1
|
Ghasemahmad Z, Mrvelj A, Panditi R, Sharma B, Perumal KD, Wenstrup JJ. Emotional vocalizations alter behaviors and neurochemical release into the amygdala. eLife 2024; 12:RP88838. [PMID: 39008352 PMCID: PMC11249735 DOI: 10.7554/elife.88838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener's internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.
Collapse
Affiliation(s)
- Zahra Ghasemahmad
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
- School of Biomedical Sciences, Kent State UniversityKentUnited States
- Brain Health Research Institute, Kent State UniversityKentUnited States
| | - Aaron Mrvelj
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Rishitha Panditi
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Bhavya Sharma
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Karthic Drishna Perumal
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical UniversityRootstownUnited States
- School of Biomedical Sciences, Kent State UniversityKentUnited States
- Brain Health Research Institute, Kent State UniversityKentUnited States
| |
Collapse
|
2
|
Sperling SA, Druzgal J, Blair JC, Flanigan JL, Stohlman SL, Barrett MJ. Cholinergic nucleus 4 grey matter density is associated with apathy in Parkinson's disease. Clin Neuropsychol 2023; 37:676-694. [PMID: 35443870 DOI: 10.1080/13854046.2022.2065362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: The generation and maintenance of goal-directed behavior is subserved by multiple brain regions that receive cholinergic inputs from the cholinergic nucleus 4 (Ch4). It is unknown if Ch4 degeneration contributes to apathy in Parkinson's disease (PD). Method: We analyzed data from 106 pre-surgical patients with PD who had brain MRIs and completed the Frontal Systems Behavior Scales (FrSBe). Eighty-eight patients also completed the Beck Depression Inventory-2nd Edition. Cholinergic basal forebrain grey matter densities (GMD) were measured by applying probabilistic maps to T1 MPRAGE sequences processed using voxel-based morphometry methods. We used linear and hierarchical regression modelling to examine the association between Ch4 GMD and the FrSBe Apathy subscale scores. We used similar methods to assess the specificity of this association and potential associations between Ch4 target regions and apathy. Results: Ch4 GMD (p = .021) and Ch123 GMD (p = .032) were significantly associated with Apathy subscale scores on univariate analysis. Ch4 GMD, but not Ch123 GMD, remained significantly associated with apathy when adjusting for age, sex, levodopa equivalent doses, and disease duration. Centromedial amygdala GMD, which receives cholinergic inputs from Ch4, was also associated with apathy. Ch4 GMD was not associated with depression or disinhibition, nor was it associated with executive dysfunction when adjusting for clinical and demographic variables. Conclusions: Ch4 GMD is specifically associated with apathy in PD. Ch4 degeneration results in cholinergic denervation of multiple cortical and limbic regions, which may contribute to the cognitive and emotional-affective processing deficits that underlie the behavioral symptoms of apathy.
Collapse
Affiliation(s)
- Scott A Sperling
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Jamie C Blair
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Joseph L Flanigan
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Shelby L Stohlman
- Curry School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
The Construct of Medical and Non-Medical Marijuana—Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052769. [PMID: 35270462 PMCID: PMC8910105 DOI: 10.3390/ijerph19052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
The rising popularity of medical marijuana and its potential therapeutic uses has resulted in passionate discussions that have mainly focused on its possible benefits and applications. Although the concept itself seems promising, the multitude of presented information has noticeable ramifications—terminological chaos being one. This work aimed to synthesize and critically analyze scientific evidence on the therapeutic uses of cannabinoids in the field of psychiatry. Emphasis was placed on the anxiolytic effects of cannabis constituents and their effects on post-traumatic stress disorder, anxiety disorders, schizophrenia spectrum, and other psychotic disorders. The review was carried out from an addictological perspective. A database search of interchangeably combined keywords resulted in the identification of subject-related records. The data were then analyzed in terms of relevance, contents, methodologies, and cited papers. The results were clear in supporting one common conclusion: while most findings provide support for beneficial applications of medical marijuana in psychiatry, no certain conclusions can be drawn until larger-scaled, more methodologically rigorous, and (preferably) controlled randomized trials verify these discoveries.
