1
|
Lewis N, Iraji A, Miller R, Agcaoglu O, Calhoun V. Topologically Optimized Intrinsic Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639110. [PMID: 40060448 PMCID: PMC11888185 DOI: 10.1101/2025.02.19.639110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The estimation of brain networks is instrumental in quantifying and evaluating brain function. Nevertheless, achieving precise estimations of subject-level networks has proven to be a formidable task. In response to this challenge, researchers have developed group-inference frameworks that leverage robust group-level estimations as a common reference point to infer corresponding subject-level networks. Generally, existing approaches either leverage the common reference as a strict, voxel-wise spatial constraint (i.e., strong constraints at the voxel level) or impose no constraints. Here, we propose a targeted approach that harnesses the topological information of group-level networks to encode a high-level representation of spatial properties to be used as constraints, which we refer to as Topologically Optimized Intrinsic Brain Networks (TOIBN). Consequently, our method inherits the significant advantages of constraint-based approaches, such as enhancing estimation efficacy in noisy data or small sample sizes. On the other hand, our method provides a softer constraint than voxel-wise penalties, which can result in the loss of individual variation, increased susceptibility to model biases, and potentially missing important subject-specific information. Our analyses show that the subject maps from our method are less noisy and true to the group networks while promoting subject variability that can be lost from strict constraints. We also find that the topological properties resulting from the TOIBN maps are more expressive of differences between individuals with schizophrenia and controls in the default mode, subcortical, and visual networks.
Collapse
Affiliation(s)
- Noah Lewis
- Georgia Institute of Technoloqy, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Robyn Miller
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Oktay Agcaoglu
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Vince Calhoun
- Georgia Institute of Technoloqy, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
2
|
Jacob MS, Roach BJ, Mathalon DH, Ford JM. Noncanonical EEG-BOLD coupling by default and in schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320216. [PMID: 39867401 PMCID: PMC11759611 DOI: 10.1101/2025.01.14.25320216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Neuroimaging methods rely on models of neurovascular coupling that assume hemodynamic responses evolve seconds after changes in neural activity. However, emerging evidence reveals noncanonical BOLD (blood oxygen level dependent) responses that are delayed under stress and aberrant in neuropsychiatric conditions. To investigate BOLD coupling to resting-state fluctuations in neural activity, we simultaneously recorded EEG and fMRI in people with schizophrenia and psychiatrically unaffected participants. We focus on alpha band power to examine voxelwise, time-lagged BOLD correlations. Principally, we find diversity in the temporal profile of alpha-BOLD coupling within regions of the default mode network (DMN). This includes early coupling (0-2 seconds BOLD lag) for more posterior regions, thalamus and brainstem. Anterior regions of the DMN show coupling at canonical lags (4-6 seconds), with greater lag scores associated with self-reported measures of stress and greater lag scores in participants with schizophrenia. Overall, noncanonical alpha-BOLD coupling is widespread across the DMN and other non-cortical regions, and is delayed in people with schizophrenia. These findings are consistent with a "hemo-neural" hypothesis, that blood flow and/or metabolism can regulate ongoing neural activity, and further, that the hemo-neural lag may be associated with subjective arousal or stress. Our work highlights the need for more studies of neurovascular coupling in psychiatric conditions.
Collapse
Affiliation(s)
- Michael S Jacob
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States
| | - Brian J Roach
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
| | - Daniel H Mathalon
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States
| | - Judith M Ford
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States
| |
Collapse
|
3
|
Fouladivanda M, Iraji A, Wu L, van Erp TGM, Belger A, Hawamdeh F, Pearlson GD, Calhoun VD. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. Netw Neurosci 2024; 8:1212-1242. [PMID: 39735500 PMCID: PMC11674407 DOI: 10.1162/netn_a_00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/28/2024] [Indexed: 12/31/2024] Open
Abstract
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. The brain connectivity of different modalities provides an insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multimodal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multiobjective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multimodal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared with the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Lei Wu
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior School of Medicine, University of California, Irvine, CA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Faris Hawamdeh
- Center for Disaster Informatics and Computational Epidemiology (DICE), Georgia State University, Atlanta, GA, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Department of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Vince D. Calhoun
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
4
|
Saha A, Park S, Geem ZW, Singh PK. Schizophrenia Detection and Classification: A Systematic Review of the Last Decade. Diagnostics (Basel) 2024; 14:2698. [PMID: 39682605 DOI: 10.3390/diagnostics14232698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Artificial Intelligence (AI) in healthcare employs advanced algorithms to analyze complex and large-scale datasets, mimicking aspects of human cognition. By automating decision-making processes based on predefined thresholds, AI enhances the accuracy and reliability of healthcare data analysis, reducing the need for human intervention. Schizophrenia (SZ), a chronic mental health disorder affecting millions globally, is characterized by symptoms such as auditory hallucinations, paranoia, and disruptions in thought, behavior, and perception. The SZ symptoms can significantly impair daily functioning, underscoring the need for advanced diagnostic tools. METHODS This systematic review has been conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines and examines peer-reviewed studies from the last decade (2015-2024) on AI applications in SZ detection as well as classification. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO) under registration number: CRD42024612364. Research has been sourced from multiple databases and screened using predefined inclusion criteria. The review evaluates the use of both Machine Learning (ML) and Deep Learning (DL) methods across multiple modalities, including Electroencephalography (EEG), Structural Magnetic Resonance Imaging (sMRI), and Functional Magnetic Resonance Imaging (fMRI). The key aspects reviewed include datasets, preprocessing techniques, and AI models. RESULTS The review identifies significant advancements in AI methods for SZ diagnosis, particularly in the efficacy of ML and DL models for feature extraction, classification, and multi-modal data integration. It highlights state-of-the-art AI techniques and synthesizes insights into their potential to improve diagnostic outcomes. Additionally, the analysis underscores common challenges, including dataset limitations, variability in preprocessing approaches, and the need for more interpretable models. CONCLUSIONS This study provides a comprehensive evaluation of AI-based methods in SZ prognosis, emphasizing the strengths and limitations of current approaches. By identifying unresolved gaps, it offers valuable directions for future research in the application of AI for SZ detection and diagnosis.
