a male-specific behavior, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development. Block et al. show that combined exposure to air pollution and maternal stress during pregnancy activates the maternal immune system and induces male-specific impairments in social behavior and circuit connectivity in offspring. Cellularly, prenatal stressors diminish microglia phagocytic function, and inhibition of microglia phagocytosis phenocopies behavioral deficits from prenatal stressors.
Collapse
Affiliation(s)
- Carina L Block
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Oznur Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen D Mague
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | | | - Cameron Blount
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen A Beben
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Karen E Malacon
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Nkemdilim Ndubuizu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Austin Talbot
- Department of Statistical Science, Duke University, Durham, NC 27710, USA
| | - Neil M Gallagher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Young Chan Jo
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Timothy Nyangacha
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David E Carlson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Knight EJ, Krakowski AI, Freedman EG, Butler JS, Molholm S, Foxe JJ. Attentional influences on neural processing of biological motion in typically developing children and those on the autism spectrum. Mol Autism 2022; 13:33. [PMID: 35850696 PMCID: PMC9290301 DOI: 10.1186/s13229-022-00512-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological motion imparts rich information related to the movement, actions, intentions and affective state of others, which can provide foundational support for various aspects of social cognition and behavior. Given that atypical social communication and cognition are hallmark symptoms of autism spectrum disorder (ASD), many have theorized that a potential source of this deficit may lie in dysfunctional neural mechanisms of biological motion processing. Synthesis of existing literature provides some support for biological motion processing deficits in autism spectrum disorder, although high study heterogeneity and inconsistent findings complicate interpretation. Here, we attempted to reconcile some of this residual controversy by investigating a possible modulating role for attention in biological motion processing in ASD. METHODS We employed high-density electroencephalographic recordings while participants observed point-light displays of upright, inverted and scrambled biological motion under two task conditions to explore spatiotemporal dynamics of intentional and unintentional biological motion processing in children and adolescents with ASD (n = 27), comparing them to a control cohort of neurotypical (NT) participants (n = 35). RESULTS Behaviorally, ASD participants were able to discriminate biological motion with similar accuracy to NT controls. However, electrophysiologic investigation revealed reduced automatic selective processing of upright biologic versus scrambled motion stimuli in ASD relative to NT individuals, which was ameliorated when task demands required explicit attention to biological motion. Additionally, we observed distinctive patterns of covariance between visual potentials evoked by biological motion and functional social ability, such that Vineland Adaptive Behavior Scale-Socialization domain scores were differentially associated with biological motion processing in the N1 period in the ASD but not the NT group. LIMITATIONS The cross-sectional design of this study does not allow us to definitively answer the question of whether developmental differences in attention to biological motion cause disruption in social communication, and the sample was limited to children with average or above cognitive ability. CONCLUSIONS Together, these data suggest that individuals with ASD are able to discriminate, with explicit attention, biological from non-biological motion but demonstrate diminished automatic neural specificity for biological motion processing, which may have cascading implications for the development of higher-order social cognition.
Collapse
Affiliation(s)
- Emily J Knight
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, The Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA. .,Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 671, Rochester, NY, 14642, USA.
| | - Aaron I Krakowski
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, The Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - John S Butler
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,School of Mathematical Sciences, Technological University Dublin, Kevin Street, Dublin, Ireland
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, The Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA.,The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, The Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA. .,The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA. .,Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Cheron G, Ristori D, Petieau M, Simar C, Zarka D, Cebolla AM. Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction. Front Psychol 2022; 13:792872. [PMID: 35310269 PMCID: PMC8929400 DOI: 10.3389/fpsyg.2022.792872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta–theta–alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Simar
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Hirai M, Hakuno Y. Electrophysiological evidence of global structure-from-motion processing of biological motion in 6-month-Old infants. Neuropsychologia 2022; 170:108229. [DOI: 10.1016/j.neuropsychologia.2022.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
|
10
|
Bogdan PC, Moore M, Kuznietsov I, Frank JD, Federmeier KD, Dolcos S, Dolcos F. Direct feedback and social conformity promote behavioral change via mechanisms indexed by centroparietal positivity: Electrophysiological evidence from a role-swapping ultimatum game. Psychophysiology 2021; 59:e13985. [PMID: 34931318 DOI: 10.1111/psyp.13985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Our behavior is shaped by multiple factors, including direct feedback (seeing the outcomes of our past actions) and social observation (in part, via a drive to conform to other peoples' behaviors). However, it remains unclear how these two processes are linked in the context of behavioral change. This is important to investigate, as behavioral change is associated with distinct neural correlates that reflect specific aspects of processing, such as information integration and rule updating. To clarify whether these processes characterize both direct learning and conformity, we elicited the two within the same task, using a role-swapping version of the Ultimatum Game-a fairness paradigm where subjects decide how to share a pot of money with other players-while electroencephalography (EEG) data were recorded. Behavioral results showed that subjects decided how to divide the pot based on both direct feedback (seeing whether their past proposals were accepted or rejected) and social observation (copying the splits that others just proposed). Converging EEG evidence revealed that increased centroparietal positivity (P2, P3b, and late positivity) indexed behavioral changes motivated by direct feedback and those motivated by drives to conform. However, exploratory analyses also suggest that these two motivating factors may also be dissociable, and that frontal midline theta oscillations may predict behavioral changes linked to direct feedback but not conformity. Overall, this study provides novel electrophysiological evidence regarding the different forms of behavioral change. These findings are also relevant for understanding the mechanisms of social information processing that underlie successful cooperation.