Collapse
|
5
|
Fan B, Pang L, Li S, Zhou X, Lv Z, Chen Z, Zheng J. Correlation Between the Functional Connectivity of Basal Forebrain Subregions and Vigilance Dysfunction in Temporal Lobe Epilepsy With and Without Focal to Bilateral Tonic-Clonic Seizure. Front Psychiatry 2022; 13:888150. [PMID: 35722568 PMCID: PMC9201520 DOI: 10.3389/fpsyt.2022.888150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Previous research has shown that subcortical brain regions are related to vigilance in temporal lobe epilepsy (TLE). However, it is unknown whether alterations in the function and structure of basal forebrain (BF) subregions are associated with vigilance impairment in distinct kinds of TLE. We aimed to investigate changes in the structure and function BF subregions in TLE patients with and without focal to bilateral tonic-clonic seizures (FBTCS) and associated clinical features. METHODS A total of 50 TLE patients (25 without and 25 with FBTCS) and 25 healthy controls (HCs) were enrolled in this study. The structural and functional alterations of BF subregions in TLE were investigated using voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analysis. Correlation analyses were utilized to investigate correlations between substantially altered imaging characteristics and clinical data from patients. RESULTS FBTCS patients had a lower rsFC between Ch1-3 and the bilateral striatum as well as the left cerebellum posterior lobe than non-FBTCS patients. In comparison to non-FBTCS patients, the rsFC between Ch4 and the bilateral amygdala was also lower in FBTCS patients. Compared to HCs, the TLE patients had reduced rsFC between the BF subregions and the cerebellum, striatum, default mode network, frontal lobe, and occipital lobes. In the FBTCS group, the rsFC between the left Ch1-3 and striatum was positive correlated with the vigilance measures. In the non-FBTCS group, the rsFC between the left Ch4 and striatum was significantly negative correlated with the alertness measure. CONCLUSION These results extend current understanding of the pathophysiology of impaired vigilance in TLE and imply that the BF subregions may serve as critical nodes for developing and categorizing TLE biomarkers.
Collapse
Affiliation(s)
- Binglin Fan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siyi Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongxia Lv
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zexiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Bostanciklioğlu M. Neuromodulation of Memory Formation and Extinction. Curr Neurovasc Res 2021; 17:319-326. [PMID: 32316891 DOI: 10.2174/1567202617999200421202818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022]
Abstract
Memory retrieval is mediated by discharges of acetylcholine, glutamate, gammaaminobutyric acid, norepinephrine, and serotonin/5-hydroxytryptamine circuits. These projections and memory interact through engram circuits, neurobiological traces of memory. Increased excitability in engram circuits of the medial prefrontal cortex and hippocampus results in remote and recent memory retrievals, respectively. However, due to degenerated neurotransmitter projections, the excitability state of engram circuits is decreased in the patient with dementia; and thus, acquired- memory cannot be retrieved by natural cues. Here, we suggest that artificial neuropharmacological stimulations of the acquired-memory with an excitation potential higher than a natural cue can excite engram circuits in the medial prefrontal cortex, which results in the retrieval of lost memories in dementia. The neuropharmacological foundations of engram cell-mediated memory retrieval strategy in severe dementia, in line with this has also been explained. We particularly highlighted the close interactions between periaqueductal gray, locus coeruleus, raphe nuclei, and medial prefrontal cortex and basolateral amygdala as treatment targets for memory loss. Furthermore, the engram circuits projecting raphe nuclei, locus coeruleus, and pontomesencephalic tegmentum complex could be significant targets of memory editing and memory formation in the absence of experience, and a well-defined study of the neural events underlying the interaction of brain stem and memory will be relevant for such developments. We anticipate our perspective to be a starting point for more sophisticated in vivo models for neuropharmacological modulations of memory retrieval in Alzheimer's dementia.