Collapse
Affiliation(s)
- Arghyasree Saha
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Seungmin Park
- Department of Software, Dongseo University, Busan 47011, Republic of Korea
| | - Zong Woo Geem
- College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata-700106, West Bengal, India
| |
Collapse
|
5
|
Chatterjee I, Baumgärtner L. Unveiling Functional Biomarkers in Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning. J Integr Neurosci 2024; 23:179. [PMID: 39344241 DOI: 10.31083/j.jin2309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neuroimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very little. By employing machine learning techniques with age-matched samples from the auditory oddball task using multi-site functional magnetic resonance imaging (fMRI) data, this study aims to address these challenges. METHODS The study employed a three-stage model to gain a better understanding of the neurobiology underlying schizophrenia and techniques that could be applied for diagnosis. At first, we constructed four-level hierarchical sets from each fMRI volume of 34 schizophrenia patients (SZ) and healthy controls (HC) individually in terms of hemisphere, gyrus, lobes, and Brodmann areas. Second, we employed statistical methods, namely, t-tests and Pearson's correlation, to assess the group differences in cortical activation. Finally, we assessed the predictive power of the brain regions for machine learning algorithms using K-nearest Neighbor (KNN), Naive Bayes, Decision Tree (DT), Random Forest (RF), Support Vector Machines (SVMs), and Extreme Learning Machine (ELM). RESULTS Our investigation depicts promising results, obtaining an accuracy of up to 84% when applying Pearson's correlation-selected features at lobes and Brodmann region level (81% for Gyrus), as well as Hemispheres involving different stages. Thus, the results of our study were consistent with previous studies that have revealed some functional abnormalities in several brain regions. We also discovered the involvement of other brain regions which were never sufficiently studied in previous literature, such as the posterior lobe (posterior cerebellum), Pyramis, and Brodmann Area 34. CONCLUSIONS We present a unique and comprehensive approach to investigating the neurological basis of schizophrenia in this study. By bridging the gap between neuroimaging and computable analysis, we aim to improve diagnostic accuracy in patients with schizophrenia and identify potential prognostic markers for disease progression.
Collapse
Affiliation(s)
- Indranath Chatterjee
- Department of Computing and Mathematics, Manchester Metropolitan University, M1 5GD Manchester, UK
- School of Technology, Woxsen University, 502345 Hyderabad, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Lea Baumgärtner
- Department of Media, Hochschule der Medien, University of Applied Science, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Li T, Ma X, Pan W, Huo X. The impact of transcranial direct current stimulation combined with interim testing on spatial route learning in patients with schizophrenia. J Psychiatr Res 2024; 177:169-176. [PMID: 39024741 DOI: 10.1016/j.jpsychires.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cognitive deficits in patients with schizophrenia have drawn widespread attention. Transcranial direct current stimulation (tDCS) can modulate cognitive processes by altering neuronal excitability. Previous studies have found that interim testing can enhance spatial route learning and memory in patients with schizophrenia. However, there has been limited research on the combined effects of these two methods on spatial route learning in these patients. OBJECTIVE To investigate whether the combination of tDCS and interim testing can effectively contribute to the maintenance of spatial route memory in patients with schizophrenia. The study involved conducting route learning using interim testing after anodal tDCS treatment on the left dorsolateral prefrontal cortex (L-DLPFC). METHODS Ninety-two patients with schizophrenia were recruited and divided into groups receiving anodal, sham, or no stimulation. The anodal group received L-DLPFC tDCS treatment 10 times over 5 days (twice daily for 20 min). After treatment, spatial route learning was assessed in interim testing. Correct recall rates of landmark positions and proactive interference from prior learning were compared among the groups. RESULTS Regardless of stimulation type, the interim testing group outperformed the relearning group. Additionally, recall scores were higher following anodal stimulation, indicating the efficacy of tDCS. CONCLUSIONS Both tDCS and interim testing independently enhance the ability to learn new information in spatial route learning for patients with schizophrenia, indicating that tDCS of the left DLPFC significantly improves memory in these patients.
Collapse
Affiliation(s)
- Tiantian Li
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China
| | - Xiaofeng Ma
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China.
| | - Wen Pan
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou, Lanzhou, China
| |
Collapse
|
7
|
Hou W, Zhou F, Wang Q, Li H, Qin X, Ding Y, Dong F, Bo Q, Li A, Zhang L, Chen Z, Wang Z, Li X, Lee J, Wang C. Effect of transcranial direct current stimulation with concurrent cognitive performance targeting posterior parietal cortex vs prefrontal cortex on working memory in schizophrenia: a randomized clinical trial. Transl Psychiatry 2024; 14:279. [PMID: 38977683 PMCID: PMC11231223 DOI: 10.1038/s41398-024-02994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Working memory deficits are linked to irregularities in the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC) in schizophrenia, effective intervention strategies are lacking. We evaluated the differential efficacy and underlying neuromechanisms of targeting transcranial direct current stimulation (tDCS) at the DLPFC and the PPC with concurrent cognitive performance for working memory in schizophrenia. In a randomized and double-blind clinical trial, sixty clinically stable schizophrenic patients with below-average working memory were randomly assigned to active DLPFC, active PPC, and sham tDCS groups. Two sessions of tDCS during N-back task were delivered daily for five days. The primary outcome was changes in spatial span test scores from baseline to week 1. The secondary outcomes included changes in scores of color delay-estimation task, other cognitive tasks, and mismatch negativity (biomarker of N-methyl-d-aspartate receptor functioning). Compared with the active DLPFC group, the active PPC group demonstrated significantly greater improvement in spatial span test scores (p = 0.008, d = 0.94) and an augmentation in color delay-estimation task capacity at week 1; the latter sustained to week 2. Compared with the sham tDCS group, the active PPC group did not show a significant improvement in spatial span test scores at week 1 and 2; however, significant enhancement was observed in their color delay-estimation task capacity at week 2. Additionally, mismatch negativity amplitude was enhanced, and changes in theta band measures were positively correlated with working memory improvement in the active PPC group, while no such correlations were observed in the active DLPFC group or the sham tDCS group. Our results suggest that tDCS targeting the PPC relative to the DLPFC during concurrent cognitive performance may improve working memory in schizophrenia, meriting further investigation. The improvement in working memory appears to be linked to enhanced N-methyl-d-aspartate receptor functioning.