Collapse
Affiliation(s)
- Paul C Bogdan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Matthew Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Illia Kuznietsov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Human and Animal Physiology, Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | - Justin D Frank
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kara D Federmeier
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sanda Dolcos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Florin Dolcos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Foglia V, Siddiqui H, Khan Z, Liang S, Rutherford MD. Distinct Biological Motion Perception in Autism Spectrum Disorder: A Meta-Analysis. J Autism Dev Disord 2021; 52:4843-4860. [PMID: 34783992 PMCID: PMC9556430 DOI: 10.1007/s10803-021-05352-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
If neurotypical people rely on specialized perceptual mechanisms when perceiving biological motion, then one would not expect an association between task performance and IQ. However, if those with ASD recruit higher order cognitive skills when solving biological motion tasks, performance may be predicted by IQ. In a meta-analysis that included 19 articles, we found an association between biological motion perception and IQ among observers with ASD but no significant relationship among typical observers. If the task required emotion perception, then there was an even stronger association with IQ in the ASD group.
Collapse
Affiliation(s)
- Victoria Foglia
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Hasan Siddiqui
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Zainab Khan
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Stephanie Liang
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - M D Rutherford
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
12
|
Sotoodeh MS, Taheri-Torbati H, Hadjikhani N, Lassalle A. Preserved action recognition in children with autism spectrum disorders: Evidence from an EEG and eye-tracking study. Psychophysiology 2020; 58:e13740. [PMID: 33280150 DOI: 10.1111/psyp.13740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 01/24/2023]
Abstract
Individuals with Autism Spectrum Disorder (ASD) have difficulties recognizing and understanding others' actions. The goal of the present study was to determine whether children with and without ASD show differences in the way they process stimuli depicting Biological Motion (BM). Thirty-two children aged 7-16 (16 ASD and 16 typically developing (TD) controls) participated in two experiments. In the first experiment, electroencephalography (EEG) was used to record low (8-10 Hz) and high (10-13 Hz) mu and beta (15-25 Hz) bands during the observation three different Point Light Displays (PLD) of action. In the second experiment, participants answered to action-recognition tests and their accuracy and response time were recorded, together with their eye-movements. There were no group differences in EEG data (first experiment), indicating that children with and without ASD do not differ in their mu suppression (8-13 Hz) and beta activity (15-25 Hz). However, behavioral data from second experiment revealed that children with ASD were less accurate and slower than TD children in their responses to an action recognition task. In addition, eye-tracking data indicated that children with ASD paid less attention to the body compared to the background when watching PLD stimuli. Our results indicate that the more the participants focused on the PLDs, the more they displayed mu suppressions. These results could challenge the results of previous studies that had not controlled for visual attention and found a possible deficit in MNS functions of individuals with ASD. We discuss possible mechanisms and interpretations.
Collapse
Affiliation(s)
| | | | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.,Gillberg Neurospychiatry Center, University of Gothenburg, Gothenburg, Sweden
| | - Amandine Lassalle
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
McPartland JC, Bernier RA, Jeste SS, Dawson G, Nelson CA, Chawarska K, Earl R, Faja S, Johnson SP, Sikich L, Brandt CA, Dziura JD, Rozenblit L, Hellemann G, Levin AR, Murias M, Naples AJ, Platt ML, Sabatos-DeVito M, Shic F, Senturk D, Sugar CA, Webb SJ. The Autism Biomarkers Consortium for Clinical Trials (ABC-CT): Scientific Context, Study Design, and Progress Toward Biomarker Qualification. Front Integr Neurosci 2020; 14:16. [PMID: 32346363 PMCID: PMC7173348 DOI: 10.3389/fnint.2020.00016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Clinical research in neurodevelopmental disorders remains reliant upon clinician and caregiver measures. Limitations of these approaches indicate a need for objective, quantitative, and reliable biomarkers to advance clinical research. Extant research suggests the potential utility of multiple candidate biomarkers; however, effective application of these markers in trials requires additional understanding of replicability, individual differences, and intra-individual stability over time. The Autism Biomarkers Consortium for Clinical Trials (ABC-CT) is a multi-site study designed to investigate a battery of electrophysiological (EEG) and eye-tracking (ET) indices as candidate biomarkers for autism spectrum disorder (ASD). The study complements published biomarker research through: inclusion of large, deeply phenotyped cohorts of children with ASD and typical development; a longitudinal design; a focus on well-evidenced candidate biomarkers harmonized with an independent sample; high levels of clinical, regulatory, technical, and statistical rigor; adoption of a governance structure incorporating diverse expertise in the ASD biomarker discovery and qualification process; prioritization of open science, including creation of a repository containing biomarker, clinical, and genetic data; and use of economical and scalable technologies that are applicable in developmental populations and those with special needs. The ABC-CT approach has yielded encouraging results, with one measure accepted into the FDA’s Biomarker Qualification Program to date. Through these advances, the ABC-CT and other biomarker studies in progress hold promise to deliver novel tools to improve clinical trials research in ASD.