Collapse
|
7
|
Lai CH. Task MRI-Based Functional Brain Network of Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:19-33. [PMID: 33834392 DOI: 10.1007/978-981-33-6044-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter will focus on task magnetic resonance imaging (MRI) to understand the biological mechanisms and pathophysiology of brain in major depressive disorder (MDD), which would have minor alterations in the brain function. Therefore, the functional study, such as task MRI functional connectivity, would play a crucial role to explore the brain function in MDD. Different kinds of tasks would determine the alterations in functional connectivity in task MRI studies of MDD. The emotion-related tasks are linked with alterations in anterior cingulate cortex, insula, and default mode network. The emotional memory task is linked with amygdala-hippocampus alterations. The reward-related task would be related to the reward circuit alterations, such as fronto-straital. The cognitive-related tasks would be associated with frontal-related functional connectivity alterations, such as the dorsolateral prefrontal cortex, anterior cingulate cortex, and other frontal regions. The visuo-sensory characteristics of tasks might be associated with the parieto-occipital alterations. The frontolimbic regions might be major components of task MRI-based functional connectivity in MDD. However, different scenarios and tasks would influence the representations of results.
Collapse
Affiliation(s)
- Chien-Han Lai
- Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan. .,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
8
|
Sizer SE, Parrish BC, McCool BA. Chronic Ethanol Exposure Potentiates Cholinergic Neurotransmission in the Basolateral Amygdala. Neuroscience 2020; 455:165-176. [PMID: 33385490 DOI: 10.1016/j.neuroscience.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023]
Abstract
Chronic intermittent ethanol (CIE) exposure dysregulates glutamatergic and GABAergic neurotransmission, facilitating basolateral amygdala (BLA) pyramidal neuron hyperexcitability and the expression of anxiety during withdrawal. It is unknown whether ethanol-induced alterations in nucleus basalis magnocellularis (NBM) cholinergic projections to the BLA mediate anxiety-related behaviors through direct modulation of GABA and glutamate afferents. Following 10 days of CIE exposure and 24 h of withdrawal, we recorded GABAergic and glutamatergic synaptic responses in BLA pyramidal neurons with electrophysiology, assessed total protein expression of cholinergic markers, and quantified acetylcholine and choline concentrations using a colorimetric assay. We measured α7 nicotinic acetylcholine receptor (nAChR) dependent modulation of presynaptic function at distinct inputs in AIR- and CIE-exposed BLA coronal slices as a functional read-out of cholinergic neurotransmission. CIE/withdrawal upregulates the endogenous activity of α7 nAChRs, facilitating release at both GABAergic' local' interneuron and glutamatergic synaptic responses to stria terminalis (ST) stimulation, with no effect at GABAergic lateral paracapsular cells (LPCs). CIE caused a three-fold increase in BLA acetylcholine concentration, with no changes in α7 nAChR or cholinergic marker expression. These data illustrate that α7 nAChR-dependent changes in presynaptic function serve as a proxy for CIE-dependent alterations in synaptic acetylcholine levels. Thus, cholinergic projections appear to mediate CIE-induced alterations at GABA/glutamate inputs.
Collapse
Affiliation(s)
- Sarah E Sizer
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| | - Brian A McCool
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| |
Collapse
|
9
|
Kellis DM, Kaigler KF, Witherspoon E, Fadel JR, Wilson MA. Cholinergic neurotransmission in the basolateral amygdala during cued fear extinction. Neurobiol Stress 2020; 13:100279. [PMID: 33344731 PMCID: PMC7739185 DOI: 10.1016/j.ynstr.2020.100279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/06/2023] Open
Abstract
Cholinergic neuromodulation plays an important role in numerous cognitive functions including regulating arousal and attention, as well as associative learning and extinction processes. Further, studies demonstrate that cholinergic inputs from the basal forebrain cholinergic system influence physiological responses in the basolateral amygdala (BLA) as well as fear extinction processes. Since rodent models display individual differences in conditioned fear and extinction responses, this study investigated if cholinergic transmission in the BLA during fear extinction could contribute to differences between extinction resistant and extinction competent phenotypes in outbred Long-Evans male rats. Experiment 1 used in vivo microdialysis to test the hypothesis that acetylcholine (ACH) efflux in the BLA would increase with presentation of an auditory conditioned stimulus (CS+) during extinction learning. Acetylcholine efflux was compared in rats exposed to the CS+, a CS- (the tone never paired with a footshock), or to a context shift alone (without CS+ tone presentation). Consistent with acetylcholine's role in attention and arousal, ACH efflux in the BLA was increased in all three groups (CS+, CS-, Shift Alone) by the initial context shift into the extinction learning chamber, but returned more rapidly to baseline levels in the Shift Alone group (no CS+). In contrast, in the group exposed to the CS+, ACH efflux in the BLA remained elevated during continued presentation of conditioned cues and returned to baseline more slowly, leading to an overall increase in ACH efflux compared with the Shift Alone