Collapse
Affiliation(s)
- Wenpeng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fuchun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Wang
- Fengtai Mental Health Center, Beijing, China
| | - Hang Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiangqin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yushen Ding
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Anning Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liang Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhenzhu Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhimin Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xianbin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jimmy Lee
- Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Salabat D, Pourebrahimi A, Mayeli M, Cattarinussi G. The Therapeutic Role of Intermittent Theta Burst Stimulation in Schizophrenia: A Systematic Review and Meta-analysis. J ECT 2024; 40:78-87. [PMID: 38277616 DOI: 10.1097/yct.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
ABSTRACT Schizophrenia affects approximately 1% of the population worldwide. Multifactorial reasons, ranging from drug resistance to adverse effects of medications, have necessitated exploring further therapeutic options. Intermittent theta burst stimulation (iTBS) is a novel high-frequency form of transcranial magnetic stimulation, a safe procedure with minor adverse effects with faster and longer-lasting poststimulation effects with a potential role in treating symptoms; however, the exact target brain regions and symptoms are still controversial. Therefore, we aimed to systematically investigate the current literature regarding the therapeutic utilities of iTBS using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Twelve studies were included among which 9 found iTBS effective to some degree. These studies targeted the dorsolateral prefrontal cortex and the midline cerebellum. We performed a random-effects meta-analysis on studies that compared the effects of iTBS on schizophrenia symptoms measured by the Positive and Negative Syndrome Scale (PANSS) to sham treatment. Our results showed no significant difference between iTBS and sham in PANSS positive and negative scores, but a trend-level difference in PANSS general scores ( k = 6, P = 0.07), and a significant difference in PANSS total scores ( k = 6, P = 0.03). Analysis of the studies targeting the dorsolateral prefrontal cortex showed improvement in PANSS negative scores ( k = 5, standardized mean difference = -0.83, P = 0.049), but not in PANSS positive scores. Moderators (intensity, pulse, quality, sessions) did not affect the results. However, considering the small number of studies included in this meta-analysis, future works are required to further explore the effects of these factors and also find optimum target regions for positive symptoms.
Collapse
|
9
|
Fouladivanda M, Iraji A, Wu L, van Erp TG, Belger A, Hawamdeh F, Pearlson GD, Calhoun VD. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.13.553101. [PMID: 38853973 PMCID: PMC11160563 DOI: 10.1101/2023.08.13.553101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Lei Wu
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Theodorus G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior School of Medicine, University of California, Irvine, CA, USA
| | - Aysenil Belger
- Department of Psychiatry Director, Neuroimaging Research in Psychiatry Director, Clinical Translational Core, UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Faris Hawamdeh
- Center for Disaster Informatics and Computational Epidemiology (DICE), Georgia State University, Atlanta, GA, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Department of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Vince D. Calhoun
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
10
|
Tubiolo PN, Williams JC, Van Snellenberg JX. A tale of two n-backs: Diverging associations of dorsolateral prefrontal cortex activation with n-back task performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595597. [PMID: 38826388 PMCID: PMC11142179 DOI: 10.1101/2024.05.23.595597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background In studying the neural correlates of working memory (WM) ability via functional magnetic resonance imaging (fMRI) in health and disease, it is relatively uncommon for investigators to report associations between brain activation and measures of task performance. Additionally, how the choice of WM task impacts observed activation-performance relationships is poorly understood. We sought to illustrate the impact of WM task on brain-behavior correlations using two large, publicly available datasets. Methods We conducted between-participants analyses of task-based fMRI data from two publicly available datasets: the Human Connectome Project (HCP; n = 866) and the Queensland Twin Imaging (QTIM) Study (n = 459). Participants performed two distinct variations of the n-back WM task with different stimuli, timings, and response paradigms. Associations between brain activation ([2-back - 0-back] contrast) and task performance (2-back % correct) were investigated separately in each dataset, as well as across datasets, within the dorsolateral prefrontal cortex (dlPFC), medial prefrontal cortex, and whole cortex. Results Global patterns of activation to task were similar in both datasets. However, opposite associations between activation and task performance were observed in bilateral pre-supplementary motor area and left middle frontal gyrus. Within the dlPFC, HCP participants exhibited a significantly greater activation-performance relationship in bilateral middle frontal gyrus relative to QTIM Study participants. Conclusions The observation of diverging activation-performance relationships between two large datasets performing variations of the n-back task serves as a critical reminder for investigators to exercise caution when selecting WM tasks and interpreting neural activation in response to a WM task.
Collapse
Affiliation(s)
- Philip N Tubiolo
- Department of Biomedical Engineering, Stony Brook University
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University
| | - John C Williams
- Department of Biomedical Engineering, Stony Brook University
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University
| | - Jared X Van Snellenberg
- Department of Biomedical Engineering, Stony Brook University
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University
- Department of Psychology, Stony Brook University
| |
Collapse
|
11
|
Hong X, Xu L, Hu Y, Qian Z, Wang J, Li C, Sheng J. An event-related potential study of prepotent motor activity and response inhibition deficits in schizophrenia. Eur J Neurosci 2024; 59:1933-1945. [PMID: 38221669 DOI: 10.1111/ejn.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Response inhibition deficits in schizophrenia (SZ) are accompanied by reduced neural activities using event-related potential (ERP) measurements. However, it remains unclear whether the reduction in inhibition-related ERPs in SZ is contingent upon prepotent motor tendencies. This study aimed to examine the relationship between ERP markers of prepotent motor activity (lateralised readiness potential, LRP) and response inhibition (P3) by collecting behavioural and EEG data from healthy control (HC) subjects and SZ patients during a modified Go/No-Go task. A trial-averaged analysis revealed that SZ patients made more commission errors in No-Go trials compared with HC subjects, although there was no significant difference in the inhibition-related P3 effect (i.e. larger P3 amplitudes in No-Go compared with Go trials) between the two groups. Subsequently, No-Go trials were sorted and median-split into bins of stronger and weaker motor tendencies. Both HC and SZ participants made more commission errors when faced with stronger motor tendencies. The LRP-sorted P3 data indicated that HC subjects exhibited larger P3 effects in response to stronger motor tendencies, whereas this trial-by-trial association between P3 and motor tendencies was absent in SZ patients. Furthermore, SZ patients displayed diminished P3 effects in No-Go trials with stronger motor tendencies but not in trials with weaker motor tendencies, relative to HC subjects. Taken together, these findings suggest that SZ patients are unable to dynamically adjust inhibition-related neural activities in response to changing inhibitory control demands and emphasise the importance of considering prepotent motor activity when investigating the neural mechanisms underlying response inhibition deficits in SZ.