Collapse
Affiliation(s)
| | - Raphael A Bernier
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Shafali S Jeste
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, United States
| | - Charles A Nelson
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Harvard University, Boston, MA, United States
| | | | - Rachel Earl
- Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| | - Susan Faja
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Harvard University, Boston, MA, United States
| | - Scott P Johnson
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Linmarie Sikich
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, United States
| | | | | | | | - Gerhard Hellemann
- University of California, Los Angeles, Los Angeles, CA, United States
| | - April R Levin
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Harvard University, Boston, MA, United States
| | | | - Adam J Naples
- Yale Child Study Center, New Haven, CT, United States
| | | | - Maura Sabatos-DeVito
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, United States
| | - Frederick Shic
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Damla Senturk
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine A Sugar
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Sara J Webb
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | | |
Collapse
|
14
|
Webster PJ, Frum C, Kurowski-Burt A, Bauer CE, Wen S, Ramadan JH, Baker KA, Lewis JW. Processing of Real-World, Dynamic Natural Stimuli in Autism is Linked to Corticobasal Function. Autism Res 2020; 13:539-549. [PMID: 31944557 PMCID: PMC7418054 DOI: 10.1002/aur.2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/14/2019] [Accepted: 11/24/2019] [Indexed: 11/06/2022]
Abstract
Many individuals with autism spectrum disorder (ASD) have been shown to perceive everyday sensory information differently compared to peers without autism. Research examining these sensory differences has primarily utilized nonnatural stimuli or natural stimuli using static photos with few having utilized dynamic, real-world nonverbal stimuli. Therefore, in this study, we used functional magnetic resonance imaging to characterize brain activation of individuals with high-functioning autism when viewing and listening to a video of a real-world scene (a person bouncing a ball) and anticipating the bounce. We investigated both multisensory and unisensory processing and hypothesized that individuals with ASD would show differential activation in (a) primary auditory and visual sensory cortical and association areas, and in (b) cortical and subcortical regions where auditory and visual information is integrated (e.g. temporal-parietal junction, pulvinar, superior colliculus). Contrary to our hypotheses, the whole-brain analysis revealed similar activation between the groups in these brain regions. However, compared to controls the ASD group showed significant hypoactivation in the left intraparietal sulcus and left putamen/globus pallidus. We theorize that this hypoactivation reflected underconnectivity for mediating spatiotemporal processing of the visual biological motion stimuli with the task demands of anticipating the timing of the bounce event. The paradigm thus may have tapped into a specific left-lateralized aberrant corticobasal circuit or loop involved in initiating or inhibiting motor responses. This was consistent with a dual "when versus where" psychophysical model of corticobasal function, which may reflect core differences in sensory processing of real-world, nonverbal natural stimuli in ASD. Autism Res 2020, 13: 539-549. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: To understand how individuals with autism perceive the real-world, using magnetic resonance imaging we examined brain activation in individuals with autism while watching a video of someone bouncing a basketball. Those with autism had similar activation to controls in auditory and visual sensory brain regions, but less activation in an area that processes information about body movements and in a region involved in modulating movements. These areas are important for understanding the actions of others and developing social skills.
Collapse
Affiliation(s)
- Paula J Webster
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Chris Frum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Amy Kurowski-Burt
- Division of Occupational Therapy, Department of Human Performance, West Virginia University, Morgantown, West Virginia
| | - Christopher E Bauer
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia
| | - Jad H Ramadan
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Kathryn A Baker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - James W Lewis
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
15
|
Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous Perception of Biological Motion in Autism: A Conceptual Review and Meta-Analysis. Sci Rep 2020; 10:4576. [PMID: 32165647 PMCID: PMC7067769 DOI: 10.1038/s41598-020-61252-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Despite its popularity, the construct of biological motion (BM) and its putative anomalies in autism spectrum disorder (ASD) are not completely clarified. In this article, we present a meta-analysis investigating the putative anomalies of BM perception in ASD. Through a systematic literature search, we found 30 studies that investigated BM perception in both ASD and typical developing peers by using point-light display stimuli. A general meta-analysis including all these studies showed a moderate deficit of individuals with ASD in BM processing, but also a high heterogeneity. This heterogeneity was explored in different additional meta-analyses where studies were grouped according to levels of complexity of the BM task employed (first-order, direct and instrumental), and according to the manipulation of low-level perceptual features (spatial vs. temporal) of the control stimuli. Results suggest that the most severe deficit in ASD is evident when perception of BM is serving a secondary purpose (e.g., inferring intentionality/action/emotion) and, interestingly, that temporal dynamics of stimuli are an important factor in determining BM processing anomalies in ASD. Our results question the traditional understanding of BM anomalies in ASD as a monolithic deficit and suggest a paradigm shift that deconstructs BM into distinct levels of processing and specific spatio-temporal subcomponents.