group. Based on the very dense staining in the BLA for acetylcholinesterase (ACHE), Experiment 2 examined if individual differences in fear extinction were associated with differences in cholinesterase enzyme activity (CHE) in the BLA and/or plasma with a separate cohort of animals. Cholinesterase activity (post-testing) in both the BLA and plasma was higher in extinction competent rats versus rats resistant to extinction learning. There was also a significant negative correlation between BLA CHE activity and freezing during extinction learning. Taken together, our results support a role for ACH efflux in the BLA during cued fear extinction that may be modulated by individual differences in ACHE activity, and are associated with behavioral responses during fear extinction. These findings implicate individual differences in cholinergic regulation in the susceptibility to disorders with dysregulation of extinction learning, such post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Devin M. Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Kris Ford Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Eric Witherspoon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | | |
Collapse
|
10
|
Di X, Zhang H, Biswal BB. Anterior cingulate cortex differently modulates frontoparietal functional connectivity between resting-state and working memory tasks. Hum Brain Mapp 2020; 41:1797-1805. [PMID: 31904907 PMCID: PMC7268054 DOI: 10.1002/hbm.24912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
The brain frontoparietal regions and the functional communications between them are critical in supporting working memory and other executive functions. The functional connectivity between frontoparietal regions are modulated by working memory loads, and are shown to be modulated by a third brain region in resting-state. However, it is largely unknown whether the third-region modulations remain the same during working memory tasks or were largely modulated by task demands. In the current study, we collected functional MRI (fMRI) data when the subjects were performing n-back tasks and in resting-state. We first used a block-designed localizer to define the frontoparietal regions that showed higher activations in the 2-back than the 1-back condition. Next, we performed physiophysiological interaction (PPI) analysis using left and right middle frontal gyrus (MFG) and superior parietal lobule (SPL) regions, respectively, in three continuous-designed runs of resting-state, 1-back, and 2-back conditions. No regions showed consistent modulatory interactions with the seed pairs in the three conditions. Instead, the anterior cingulate cortex (ACC) showed different modulatory interactions with the right MFG and SPL among the three conditions. While the increased activity of the ACC was associated with decreased functional coupling between the right MFG and SPL in resting-state, it was associated with increased functional coupling in the 2-back condition. The observed task modulations support the functional significance of the modulations of the ACC on frontoparietal connectivity.
Collapse
Affiliation(s)
- Xin Di
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Heming Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
11
|
Dellazizzo L, Potvin S, Athanassiou M, Dumais A. Violence and Cannabis Use: A Focused Review of a Forgotten Aspect in the Era of Liberalizing Cannabis. Front Psychiatry 2020; 11:567887. [PMID: 33192691 PMCID: PMC7525024 DOI: 10.3389/fpsyt.2020.567887] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
There has been a shift surrounding societal and legal perspectives on cannabis reflecting changing public attitudes towards the perceived safety and social acceptability of cannabis use. With cannabis liberalization internationally, the focus of most cannabis-related harms has been on effects with users themselves. Harm-to-others including injuries from violence have nevertheless been unfortunately largely overlooked. While studies remain heterogeneous, there is meta-analytical evidence pointing towards an association. The aims of this focused review are two-fold: (I) review the evidence from meta-analyses on the association between cannabis and violence; and (II) provide an overview of possible mechanisms relating cannabis use to violence. First, evidence from meta-analytical studies in youths, intimate partners, and individuals with severe mental disorders have shown that there is a global moderate association between cannabis use and violence, which is stronger in the latter more at-risk population. Preliminary data has even highlighted a potential dose-response relationship with larger effects in more frequent users. Although of importance, this subject has remained essentially forgotten as a public health concern. While literature remains inconclusive, data has suggested potential increases in cannabis use following liberalization policies. This may increase violent outcomes if the effect is directly related to the use of cannabis by means of its psychophysiological modifications. However, for the moment, the mechanisms associating cannabis use and violence remain to be clearly resolved. Considering the recency of policy changes on cannabis, further methodologically sound research using longitudinal designs should examine the effects that cannabis use may have on different forms of violence and the trends that emerge, while evaluating the effects of possible confounding factors (e.g. other substance use). In addition, as evidence-based research from meta-analyses have shown that cannabis use is associated with violence, measures must be taken to mitigate the risks.