Collapse
Affiliation(s)
- Xiangfei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Sheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Lisoni J, Nibbio G, Baldacci G, Zucchetti A, Cicale A, Zardini D, Miotto P, Deste G, Barlati S, Vita A. Improving depressive symptoms in patients with schizophrenia using bilateral bipolar-nonbalanced prefrontal tDCS: Results from a double-blind sham-controlled trial. J Affect Disord 2024; 349:165-175. [PMID: 38199388 DOI: 10.1016/j.jad.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Treating depressive symptoms in patients with schizophrenia is challenging. While transcranical Dicrect Current Stimulation (tDCS) improved other core symptoms of schizophrenia, conflicting results have been obtained on depressive symptoms. Thus, we aimed to expand current evidence on tDCS efficacy to improve depressive symptoms in patients with schizophrenia. METHODS A double-blind RCT was performed with patients randomized to 2 mA active-tDCS or sham-tDCS (15 daily sessions) with a bilateral bipolar-nonbalanced prefrontal placement (anode: left Dorsolateral prefrontal cortex; cathode: right orbitofrontal region). Clinical outcomes included variations of Calgary Depression Scale for Schizophrenia total score (CDSS) and of Depression-hopelessness and Guilty idea of reference-pathological guilt factors. Analysis of covariance was performed evaluating between-group changes over time. The presence/absence of probable clinically significant depression was determined when CDSS > 6. RESULTS As 50 outpatients were included (both groups, n = 25), significant improvements following active-tDCS were observed for CDSS total score (p = 0.001), Depression-hopelessness (p = 0.001) and Guilty idea of reference-pathological guilt (p = 0.03). Considering patients with CDSS>6 (n = 23), compared to sham, active-tDCS significantly improved CDSS total score (p < 0.001), Depression-hopelessness (p = 0.001) but Guilty idea of reference-pathological guilt only marginally improved (p = 0.051). Considering response rates of clinically significant depression, important reductions of CDSS score were observed (78 % of the sample scored ≤6; active-tDCS, n = 23; sham-tDCS, n = 16; p = 0.017). Early wakening item did not significantly change in any group. LIMITATIONS The study lacks a follow-up period and evaluation of tDCS effects on psychosocial functioning. CONCLUSIONS Bilateral bipolar-nonbalanced prefrontal tDCS is a successful protocol for the treatment of depressive symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Cicale
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Zardini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Miotto
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
13
|
Jing L, Yan T, Zhou J, Xie Y, Qiu J, Wang Y, Lu W. Elevated Intraocular Pressure Moderated Brain Morphometry in High-tension Glaucoma: a Structural MRI Study. Clin Neuroradiol 2024; 34:173-179. [PMID: 37798542 DOI: 10.1007/s00062-023-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
High-tension glaucoma (HTG) is one of the most common forms of primary open angle glaucoma. The purpose of this study was to assess in HTG brain, whether the elevated intraocular pressure (IOP) had an effect on the brain morphological alterations via structural MRI. We acquired T1WI structural MRI images from 56 subjects including 36 HTG patients and 20 healthy controls. We tested whether the brain morphometry was associated with the mean IOP in HTG patients. Moreover, we conducted moderation analysis to assess the interactions between subject type (HTG - healthy controls) and IOP. In HTG group, cortical thickness was negatively correlated with the mean IOP in the left rostral middle frontal gyrus, left pars triangularis, right precentral gyrus, left postcentral gyrus, left superior temporal gyrus (p < 0.05, FDR corrected). Four of the five regions negatively correlated with mean IOP showed reduced cortical thickness in HTG group compared with healthy controls, which were the left rostral middle frontal gyrus, left pars triangularis, left postcentral gyrus and left superior temporal gyrus (p < 0.05, FDR corrected). IOP moderated the interaction between subject type and cortical thickness of the left rostral middle frontal gyrus (p = 0.0017), left pars triangularis (p = 0.0011), left postcentral gyrus (p = 0.0040) and left superior temporal gyrus (p = 0.0066). Elevated IOP may result brain morphometry alterations such as cortical thinning. The relationship between IOP and brain morphometry underlines the importance of the IOP regulation for HTG patients.
Collapse
Affiliation(s)
- Liang Jing
- Center of Radiation Therapy, Taian Tumor Hospital, Taian, China
| | - Tingqin Yan
- Department of Ophthalmology, Taian City Central Hospital, Taian, China
| | - Jian Zhou
- Department of Radiology, Taian City Central Hospital, Taian, China
| | - Yuanzhong Xie
- Department of Radiology, Taian City Central Hospital, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yi Wang
- Department of Ophthalmology, The Second Affiliated hospital of Shandong First Medical University, Taian, China.
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
14
|
Thakuri DS, Bhattarai P, Wong DF, Chand GB. Dysregulated Salience Network Control over Default-Mode and Central-Executive Networks in Schizophrenia Revealed Using Stochastic Dynamical Causal Modeling. Brain Connect 2024; 14:70-79. [PMID: 38164105 PMCID: PMC10890948 DOI: 10.1089/brain.2023.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Introduction: Neuroimaging studies suggest that the human brain consists of intrinsically organized, large-scale neural networks. Among these networks, the interplay among the default-mode network (DMN), salience network (SN), and central-executive network (CEN) has been widely used to understand the functional interaction patterns in health and disease. This triple network model suggests that the SN causally controls over the DMN and CEN in healthy individuals. This interaction is often referred to as SN's dynamic regulating mechanism. However, such interactions are not well understood in individuals with schizophrenia. Methods: In this study, we leveraged resting-state functional magnetic resonance imaging data from schizophrenia (n = 67) and healthy controls (n = 81) and evaluated the directional functional interactions among DMN, SN, and CEN using stochastic dynamical causal modeling methodology. Results: In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney U test; p < 10-8). In schizophrenia, however, our analyses revealed a disrupted SN-based controlling mechanism over the DMN and CEN (Mann-Whitney U test; p < 10-16). Conclusions: These results indicate that the disrupted controlling mechanism of SN over the other two neural networks may be a candidate neuroimaging phenotype in schizophrenia.