Collapse
Affiliation(s)
- Alessandra Federici
- Child Psychopathology Unit, Theoretical and Cognitive Neuroscience Group, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- MoMiLab Research Unit, IMT School of Advanced Studies Lucca, Lucca, Italy
| | - Valentina Parma
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Psychology, Temple University, Philadelphia, PA, United States
| | - Michele Vicovaro
- Department of General Psychology, University of Padova, Padova, Italy
| | - Luca Radassao
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Luca Casartelli
- Child Psychopathology Unit, Theoretical and Cognitive Neuroscience Group, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | - Luca Ronconi
- Child Psychopathology Unit, Theoretical and Cognitive Neuroscience Group, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
16
|
Fourie E, Palser ER, Pokorny JJ, Neff M, Rivera SM. Neural Processing and Production of Gesture in Children and Adolescents With Autism Spectrum Disorder. Front Psychol 2020; 10:3045. [PMID: 32038408 PMCID: PMC6987472 DOI: 10.3389/fpsyg.2019.03045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) demonstrate impairments in non-verbal communication, including gesturing and imitation deficits. Reduced sensitivity to biological motion (BM) in ASD may impair processing of dynamic social cues like gestures, which in turn may impede encoding and subsequent performance of these actions. Using both an fMRI task involving observation of action gestures and a charade style paradigm assessing gesture performance, this study examined the brain-behavior relationships between neural activity during gesture processing, gesturing abilities and social symptomology in a group of children and adolescents with and without ASD. Compared to typically developing (TD) controls, participants with ASD showed atypical sensitivity to movement in right posterior superior temporal sulcus (pSTS), a region implicated in action processing, and had poorer overall gesture performance with specific deficits in hand posture. The TD group showed associations between neural activity, gesture performance and social skills, that were weak or non-significant in the ASD group. These findings suggest that those with ASD demonstrate abnormalities in both processing and production of gestures and may reflect dysfunction in the mechanism underlying perception-action coupling resulting in atypical development of social and communicative skills.
Collapse
Affiliation(s)
- Emily Fourie
- Department of Psychology, University of California, Davis, Davis, CA, United States.,Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Eleanor R Palser
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer J Pokorny
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Michael Neff
- Department of Computer Science, University of California, Davis, Davis, CA, United States.,Department of Cinema and Digital Media, University of California, Davis, Davis, CA, United States
| | - Susan M Rivera
- Department of Psychology, University of California, Davis, Davis, CA, United States.,Center for Mind and Brain, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
17
|
The two-process theory of biological motion processing. Neurosci Biobehav Rev 2020; 111:114-124. [PMID: 31945392 DOI: 10.1016/j.neubiorev.2020.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023]
Abstract
Perception, identification, and understanding of others' actions from motion information are vital for our survival in the social world. A breakthrough in the understanding of action perception was the discovery that our visual system is sensitive to human action from the sparse motion input of only a dozen point lights, a phenomenon known as biological motion (BM) processing. Previous psychological and computational models cannot fully explain the emerging evidence for the existence of BM processing during early ontogeny. Here, we propose a two-process model of the mechanisms underlying BM processing. We hypothesize that the first system, the 'Step Detector,' rapidly processes the local foot motion and feet-below-the-body information that is specific to vertebrates, is less dependent on postnatal learning, and involves subcortical networks. The second system, the 'Bodily Action Evaluator,' slowly processes the fine global structure-from-motion, is specific to conspecific, and dependent on gradual learning processed in cortical networks. This proposed model provides new insight into research on the development of BM processing.
Collapse
|
18
|
Todorova GK, Hatton REM, Pollick FE. Biological motion perception in autism spectrum disorder: a meta-analysis. Mol Autism 2019; 10:49. [PMID: 31890147 PMCID: PMC6921539 DOI: 10.1186/s13229-019-0299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023] Open
Abstract
Background Biological motion, namely the movement of others, conveys information that allows the identification of affective states and intentions. This makes it an important avenue of research in autism spectrum disorder where social functioning is one of the main areas of difficulty. We aimed to create a quantitative summary of previous findings and investigate potential factors, which could explain the variable results found in the literature investigating biological motion perception in autism. Methods A search from five electronic databases yielded 52 papers eligible for a quantitative summarisation, including behavioural, eye-tracking, electroencephalography and functional magnetic resonance imaging studies. Results Using a three-level random effects meta-analytic approach, we found that individuals with autism generally showed decreased performance in perception and interpretation of biological motion. Results additionally suggest decreased performance when higher order information, such as emotion, is required. Moreover, with the increase of age, the difference between autistic and neurotypical individuals decreases, with children showing the largest effect size overall. Conclusion We highlight the need for methodological standards and clear distinctions between the age groups and paradigms utilised when trying to interpret differences between the two populations.