Collapse
Affiliation(s)
- Laura Dellazizzo
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Athanassiou
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dumais
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Institut national de psychiatrie légale Philippe-Pinel, Montreal, QC, Canada
| |
Collapse
|
12
|
The basolateral amygdala regulation of complex cognitive behaviours in the five-choice serial reaction time task. Psychopharmacology (Berl) 2019; 236:3135-3146. [PMID: 31079161 DOI: 10.1007/s00213-019-05260-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 04/29/2019] [Indexed: 01/24/2023]
Abstract
RATIONALE The basolateral amygdala (BLA) plays important roles in the cognitive control in human and non-human animals. However, inconsistent findings between species have been observed and there have been relatively few detailed investigations of the cognitive properties of BLA, especially in mice. OBJECTIVE Our aim was to determine the role of BLA in cognition by using optogenetic manipulations. METHODS Male C57BL/six mice were trained and tested on the five-choice serial reaction time task (5-CSRTT), open-field test (OFT), elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) test during optogenetic stimulation and inhibition of the BLA. RESULTS Optogenetic activation of the BLA decreased the impulsivity and increased the compulsivity of mice, whereas optogenetic inhibition of BLA had the opposite effect. Similarly, anxiety-like behaviours and spatial working memory were increased in BLA activation mice, whereas BLA inhibition decreased these behaviours. However, both BLA activation and inhibition decreased the motivation of the mice. CONCLUSIONS These data demonstrate that the BLA regulates impulsive action and spatial working memory, and plays a critical role in anxiety-like behaviours.
Collapse
|
13
|
Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019; 22:1586-1597. [PMID: 31551602 DOI: 10.1038/s41593-019-0503-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Emotional learning and memory are functionally and dysfunctionally regulated by the neuromodulatory state of the brain. While the role of excitatory and inhibitory neural circuits mediating emotional learning and its control have been the focus of much research, we are only now beginning to understand the more diffuse role of neuromodulation in these processes. Recent experimental studies of the acetylcholine, noradrenaline and dopamine systems in fear learning and extinction of fear responding provide surprising answers to key questions in neuromodulation. One area of research has revealed how modular organization, coupled with context-dependent coding modes, allows for flexible brain-wide or targeted neuromodulation. Other work has shown how these neuromodulators act in downstream targets to enhance signal-to-noise ratios and gain, as well as to bind distributed circuits through neuronal oscillations. These studies elucidate how different neuromodulatory systems regulate aversive emotional processing and reveal fundamental principles of neuromodulatory function.
Collapse
|
14
|
Hersman S, Hoffman AN, Hodgins L, Shieh S, Lam J, Parikh A, Fanselow MS. Cholinergic Signaling Alters Stress-Induced Sensitization of Hippocampal Contextual Learning. Front Neurosci 2019; 13:251. [PMID: 30941011 PMCID: PMC6433822 DOI: 10.3389/fnins.2019.00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) has a profound contextual component, and has been demonstrated to alter future contextual learning. However, the mechanism by which a single traumatic event affects subsequent contextual experiences has not been isolated. Acetylcholine (ACh) is an important modulator of hippocampus-dependent learning such as contextual memory strength. Using Stress-Enhanced Fear Learning (SEFL), which models aspects of PTSD in rats, we tested whether muscarinic acetylcholine receptors (mAChR) in dorsal hippocampus (DH) are required during trauma for the effect of trauma on subsequent contextual fear learning. We infused scopolamine or vehicle into DH immediately before stress, and tested fear in both the trauma context and a novel context after a mild stressor. The results show that during learning, ACh acting on mAChR within the DH is required for sensitization of future contextual fear learning. However, this effect is selective for contextual learning, as this blockade leaves discrete cue sensitization intact. Rather than simply sensitizing the BLA, as previous studies have suggested, SEFL requires cholinergic signaling in DH for contextual sensitization.