Collapse
Affiliation(s)
- Deepa S. Thakuri
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Medicine and Radiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Puskar Bhattarai
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dean F. Wong
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Neuroscience, Psychiatry, and Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Imaging Core, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ganesh B. Chand
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Imaging Core, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Institute of Clinical and Translational Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Ye L, Feng J, Li C. Controlling brain dynamics: Landscape and transition path for working memory. PLoS Comput Biol 2023; 19:e1011446. [PMID: 37669311 PMCID: PMC10503743 DOI: 10.1371/journal.pcbi.1011446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Understanding the underlying dynamical mechanisms of the brain and controlling it is a crucial issue in brain science. The energy landscape and transition path approach provides a possible route to address these challenges. Here, taking working memory as an example, we quantified its landscape based on a large-scale macaque model. The working memory function is governed by the change of landscape and brain-wide state switching in response to the task demands. The kinetic transition path reveals that information flow follows the direction of hierarchical structure. Importantly, we propose a landscape control approach to manipulate brain state transition by modulating external stimulation or inter-areal connectivity, demonstrating the crucial roles of associative areas, especially prefrontal and parietal cortical areas in working memory performance. Our findings provide new insights into the dynamical mechanism of cognitive function, and the landscape control approach helps to develop therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- School of Mathematical Sciences and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Kim B, Kim D, Schulmann A, Patel Y, Caban-Rivera C, Kim P, Jambhale A, Johnson KR, Feng N, Xu Q, Kang SJ, Mandal A, Kelly M, Akula N, McMahon FJ, Lipska B, Marenco S, Auluck PK. Cellular Diversity in Human Subgenual Anterior Cingulate and Dorsolateral Prefrontal Cortex by Single-Nucleus RNA-Sequencing. J Neurosci 2023; 43:3582-3597. [PMID: 37037607 PMCID: PMC10184745 DOI: 10.1523/jneurosci.0830-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder. Unsupervised clustering identified major neural cell classes. Subsequent iterative clustering of neurons further revealed 20 excitatory and 22 inhibitory subclasses. Inhibitory cells were consistently more abundant in the sgACC and excitatory neuron subclusters exhibited considerable variability across brain regions. Excitatory cell subclasses also exhibited greater within-class transcriptional differences between the two regions. We used these molecular definitions to determine which cell classes might be enriched in loci carrying a genetic signal in genome-wide association studies or for differentially expressed genes in mental illness. We found that the heritable signals of psychiatric disorders were enriched in neurons and that, while the gene expression changes detected in bulk-RNA-sequencing studies were dominated by glial cells, some alterations could be identified in specific classes of excitatory and inhibitory neurons. Intriguingly, only two excitatory cell classes exhibited concomitant region-specific enrichment for both genome-wide association study loci and transcriptional dysregulation. In sum, by detailing the molecular and cellular diversity of the DLPFC and sgACC, we were able to generate hypotheses on regional and cell-specific dysfunctions that may contribute to the development of mental illness.SIGNIFICANCE STATEMENT Dysfunction of the subgenual anterior cingulate cortex has been implicated in mood disorders, particularly major depressive disorder, and the dorsolateral PFC, a subsection of the PFC involved in executive functioning, has been implicated in schizophrenia. Understanding the cellular composition of these regions is critical to elucidating the neurobiology underlying psychiatric and neurologic disorders. We studied cell type diversity of the subgenual anterior cingulate cortex and dorsolateral PFC of humans with no neuropsychiatric illness using a clustering analysis of single-nuclei RNA-sequencing data. Defining the transcriptomic profile of cellular subpopulations in these cortical regions is a first step to demystifying the cellular and molecular pathways involved in psychiatric disorders.
Collapse
Affiliation(s)
- Billy Kim
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Dowon Kim
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Yash Patel
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Carolina Caban-Rivera
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Paul Kim
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Ananya Jambhale
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Kory R Johnson
- Information Technology and Bioinformatics Program, National Institute of Neurological Disorders and Stroke-Intramural Research Program, Bethesda, Maryland 20892
| | - Ningping Feng
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Qing Xu
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Sun Jung Kang
- Genetic Epidemiology Research Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Michael Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland 20892
| | - Nirmala Akula
- Human Genetics Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Barbara Lipska
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Wilkinson ID, Mahmood T, Yasmin SF, Tomlinson A, Nazari J, Alhaj H, el din SN, Neill J, Pandit C, Ashraf S, Cardno AG, Clapcote SJ, Inglehearn CF, Woodruff PW. In memory of Professor Iain Wilkinson: cognitive and neuroimaging endophenotypes in a consanguineous schizophrenia multiplex family. Psychol Med 2023; 53:3178-3186. [PMID: 35125130 PMCID: PMC10235651 DOI: 10.1017/s0033291721005250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Schizophrenia endophenotypes may help elucidate functional effects of genetic risk variants in multiply affected consanguineous families that segregate recessive risk alleles of large effect size. We studied the association between a schizophrenia risk locus involving a 6.1Mb homozygous region on chromosome 13q22-31 in a consanguineous multiplex family and cognitive functioning, haemodynamic response and white matter integrity using neuroimaging. METHODS We performed CANTAB neuropsychological testing on four affected family members (all homozygous for the risk locus), ten unaffected family members (seven homozygous and three heterozygous) and ten healthy volunteers, and tested neuronal responses on fMRI during an n-back working memory task, and white matter integrity on diffusion tensor imaging (DTI) on four affected and six unaffected family members (four homozygous and two heterozygous) and three healthy volunteers. For cognitive comparisons we used a linear mixed model (Kruskal-Wallis) test, followed by posthoc Dunn's pairwise tests with a Bonferroni adjustment. For fMRI analysis, we counted voxels exceeding the p < 0.05 corrected threshold. DTI analysis was observational. RESULTS Family members with schizophrenia and unaffected family members homozygous for the risk haplotype showed attention (p < 0.01) and working memory deficits (p < 0.01) compared with healthy controls; a neural activation laterality bias towards the right prefrontal cortex (voxels reaching p < 0.05, corrected) and observed lower fractional anisotropy in the anterior cingulate cortex and left dorsolateral prefrontal cortex. CONCLUSIONS In this family, homozygosity at the 13q risk locus was associated with impaired cognition, white matter integrity, and altered laterality of neural activation.