Collapse
|
19
|
Van der Hallen R, Manning C, Evers K, Wagemans J. Global Motion Perception in Autism Spectrum Disorder: A Meta-Analysis. J Autism Dev Disord 2019; 49:4901-4918. [PMID: 31489542 PMCID: PMC6841654 DOI: 10.1007/s10803-019-04194-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Visual perception in individuals with autism spectrum disorder (ASD) is often debated in terms of enhanced local and impaired global perception. Deficits in global motion perception seem to support this characterization, although the evidence is inconsistent. We conducted a large meta-analysis on global motion, combining 48 articles on biological and coherent motion. Results provide evidence for a small global motion processing deficit in individuals with ASD compared to controls in both biological and coherent motion. This deficit appears to be present independent of the paradigm, task, dependent variable, age or IQ of the groups. Results indicate that individuals with ASD are less sensitive to these types of global motion, although the difference in neural mechanisms underlying this behavioral difference remains unclear.
Collapse
Affiliation(s)
- Ruth Van der Hallen
- Laboratory of Experimental Psychology, Department of Brain and Cognition, KU Leuven, 3000, Leuven, Belgium.
- Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium.
- Clinical Psychology, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands.
| | - Catherine Manning
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Kris Evers
- Laboratory of Experimental Psychology, Department of Brain and Cognition, KU Leuven, 3000, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
- Parenting and Special Education Research Unit, KU Leuven, Leuven, 3000, Belgium
| | - Johan Wagemans
- Laboratory of Experimental Psychology, Department of Brain and Cognition, KU Leuven, 3000, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
20
|
Katsumi Y, Dolcos F, Moore M, Bartholow BD, Fabiani M, Dolcos S. Electrophysiological Correlates of Racial In-group Bias in Observing Nonverbal Social Encounters. J Cogn Neurosci 2019; 32:167-186. [PMID: 31560271 DOI: 10.1162/jocn_a_01475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite evidence identifying the role of group membership in social cognition, the neural mechanisms associated with the perception and evaluation of nonverbal behaviors displayed by in-group versus out-group members remain unclear. Here, 42 white participants underwent electroencephalographic recording while observing social encounters involving dynamic displays of nonverbal behaviors by racial in-group and out-group avatar characters. Dynamic behaviors included approach and avoidance poses and expressions, followed by the participants' ratings of the avatars displaying them. Behaviorally, participants showed longer RTs when evaluating in-group approach behavior compared with other behaviors, possibly suggesting increased interest and attention devoted to processing positive social encounters with their in-group members. Analyses of ERPs revealed differential sensitivity of the N450 and late positivity components to social cues, with the former showing initial sensitivity to the presence of a humanoid avatar character at the beginning of social encounters and the latter showing sensitivity to dynamic nonverbal behaviors displayed by the avatars. Moreover, time-frequency analysis of electroencephalography data also identified suppression of beta-range power linked to the observation of dynamic nonverbal behaviors. Notably, the magnitude of these responses was modulated by the degree of behavioral racial in-group bias. This suggests that differential neural sensitivity to nonverbal cues while observing social encounters is associated with subsequent in-group bias manifested in the evaluation of such encounters. Collectively, these findings shed light on the mechanisms of racial in-group bias in social cognition and have implications for understanding factors related to successful interactions with individuals from diverse racial backgrounds.
Collapse
|
21
|
Sotoodeh MS, Taheri-Torbati H, Sohrabi M, Ghoshuni M. Perception of biological motions is preserved in people with autism spectrum disorder: electrophysiological and behavioural evidences. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:72-84. [PMID: 30456855 DOI: 10.1111/jir.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND There have been some controversies over the ability of individuals with autism spectrum disorder (ASD) to perceive biological motion. In this study, we used electroencephalography and behavioural measures (recognition test) to examine whether or not children with ASD can correctly identify biological motion. METHOD Twenty participants with ASD (mean = 11.3, SD = 2.1 years) and 20 typically developed (TD) participants (mean = 11.4, SD = 2.8 years) participated in the study. They watched videos and point light displays of actions, and their EEG was recorded. Then they answered action recognition test, and their accuracy and response times were recorded. RESULTS Our findings showed that children with ASD had the same mu suppression as a TD age-matched control group in both point light display and video presentations. Furthermore, the results showed that while TD and ASD groups did not differ in accuracy, ASD participants had a slower reaction time. CONCLUSION Taken together, our results indicate that the perception of non-emotional BMs is preserved in children with ASD.