Collapse
Affiliation(s)
- Sarah Hersman
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ann N Hoffman
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Liliann Hodgins
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shannon Shieh
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lam
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashen Parikh
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Fanselow
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
16
|
Compensatory dopaminergic-cholinergic interactions in conflict processing: Evidence from patients with Parkinson's disease. Neuroimage 2018; 190:94-106. [PMID: 29337277 DOI: 10.1016/j.neuroimage.2018.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 01/21/2023] Open
Abstract
Executive functions are complex both in the cognitive operations involved and in the neural structures and functions that support those operations. This complexity makes executive function highly vulnerable to the detrimental effects of aging, brain injury, and disease, but may also open paths to compensation. Neural compensation is often used to explain findings of additional or altered patterns of brain activations by older adults or patient populations compared to young adults or healthy controls, especially when associated with relatively preserved performance. Here we test the hypothesis of an alternative form of compensation, between different neuromodulator systems. 135 patients with Parkinson's Disease (PD) completed vesicular monoamine transporter type2 (VMAT2) and acetylcholinesterase PET scanning to assess the integrity of nigrostriatal dopaminergic, thalamic cholinergic, and cortical cholinergic pathways, and a behavioral test (Stroop + task-switching) that puts high demands on conflict processing, an important aspect of executive control. Supporting the compensatory hypothesis, regression models controlling for age and other covariates revealed an interaction between caudate dopamine and cortical cholinergic integrity: Cortical cholinergic integrity was a stronger predictor of conflict processing in patients with relatively low caudate dopaminergic function. These results suggest that although frontostriatal dopaminergic function plays a central role in executive control, cholinergic systems may also make an important contribution. The present results suggest potential pathways for remediation, and that the appropriate interventions for each patient may depend on their particular profile of decline. Furthermore, they help to elucidate the brain systems that underlie executive control, which may be important for understanding other disorders as well as executive function in healthy adults.
Collapse
|
17
|
The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. Neuroimage 2017; 190:107-117. [PMID: 29277400 DOI: 10.1016/j.neuroimage.2017.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Past animal and human studies robustly report that the cholinergic system plays an essential role in both top-down and bottom-up attentional control, as well as other aspects of cognition (see Ballinger et al., 2016 for a recent review). However, current understanding of how two major cholinergic pathways in the human brain (the basal forebrain-cortical pathway, and the brainstem pedunculopontine-thalamic pathway) contribute to specific cognitive functions remains somewhat limited. To address this issue, we examine how individual variation in the integrity of striatal-dopaminergic, thalamic-cholinergic, and cortical-cholinergic pathways (measured using Positron Emission Tomography in patients with Parkinson's disease) was associated with individual variation in the initial goal-directed focus of attention, the ability to sustain attentional performance over time, and the ability to avoid distraction from a highly-salient, but irrelevant, environmental stimulus. Compared to healthy controls, PD patients performed similarly in the precision of attention-dependent judgments of duration, and in sustaining attention over time. However, PD patients' performance was strikingly more impaired by the distractor. More critically, regression analyses indicated that only cortical-cholinergic integrity, not thalamic-cholinergic or striatal-dopaminergic integrity, made a specific contribution to the ability to resist distraction after controlling for the other variables. These results demonstrate that the basal forebrain cortical cholinergic system serves a specific role in executing top-down control to resist external distraction.
Collapse
|
18
|
Di X, Huang J, Biswal BB. Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions. Brain Struct Funct 2017; 222:619-634. [PMID: 27259584 PMCID: PMC10673661 DOI: 10.1007/s00429-016-1239-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/20/2016] [Indexed: 01/26/2023]
Abstract
Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall, University Height, Newark, NJ, 07102, USA
| | - Jia Huang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, People's Republic of China
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall, University Height, Newark, NJ, 07102, USA.