Collapse
Affiliation(s)
- Iain D. Wilkinson
- Academic Unit of Radiology, School of Medicine, University of Sheffield, Sheffield, UK
| | - Tariq Mahmood
- Leeds & York Partnership NHS Foundation Trust, Leeds, UK
| | - Sophia Faye Yasmin
- Academic Unit of Radiology, School of Medicine, University of Sheffield, Sheffield, UK
| | | | - Jamshid Nazari
- South West Yorkshire NHS Foundation Trust, Wakefield, UK
| | - Hamid Alhaj
- University of Sharjah, UAE
- Department of Neuroscience, School of Medicine, University of Sheffield, Sheffield, UK
| | | | - Joanna Neill
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Chhaya Pandit
- Leeds & York Partnership NHS Foundation Trust, Leeds, UK
| | - Shahzad Ashraf
- South West Yorkshire NHS Foundation Trust, Wakefield, UK
| | - Alastair G. Cardno
- Psychological & Social Medicine, Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Peter W. Woodruff
- Department of Neuroscience, School of Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Qin X, Huang H, Liu Y, Zheng F, Zhou Y, Wang H. Increased Functional Connectivity Involving the Parahippocampal Gyrus in Patients with Schizophrenia during Theory of Mind Processing: A Psychophysiological Interaction Study. Brain Sci 2023; 13:brainsci13040692. [PMID: 37190657 DOI: 10.3390/brainsci13040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Theory of Mind (ToM) is an ability to infer the mental state of others, which plays an important role during social events. Previous studies have shown that ToM deficits exist frequently in schizophrenia, which may result from abnormal activity in brain regions related to sociality. However, the interactions between brain regions during ToM processing in schizophrenia are still unclear. Therefore, in this study, we investigated functional connectivity during ToM processing in patients with schizophrenia, using functional magnetic resonance imaging (fMRI). METHODS A total of 36 patients with schizophrenia and 33 healthy controls were recruited to complete a ToM task from the Human Connectome Project (HCP) during fMRI scanning. Psychophysiological interaction (PPI) analysis was applied to explore functional connectivity. RESULTS Patients with schizophrenia were less accurate than healthy controls in judging social stimuli from non-social stimuli (Z = 2.31, p = 0.021), and displayed increased activity in the right inferior frontal gyrus and increased functional connectivity between the bilateral middle temporal gyrus and the ipsilateral parahippocampal gyrus during ToM processing (AlphaSim corrected p < 0.05). CONCLUSIONS Here, we showed that the brain regions related to sociality interact more with the parahippocampal gyrus in patients with schizophrenia during ToM processing, which may reflect a possible compensatory pathway of ToM deficits in schizophrenia. Our study provides a new idea for ToM deficits in schizophrenia, which could be helpful to better understand social cognition of schizophrenia.
Collapse
Affiliation(s)
- Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fanfan Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Zhou
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430060, China
| |
Collapse
|
20
|
Jacob M, Ford J, Deacon T. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Front Hum Neurosci 2023; 17:976036. [PMID: 37113322 PMCID: PMC10126302 DOI: 10.3389/fnhum.2023.976036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a living organ with distinct metabolic constraints. However, these constraints are typically considered as secondary or supportive of information processing which is primarily performed by neurons. The default operational definition of neural information processing is that (1) it is ultimately encoded as a change in individual neuronal firing rate as this correlates with the presentation of a peripheral stimulus, motor action or cognitive task. Two additional assumptions are associated with this default interpretation: (2) that the incessant background firing activity against which changes in activity are measured plays no role in assigning significance to the extrinsically evoked change in neural firing, and (3) that the metabolic energy that sustains this background activity and which correlates with differences in neuronal firing rate is merely a response to an evoked change in neuronal activity. These assumptions underlie the design, implementation, and interpretation of neuroimaging studies, particularly fMRI, which relies on changes in blood oxygen as an indirect measure of neural activity. In this article we reconsider all three of these assumptions in light of recent evidence. We suggest that by combining EEG with fMRI, new experimental work can reconcile emerging controversies in neurovascular coupling and the significance of ongoing, background activity during resting-state paradigms. A new conceptual framework for neuroimaging paradigms is developed to investigate how ongoing neural activity is "entangled" with metabolism. That is, in addition to being recruited to support locally evoked neuronal activity (the traditional hemodynamic response), changes in metabolic support may be independently "invoked" by non-local brain regions, yielding flexible neurovascular coupling dynamics that inform the cognitive context. This framework demonstrates how multimodal neuroimaging is necessary to probe the neurometabolic foundations of cognition, with implications for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Jacob
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith Ford
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terrence Deacon
- Department of Anthropology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
21
|
Mitochondria play an essential role in the trajectory of adolescent neurodevelopment and behavior in adulthood: evidence from a schizophrenia rat model. Mol Psychiatry 2023; 28:1170-1181. [PMID: 36380234 PMCID: PMC10005953 DOI: 10.1038/s41380-022-01865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Ample evidence implicate mitochondria in early brain development. However, to the best of our knowledge, there is only circumstantial data for mitochondria involvement in late brain development occurring through adolescence, a critical period in the pathogenesis of various psychiatric disorders, specifically schizophrenia. In schizophrenia, neurodevelopmental abnormalities and mitochondrial dysfunction has been repeatedly reported. Here we show a causal link between mitochondrial transplantation in adolescence and brain functioning in adulthood. We show that transplantation of allogenic healthy mitochondria into the medial prefrontal cortex of adolescent rats was beneficial in a rat model of schizophrenia, while detrimental in healthy control rats. Specifically, disparate initial changes in mitochondrial function and inflammatory response were associated with opposite long-lasting changes in proteome, neurotransmitter turnover, neuronal sprouting and behavior in adulthood. A similar inverse shift in mitochondrial function was also observed in human lymphoblastoid cells deived from schizophrenia patients and healthy subjects due to the interference of the transplanted mitochondria with their intrinsic mitochondrial state. This study provides fundamental insights into the essential role of adolescent mitochondrial homeostasis in the development of normal functioning adult brain. In addition, it supports a therapeutic potential for mitochondria manipulation in adolescence in disorders with neurodevelopmental and bioenergetic deficits, such as schizophrenia, yet emphasizes the need to monitor individuals' state including their mitochondrial function and immune response, prior to intervention.