Collapse
Affiliation(s)
- M S Sotoodeh
- Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - H Taheri-Torbati
- Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Sohrabi
- Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Ghoshuni
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
22
|
Luckhardt C, Kröger A, Elsuni L, Cholemkery H, Bender S, Freitag CM. Facilitation of biological motion processing by group-based autism specific social skills training. Autism Res 2018; 11:1376-1387. [PMID: 30324710 DOI: 10.1002/aur.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Abnormalities in neurophysiological correlates of social perception are a well-known feature of autism spectrum disorder (ASD). However, little is known if and how ASD specific behavioral interventions may affect neural processing in ASD. The aim of the current study was to investigate for the first time, whether the group-based social skills training SOSTA-FRA would elicit changes in neurophysiological correlates of social perception in high-functioning ASD individuals aged 8-17 years. Event-related potentials (ERPs) of a facial emotion recognition (FER) and a biological motion perception task were examined. ERPs were compared between a randomized intervention and a treatment as usual group at three time points (baseline, post-intervention, and at 3 months follow-up). A reduction of P100 amplitude in the right hemisphere and a trend toward reduced N200 latency in the biological motion task were found after the training only in the intervention group, whereas behavioral performance remained stable. Change in N200 latencies and parent-rated social responsiveness showed small but statistically nonsignificant correlations. No changes were observed regarding FER. Results indicate that the intervention changed neural correlates of social perception in ASD. Especially neural correlates of biological motion perception, which is an important prerequisite for successful social interaction, were sensitive to change. ERPs of social perception tasks that are impaired in ASD can well be used to objectively measure neural processing improvement by behavioral intervention. Autism Res 2018, 11: 1376-1387. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: It is well known that people with autism spectrum disorder (ASD) process social information differently than other people and that these differences can also be seen in their brain activity. We also know that behavioral therapies, such as group-based social skills trainings can help people with ASD improve their behavior. But it is unclear how therapy changes social processing in the brain. The aim of our study was therefore to examine how neural processing of social stimuli changed after behavioral intervention. Comparing a group of children and adolescents that received the group-based social skills training SOSTA-FRA to a control group we found that the neural processing of human motion became faster and involved less brain resources after the intervention, while behavioral performance remained stable. No changes were seen for the processing of emotional facial expressions. We recommend that future studies should also analyze changes in brain function as well as behavioral changes as a secondary therapy outcome parameter.
Collapse
Affiliation(s)
- Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Anne Kröger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Leyla Elsuni
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Hannah Cholemkery
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Insights from perceptual, sensory, and motor functioning in autism and cerebellar primary disturbances: Are there reliable markers for these disorders? Neurosci Biobehav Rev 2018; 95:263-279. [PMID: 30268434 DOI: 10.1016/j.neubiorev.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/09/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022]
Abstract
The contribution of cerebellar circuitry alterations in the pathophysiology of Autism Spectrum Disorder (ASD) has been widely investigated in the last decades. Yet, experimental studies on neurocognitive markers of ASD have not been attentively compared with similar studies in patients with cerebellar primary disturbances (e.g., malformations, agenesis, degeneration, etc). Addressing this neglected issue could be useful to underline unexpected areas of overlap and/or underestimated differences between these sets of conditions. In fact, ASD and cerebellar primary disturbances (notably, Cerebellar Cognitive Affective Syndrome, CCAS) can share atypical manifestations in perceptual, sensory, and motor functions, but neural subcircuits involved in these anomalies/difficulties could be distinct. Here, we specifically deal with this issue focusing on four paradigmatic neurocognitive functions: visual and biological motion perception, multisensory integration, and high stages of the motor hierarchy. From a research perspective, this represents an essential challenge to more deeply understand neurocognitive markers of ASD and of cerebellar primary disturbances/CCAS. Although we cannot assume definitive conclusions, and beyond phenotypical similarities between ASD and CCAS, clinical and experimental evidence described in this work argues that ASD and CCAS are distinct phenomena. ASD and CCAS seem to be characterized by different pathophysiological mechanisms and mediated by distinct neural nodes. In parallel, from a clinical perspective, this characterization may furnish insights to tackle the distinction between autistic functioning/autistic phenotype (in ASD) and dysmetria of thought/autistic-like phenotype (in CCAS).
Collapse
|
24
|
Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018; 29:151-167. [PMID: 28545994 PMCID: PMC6987885 DOI: 10.1016/j.dcn.2017.04.010] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 02/03/2023] Open
Abstract
Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder (ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and connectivity of different regions underlying sensory and social processing are also discussed. We conclude that there are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits across development. Future research is needed to clarify these mechanisms, and specific focus should be given to distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive processes.