| |
Collapse
|
19
|
Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res 2016; 95:836-852. [PMID: 27704595 DOI: 10.1002/jnr.23840] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Jim R Fadel
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
20
|
Szczepanik J, Nugent AC, Drevets WC, Khanna A, Zarate CA, Furey ML. Amygdala response to explicit sad face stimuli at baseline predicts antidepressant treatment response to scopolamine in major depressive disorder. Psychiatry Res Neuroimaging 2016; 254:67-73. [PMID: 27366831 PMCID: PMC6711385 DOI: 10.1016/j.pscychresns.2016.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
The muscarinic antagonist scopolamine produces rapid antidepressant effects in individuals with major depressive disorder (MDD). In healthy subjects, manipulation of acetyl-cholinergic transmission modulates attention in a stimulus-dependent manner. This study tested the hypothesis that baseline amygdalar activity in response to emotional stimuli correlates with antidepressant treatment response to scopolamine and could thus potentially predict treatment outcome. MDD patients and healthy controls performed an attention shifting task involving emotional faces while undergoing functional magnetic resonance imaging (fMRI). We found that blood oxygenation level dependent (BOLD) signal in the amygdala acquired while MDD patients processed sad face stimuli correlated positively with antidepressant response to scopolamine. Amygdalar response to sad faces in MDD patients who did not respond to scopolamine did not differ from that of healthy controls. This suggests that the pre-treatment task elicited amygdalar activity that may constitute a biomarker of antidepressant treatment response to scopolamine. Furthermore, in MDD patients who responded to scopolamine, we observed a post-scopolamine stimulus processing shift towards a pattern demonstrated by healthy controls, indicating a change in stimulus-dependent neural response potentially driven by attenuated cholinergic activity in the amygdala.
Collapse
Affiliation(s)
- Joanna Szczepanik
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Wayne C Drevets
- Janssen Pharmaceuticals, LLC of Johnson and Johnson, Inc., Titusville, NJ, USA
| | - Ashish Khanna
- Physical Medicine and Rehabilitation, Jewish Medical Center, Brooklyn Hospital Center, Brooklyn, NY, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Maura L Furey
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Neuroscience Biomarkers Division, Janssen Research and Development, San Diego, CA, USA
| |
Collapse
|
21
|
Carey CE, Agrawal A, Zhang B, Conley ED, Degenhardt L, Heath AC, Li D, Lynskey MT, Martin NG, Montgomery GW, Wang T, Bierut LJ, Hariri AR, Nelson EC, Bogdan R. Monoacylglycerol lipase (MGLL) polymorphism rs604300 interacts with childhood adversity to predict cannabis dependence symptoms and amygdala habituation: Evidence from an endocannabinoid system-level analysis. JOURNAL OF ABNORMAL PSYCHOLOGY 2015; 124:860-77. [PMID: 26595473 PMCID: PMC4700831 DOI: 10.1037/abn0000079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite evidence for heritable variation in cannabis involvement and the discovery of cannabinoid receptors and their endogenous ligands, no consistent patterns have emerged from candidate endocannabinoid (eCB) genetic association studies of cannabis involvement. Given interactions between eCB and stress systems and associations between childhood stress and cannabis involvement, it may be important to consider childhood adversity in the context of eCB-related genetic variation. We employed a system-level gene-based analysis of data from the Comorbidity and Trauma Study (N = 1,558) to examine whether genetic variation in six eCB genes (anabolism: DAGLA, DAGLB, NAPEPLD; catabolism: MGLL, FAAH; binding: CNR1; SNPs N = 65) and childhood sexual abuse (CSA) predict cannabis dependence symptoms. Significant interactions with CSA emerged for MGLL at the gene level (p = .009), and for rs604300 within MGLL (ΔR2 = .007, p < .001), the latter of which survived SNP-level Bonferroni correction and was significant in an additional sample with similar directional effects (N = 859; ΔR2 = .005, p = .026). Furthermore, in a third sample (N = 312), there was evidence that rs604300 genotype interacts with early life adversity to predict threat-related basolateral amygdala habituation, a neural phenotype linked to the eCB system and addiction (ΔR2 = .013, p = .047). Rs604300 may be related to epigenetic modulation of MGLL expression. These results are consistent with rodent models implicating 2-arachidonoylglycerol (2-AG), an endogenous cannabinoid metabolized by the enzyme encoded by MGLL, in the etiology of stress adaptation related to cannabis dependence, but require further replication.