Collapse
|
22
|
Voegtle A, Reichert C, Hinrichs H, Sweeney-Reed CM. Repetitive Anodal TDCS to the Frontal Cortex Increases the P300 during Working Memory Processing. Brain Sci 2022; 12:1545. [PMID: 36421869 PMCID: PMC9688092 DOI: 10.3390/brainsci12111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (TDCS) is a technique with which neuronal activity, and therefore potentially behavior, is modulated by applying weak electrical currents to the scalp. Application of TDCS to enhance working memory (WM) has shown promising but also contradictory results, and little emphasis has been placed on repeated stimulation protocols, in which effects are expected to be increased. We aimed to characterize potential behavioral and electrophysiological changes induced by TDCS during WM training and evaluate whether repetitive anodal TDCS has a greater modulatory impact on the processes underpinning WM than single-session stimulation. We examined the effects of single-session and repetitive anodal TDCS to the dorsolateral prefrontal cortex (DLPFC), targeting the frontal-parietal network, during a WM task in 20 healthy participants. TDCS had no significant impact on behavioral measures, including reaction time and accuracy. Analyzing the electrophysiological response, the P300 amplitude significantly increased following repetitive anodal TDCS, however, positively correlating with task performance. P300 changes were identified over the parietal cortex, which is known to engage with the frontal cortex during WM processing. These findings support the hypothesis that repetitive anodal TDCS modulates electrophysiological processes underlying WM.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Catherine M. Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
23
|
Rootes-Murdy K, Edmond JT, Jiang W, Rahaman MA, Chen J, Perrone-Bizzozero NI, Calhoun VD, van Erp TGM, Ehrlich S, Agartz I, Jönsson EG, Andreassen OA, Westlye LT, Wang L, Pearlson GD, Glahn DC, Hong E, Buchanan RW, Kochunov P, Voineskos A, Malhotra A, Tamminga CA, Liu J, Turner JA. Clinical and cortical similarities identified between bipolar disorder I and schizophrenia: A multivariate approach. Front Hum Neurosci 2022; 16:1001692. [PMID: 36438633 PMCID: PMC9684186 DOI: 10.3389/fnhum.2022.1001692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles. MATERIALS AND METHODS We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP. RESULTS Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences. CONCLUSION These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jesse T. Edmond
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, Medical School, Zhongda Hospital, Institute of Psychosomatics, Southeast University, Nanjing, China
| | - Md A. Rahaman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | | | - Vince D. Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute and Stockholm Health Care Services, Stockholm, Sweden
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute and Stockholm Health Care Services, Stockholm, Sweden
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Godfrey D. Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, United States
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
| | - David C. Glahn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert W. Buchanan
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aristotle Voineskos
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Anil Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Queens, NY, United States
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jessica A. Turner
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
24
|
Intson K, Geissah S, McCullumsmith RE, Ramsey AJ. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 PMCID: PMC11740474 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
Affiliation(s)
- Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Salma Geissah
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Lisoni J, Baldacci G, Nibbio G, Zucchetti A, Butti Lemmi Gigli E, Savorelli A, Facchi M, Miotto P, Deste G, Barlati S, Vita A. Effects of bilateral, bipolar-nonbalanced, frontal transcranial Direct Current Stimulation (tDCS) on negative symptoms and neurocognition in a sample of patients living with schizophrenia: Results of a randomized double-blind sham-controlled trial. J Psychiatr Res 2022; 155:430-442. [PMID: 36182772 DOI: 10.1016/j.jpsychires.2022.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Negative symptoms (NS), conceived as Avolition-Apathy (AA) and Expressive Deficit (EXP) domains, and neurocognitive impairments represent unmet therapeutic needs for patients with schizophrenia. The present study investigated if bilateral bipolar-nonbalanced frontal transcranial Direct Current Stimulation (tDCS) could improve these psychopathological dimensions. This randomized, double-blind, sham-controlled study (active-tDCS versus sham-tDCS, both, n = 25) included 50 outpatients diagnosed with schizophrenia clinically stabilized. Patients received 20-min 2 mA active-tDCS or sham-tDCS (anode: left Dorsolateral Prefrontal Cortex; cathode: right orbitofrontal region). Primary outcomes included: PANSS-Negative subscale, Negative Factor (Neg-PANSS), AA and EXP domains; neurocognitive performance at Brief Assessment of Cognition in Schizophrenia. Secondary outcomes included: PANSS subscales and total score, Disorganized/Concrete (DiscC-PANSS) and Positive Factors, Clinical Global Impression (CGI) scores, clinical insight at Scale to Assess Unawareness of Mental Disorder (SUMD). Analysis of covariance (ANCOVA) was performed evaluating between-group changes over time. Significant improvements following active-tDCS were observed for all NS measures (all, p < 0.001; d > 0.8) and for working memory (p = 0.025, d = 0.31). Greater variations following to active treatment emerged also for PANSS-General Psychopathology subscale (p < 0.001; d = 0.54), PANSS total score (p < 0.001; d = 0.69), CGI indexes (all, p < 0.001; d > 0.6), DiscC-PANSS (p < 0.001; d = 0.80) and SUMD-general Unawareness index (p = 0.005; d = 0.15) but not for positive symptoms and others insight measures. Good safety/tolerability profiles were found. Bilateral bipolar-nonbalanced frontal-tDCS is a non-pharmacological approach in schizophrenia effectively improving NS, particularly the AA and EXP domains, probably acting by modulating dysfunctional cortical-subcortical networks. Preliminary results also suggest working memory improvements following tDCS. Further studies are needed to confirm the neurobiological basis of these results.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Arianna Savorelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Michele Facchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paola Miotto
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Zovetti N, Bellani M, Chowdury A, Alessandrini F, Zoccatelli G, Perlini C, Ricciardi GK, Marzi CA, Diwadkar VA, Brambilla P. Inefficient white matter activity in Schizophrenia evoked during intra and inter-hemispheric communication. Transl Psychiatry 2022; 12:449. [PMID: 36244980 PMCID: PMC9573867 DOI: 10.1038/s41398-022-02200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.
Collapse
Affiliation(s)
- Niccolò Zovetti
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| | - Asadur Chowdury
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Franco Alessandrini
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giada Zoccatelli
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Cinzia Perlini
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Giuseppe K. Ricciardi
- Pathology and Diagnostics, Section of Neuroradiology, Hospital Trust Verona, Verona, Italy
| | - Carlo A. Marzi
- grid.5611.30000 0004 1763 1124Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy ,National Institute of Neuroscience, Verona, Italy
| | - Vaibhav A. Diwadkar
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
27
|
An Integrative Analysis of Identified Schizophrenia-Associated Brain Cell Types and Gene Expression Changes. Int J Mol Sci 2022; 23:ijms231911581. [PMID: 36232882 PMCID: PMC9569514 DOI: 10.3390/ijms231911581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder that may result in hallucinations, delusions, and extremely disordered thinking. How each cell type in the brain contributes to SCZ occurrence is still unclear. Here, we leveraged the human dorsolateral prefrontal cortex bulk RNA-seq data, then used the RNA-seq deconvolution algorithm CIBERSORTx to generate SCZ brain single-cell RNA-seq data for a comprehensive analysis to understand SCZ-associated brain cell types and gene expression changes. Firstly, we observed that the proportions of brain cell types in SCZ differed from normal samples. Among these cell types, astrocyte, pericyte, and PAX6 cells were found to have a higher proportion in SCZ patients (astrocyte: SCZ = 0.163, control = 0.145, P.adj = 4.9 × 10-4, effect size = 0.478; pericyte: SCZ = 0.057, control = 0.066, P.adj = 1.1 × 10-4, effect size = 0.519; PAX6: SCZ = 0.014, control = 0.011, P.adj = 0.014, effect size = 0.377), while the L5/6_IT_CAR3 cells and LAMP5 cells are the exact opposite (L5/6_IT_Car3: SCZ = 0.102, control = 0.108, P.adj = 0.016, effect size = 0.369; LAMP5: SCZ = 0.057, control = 0.066, P.adj = 2.2 × 10-6, effect size = 0.617). Next, we investigated gene expression in cell types and functional pathways in SCZ. We observed chemical synaptic transmission dysregulation in two types of GABAergic neurons (PVALB and LAMP5), and immune reaction involvement in GABAergic neurons (SST) and non-neuronal cell types (endothelial and oligodendrocyte). Furthermore, we observed that some differential expression genes from bulk RNA-seq displayed cell-type-specific abnormalities in the expression of molecules in SCZ. Finally, the cell types with the SCZ-related transcriptomic changes could be considered to belong to the same module since we observed two major similar coordinated transcriptomic changes across these cell types. Together, our results offer novel insights into cellular heterogeneity and the molecular mechanisms underlying SCZ.