Collapse
Affiliation(s)
- Melissa D Thye
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Abbey J Herringshaw
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Emma B Sartin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
25
|
Pavlova MA. Sex and gender affect the social brain: Beyond simplicity. J Neurosci Res 2016; 95:235-250. [PMID: 27688155 DOI: 10.1002/jnr.23871] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Marina A. Pavlova
- Department of Biomedical Magnetic Resonance, Medical School; Eberhard Karls University of Tübingen; Tübingen Germany
| |
Collapse
|
26
|
Brief Report: Early VEPs to Pattern-Reversal in Adolescents and Adults with Autism. J Autism Dev Disord 2016; 46:3377-86. [DOI: 10.1007/s10803-016-2880-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Ronconi L, Molteni M, Casartelli L. Building Blocks of Others' Understanding: A Perspective Shift in Investigating Social-Communicative Deficit in Autism. Front Hum Neurosci 2016; 10:144. [PMID: 27148004 PMCID: PMC4828440 DOI: 10.3389/fnhum.2016.00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/21/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Luca Ronconi
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of PaduaPadua, Italy; Child Psychopathology Unit, Scientific Institute IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea Bosisio Parini, Italy
| | - Luca Casartelli
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio MedeaBosisio Parini, Italy; Developmental Psychopathology Unit, Vita-Salute San Raffaele UniversityMilan, Italy
| |
Collapse
|
28
|
Devitt NM, Gallagher L, Reilly RB. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography-What Can be Interpreted from the Available Information? Brain Sci 2015; 5:92-117. [PMID: 25826237 PMCID: PMC4493458 DOI: 10.3390/brainsci5020092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders with different but potentially related neurobiological underpinnings, which exhibit significant overlap in their behavioural symptoms. FXS is a neurogenetic disorder of known cause whereas ASD is a complex genetic disorder, with both rare and common genetic risk factors and likely genetic and environmental interaction effects. A comparison of the phenotypic presentation of the two disorders may highlight those symptoms that are more likely to be under direct genetic control, for example in FXS as opposed to shared symptoms that are likely to be under the control of multiple mechanisms. This review is focused on the application and analysis of electroencephalography data (EEG) in ASD and FXS. Specifically, Event Related Potentials (ERP) and resting state studies (rEEG) studies investigating ASD and FXS cohorts are compared. This review explores the electrophysiological similarities and differences between the two disorders in addition to the potentially associated neurobiological mechanisms at play. A series of pertinent research questions which are suggested in the literature are also posed within the review.
Collapse
Affiliation(s)
- Niamh Mc Devitt
- School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
| | - Louise Gallagher
- School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland.
- Trinity College Institute for Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Department of Psychiatry, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James' Hospital, Dublin, Ireland.
- Linn Dara Child and Adolescent Mental Health Services, Cherry Orchard Hospital Dublin 10, Dublin, Ireland.
| | - Richard B Reilly
- School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Trinity College Institute for Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Klin A, Shultz S, Jones W. Social visual engagement in infants and toddlers with autism: early developmental transitions and a model of pathogenesis. Neurosci Biobehav Rev 2015; 50:189-203. [PMID: 25445180 PMCID: PMC4355308 DOI: 10.1016/j.neubiorev.2014.10.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
Abstract
Efforts to determine and understand the causes of autism are currently hampered by a large disconnect between recent molecular genetics findings that are associated with the condition and the core behavioral symptoms that define the condition. In this perspective piece, we propose a systems biology framework to bridge that gap between genes and symptoms. The framework focuses on basic mechanisms of socialization that are highly-conserved in evolution and are early-emerging in development. By conceiving of these basic mechanisms of socialization as quantitative endophenotypes, we hope to connect genes and behavior in autism through integrative studies of neurodevelopmental, behavioral, and epigenetic changes. These changes both lead to and are led by the accomplishment of specific social adaptive tasks in a typical infant's life. However, based on recent research that indicates that infants later diagnosed with autism fail to accomplish at least some of these tasks, we suggest that a narrow developmental period, spanning critical transitions from reflexive, subcortically-controlled visual behavior to interactional, cortically-controlled and social visual behavior be prioritized for future study. Mapping epigenetic, neural, and behavioral changes that both drive and are driven by these early transitions may shed a bright light on the pathogenesis of autism.
Collapse
Affiliation(s)
- Ami Klin
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, 1920 Briarcliff Rd NE, Atlanta, GA 30329, United States.