Collapse
Affiliation(s)
- Caitlin E Carey
- Department of Psychology, Washington University in St. Louis
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis
| | - Bo Zhang
- Department of Genetics, Washington University in St. Louis
| | | | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis
| | - Daofeng Li
- Department of Genetics, Washington University in St. Louis
| | | | | | | | - Ting Wang
- Department of Genetics, Washington University in St. Louis
| | - Laura J Bierut
- Department of Psychiatry, Washington University in St. Louis
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in St. Louis
| | - Ryan Bogdan
- Department of Psychology, Washington University in St. Louis
| |
Collapse
|
22
|
Di X, Biswal BB. Characterizations of resting-state modulatory interactions in the human brain. J Neurophysiol 2015; 114:2785-96. [PMID: 26334022 DOI: 10.1152/jn.00893.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 09/01/2015] [Indexed: 01/28/2023] Open
Abstract
Functional connectivity between two brain regions, measured using functional MRI (fMRI), has been shown to be modulated by other regions even in a resting state, i.e., without performing specific tasks. We aimed to characterize large-scale modulatory interactions by performing region-of-interest (ROI)-based physiophysiological interaction analysis on resting-state fMRI data. Modulatory interactions were calculated for every possible combination of three ROIs among 160 ROIs sampling the whole brain. Firstly, among all of the significant modulatory interactions, there were considerably more negative than positive effects; i.e., in more cases, an increase of activity in one region was associated with decreased functional connectivity between two other regions. Next, modulatory interactions were categorized as to whether the three ROIs were from one single network module, two modules, or three different modules (defined by a modularity analysis on their functional connectivity). Positive modulatory interactions were more represented than expected in cases in which the three ROIs were from a single module, suggesting an increase within module processing efficiency through positive modulatory interactions. In contrast, negative modulatory interactions were more represented than expected in cases in which the three ROIs were from two modules, suggesting a tendency of between-module segregation through negative modulatory interactions. Regions that were more likely to have modulatory interactions were then identified. The numbers of significant modulatory interactions for different regions were correlated with the regions' connectivity strengths and connection degrees. These results demonstrate whole-brain characteristics of modulatory interactions and may provide guidance for future studies of connectivity dynamics in both resting state and task state.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
23
|
Berry AS, Blakely RD, Sarter M, Lustig C. Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. Neuroimage 2015; 108:386-95. [PMID: 25536497 PMCID: PMC4469545 DOI: 10.1016/j.neuroimage.2014.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/01/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022] Open
Abstract
In rodent studies, elevated cholinergic neurotransmission in right prefrontal cortex (PFC) is essential for maintaining attentional performance, especially in challenging conditions. Apparently paralleling the rises in acetylcholine seen in rodent studies, fMRI studies in humans reveal right PFC activation at or near Brodmann's areas 9 (BA 9) increases in response to elevated attentional demand. In the present study, we leveraged human genetic variability in the cholinergic system to test the hypothesis that the cholinergic system contributes to the BA 9 response to attentional demand. Specifically, we scanned (BOLD fMRI) participants with a polymorphism of the choline transporter gene that is thought to limit choline transport capacity (Ile89Val variant of the choline transporter gene SLC5A7, rs1013940) and matched controls while they completed a task previously used to demonstrate demand-related increases in right PFC cholinergic transmission in rats and right PFC activation in humans. As hypothesized, we found that although controls showed the typical pattern of robust BA 9 responses to increased attentional demand, Ile89Val participants did not. Further, pattern analysis of activation within this region significantly predicted participant genotype. Additional exploratory pattern classification analyses suggested that Ile89Val participants differentially recruited orbitofrontal cortex and parahippocampal gyrus to maintain attentional performance to the level of controls. These results contribute to a growing body of translational research clarifying the role of cholinergic signaling in human attention and functional neural measures, and begin to outline the risk and resiliency factors associated with potentially suboptimal cholinergic function with implications for disorders characterized by cholinergic dysregulation.
Collapse
Affiliation(s)
- Anne S Berry
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232, USA
| | - Martin Sarter
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA; Psychology Department, University of Michigan, Ann Arbor, MI 49109-1043, USA
| | - Cindy Lustig
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA; Psychology Department, University of Michigan, Ann Arbor, MI 49109-1043, USA.
| |
Collapse
|