| | - Sarah Shultz
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, 1920 Briarcliff Rd NE, Atlanta, GA 30329, United States
| | - Warren Jones
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, 1920 Briarcliff Rd NE, Atlanta, GA 30329, United States
| |
Collapse
|
30
|
Temporal processing as a source of altered visual perception in high autistic tendency. Neuropsychologia 2015; 69:148-53. [PMID: 25645512 DOI: 10.1016/j.neuropsychologia.2015.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
Abstract
Superior local at the expense of global perception characterises vision in autism spectrum disorders (ASD). However, progress towards discovering a neural mechanism has been slow. Here we used known differences in magnocellular and parvocellular receptive field properties to assess the temporal encoding of information, via flicker fusion paradigms, in those high and low in self-reported autistic tendency (Autism Spectrum Quotient - AQ). A Low AQ group (AQ≤13, n=22), and a High AQ group (AQ≥18, n=17) undertook a 4AFC luminance flicker fusion (FF) with 5 temporal contrasts from 5% to 100%, and a 2AFC isoluminant red-green colour fusion task. Both groups showed an increase in fusion thresholds with temporal achromatic contrast. The High AQ group displayed diminished flicker fusion thresholds compared to the Low AQ at the lowest contrasts. For the red-green colour fusion task, the High AQ group displayed mean fusion frequency slightly greater than the Low AQ group. A significant interaction between 5% luminance contrast and the red-green fusion frequencies demonstrated that the differences in thresholds were not simply due to variations in overall attentional capacity between groups. These differences in flicker fusion thresholds are in accordance with reported differences in cortical visual evoked potential nonlinearities, particularly relating to the neural efficiency of the magnocellular pathway.
Collapse
|
31
|
Jahshan C, Wynn JK, Mathis KI, Green MF. The neurophysiology of biological motion perception in schizophrenia. Brain Behav 2015; 5:75-84. [PMID: 25722951 PMCID: PMC4321396 DOI: 10.1002/brb3.303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION The ability to recognize human biological motion is a fundamental aspect of social cognition that is impaired in people with schizophrenia. However, little is known about the neural substrates of impaired biological motion perception in schizophrenia. In the current study, we assessed event-related potentials (ERPs) to human and nonhuman movement in schizophrenia. METHODS Twenty-four subjects with schizophrenia and 18 healthy controls completed a biological motion task while their electroencephalography (EEG) was simultaneously recorded. Subjects watched clips of point-light animations containing 100%, 85%, or 70% biological motion, and were asked to decide whether the clip resembled human or nonhuman movement. Three ERPs were examined: P1, N1, and the late positive potential (LPP). RESULTS Behaviorally, schizophrenia subjects identified significantly fewer stimuli as human movement compared to healthy controls in the 100% and 85% conditions. At the neural level, P1 was reduced in the schizophrenia group but did not differ among conditions in either group. There were no group differences in N1 but both groups had the largest N1 in the 70% condition. There was a condition × group interaction for the LPP: Healthy controls had a larger LPP to 100% versus 85% and 70% biological motion; there was no difference among conditions in schizophrenia subjects. CONCLUSIONS Consistent with previous findings, schizophrenia subjects were impaired in their ability to recognize biological motion. The EEG results showed that biological motion did not influence the earliest stage of visual processing (P1). Although schizophrenia subjects showed the same pattern of N1 results relative to healthy controls, they were impaired at a later stage (LPP), reflecting a dysfunction in the identification of human form in biological versus nonbiological motion stimuli.
Collapse
Affiliation(s)
- Carol Jahshan
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System Los Angeles, California ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California
| | - Jonathan K Wynn
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System Los Angeles, California ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California
| | - Kristopher I Mathis
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System Los Angeles, California ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California
| | - Michael F Green
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System Los Angeles, California ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California
| |
Collapse
|
32
|
Wallace MT, Stevenson RA. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 2014; 64:105-23. [PMID: 25128432 PMCID: PMC4326640 DOI: 10.1016/j.neuropsychologia.2014.08.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
Abstract
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or "bound" in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window - the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the "higher-order" deficits that serve as the defining features of these disorders.
Collapse
Affiliation(s)
- Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA; Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Luckhardt C, Jarczok TA, Bender S. Elucidating the neurophysiological underpinnings of autism spectrum disorder: new developments. J Neural Transm (Vienna) 2014; 121:1129-44. [PMID: 25059455 DOI: 10.1007/s00702-014-1265-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/19/2014] [Indexed: 12/11/2022]
Abstract
The study of neurophysiological approaches together with rare and common risk factors for Autism Spectrum Disorder (ASD) allows elucidating the specific underlying neurobiology of ASD. Whereas most neurophysiologically based research in ASD to date has focussed on case-control differences based on the DSM- or ICD-based categorical ASD diagnosis, more recent studies have aimed at studying genetically and/or neurophysiologically defined homogeneous ASD subgroups for specific neuronal biomarkers. This review addresses the neurophysiological investigation of ASD by evoked and event-related potentials, by EEG/MEG connectivity measures such as coherence, and transcranial magnetic stimulation. As an example of classical neurophysiological studies in ASD, we report event-related potential studies which have illustrated which brain areas and processing stages are affected in the visual perception of socially relevant stimuli. However, a paradigm shift has taken place in recent years focussing on how these findings can be tracked down to basic neuronal functions such as deficits in cortico-cortical connectivity and the interaction between brain areas. Disconnectivity, for example, can again be related to genetically induced shifts in the excitation/inhibition balance. Genetic causes of ASD may be grouped by their effects on the brain's system level to identify ASD subgroups which respond differentially to therapeutic interventions.
Collapse
Affiliation(s)
- C Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany,
| | | | | |
Collapse
|