Collapse
|
28
|
Yang Y, Sun Y, Zhang Y, Jin X, Li Z, Ding M, Shi H, Liu Q, Zhang L, Su X, Shao M, Song M, Zhang Y, Li W, Yue W, Liu B, Lv L. Abnormal patterns of regional homogeneity and functional connectivity across the adolescent first-episode, adult first-episode and adult chronic schizophrenia. Neuroimage Clin 2022; 36:103198. [PMID: 36116163 PMCID: PMC9486119 DOI: 10.1016/j.nicl.2022.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
Functional deficits in schizophrenia (SZ) are observed prior to the onset of psychosis and differ at different stages of SZ. However, there is a paucity of studies focused on adolescent first-episode SZ (AOS), adult first-episode SZ (AFES), and adult chronic SZ (CHSZ). In this study, we investigated regional activity and corresponding functional connectivity alterations that have aimed to compare the three disease stages simultaneously. The subjects comprised 49 patients with AOS, 57 patients with AFES, 51 patients with CHSZ, 41 adolescent healthy controls, and 138 adult healthy controls. We compared regional homogeneity (ReHo) between patients at each disease stage with matched healthy controls. We focused on the shared brain regions that showed significant differences between SZ patients at the three different disease stages and healthy controls. Further analysis was conducted to explore whether the patterns of the whole brain functional connectivity alterations were similar. The putamen and medial frontal gyrus (MFG) showed consistently abnormal patterns in AOS, AFES, and CHSZ. Commonly decreased ReHo values in the MFG and increased ReHo values in the bilateral putamen were found in AOS, AFES, and CHSZ. Functional connectivity of MFG remained common abnormality in different SZ stage. In conclusion, ReHo abnormalities in the MFG and the putamen may be common abnormal patterns of brain function in the three different stages of SZ. The vmPFC-dlPFC FC abnormality common occurs in adolescence and adulthood.. This study may provide a more comprehensive understanding of the neurodevelopmental abnormality across the AOS, AFES, and CHSZ.
Collapse
Affiliation(s)
- Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Yuqing Sun
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Zhang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xueyan Jin
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Zheng Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Minli Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Luwen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory for Mental Health, Ministry of Health, Beijing 100191, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.
| |
Collapse
|
29
|
Sklar AL, Coffman BA, Longenecker JM, Curtis M, Salisbury DF. Load-dependent functional connectivity deficits during visual working memory in first-episode psychosis. J Psychiatr Res 2022; 153:174-181. [PMID: 35820225 PMCID: PMC9846371 DOI: 10.1016/j.jpsychires.2022.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Aberrant network connectivity is a core deficit in schizophrenia and may underlie many of its associated cognitive deficits. Previous work in first-episode schizophrenia spectrum illness (FESz) suggests preservation of working memory network function during low-load conditions with dysfunction emerging as task complexity increases. This study assessed visual network connectivity and its contribution to load-dependent working memory impairments. METHODS Magnetoencephalography was recorded from 35 FESz and 28 matched controls (HC) during a lateralized change detection task. Impaired alpha desynchronization was previously identified within bilateral dorsal occipital (Occ) regions. Here, whole-brain alpha-band connectivity was examined using phase-locking (PLV) and bilateral Occ as connectivity seeds. Load effects on connectivity were assessed across participants, and PLV modulation within networks was compared between groups. RESULTS Occ exhibited significant load modulated connectivity with six regions (FDR-corrected). HC exhibited PLV enhancement with load in all connections. FESz failed to show PLV modulation between right Occ and left inferior frontal gyrus, lateral occipito-temporal sulcus, and anterior intermediate parietal sulcus. Smaller PLVs in all three network connections during both memory load conditions were associated with increased reality distortion in FESz (FDR-corrected.) CONCLUSION: Examination of functional connectivity across the visual working memory network in FESz revealed an inability to enhance communication between perceptual and executive networks in response to increasing cognitive demands. Furthermore, the degree of network communication impairment was associated with positive symptoms. These findings provide insights into the nature of brain dysconnectivity and its contribution to symptoms in early psychosis and identify potential targets for future interventions.
Collapse
Affiliation(s)
- Alfredo L Sklar
- Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julia M Longenecker
- Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; VISN 4 Mental Illness Research Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Mark Curtis
- Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Sarpal DK, Tarcijonas G, Calabro FJ, Foran W, Haas GL, Luna B, Murty VP. Context-specific abnormalities of the central executive network in first-episode psychosis: relationship with cognition. Psychol Med 2022; 52:2299-2308. [PMID: 33222723 PMCID: PMC9805803 DOI: 10.1017/s0033291720004201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairments, which contribute to the profound functional deficits observed in psychotic disorders, have found to be associated with abnormalities in trial-level cognitive control. However, neural tasks operate within the context of sustained cognitive states, which can be assessed with 'background connectivity' following the removal of task effects. To date, little is known about the integrity of brain processes supporting the maintenance of a cognitive state in individuals with psychotic disorders. Thus, here we examine background connectivity during executive processing in a cohort of participants with first-episode psychosis (FEP). METHODS The following fMRI study examined background connectivity of the dorsolateral prefrontal cortex (DLPFC), during working memory engagement in a group of 43 patients with FEP, relative to 35 healthy controls (HC). Findings were also examined in relation to measures of executive function. RESULTS The FEP group relative to HC showed significantly lower background DLPFC connectivity with bilateral superior parietal lobule (SPL) and left inferior parietal lobule. Background connectivity between DLPFC and SPL was also positively associated with overall cognition across all subjects and in our FEP group. In comparison, resting-state frontoparietal connectivity did not differ between groups and was not significantly associated with overall cognition, suggesting that psychosis-related alterations in executive networks only emerged during states of goal-oriented behavior. CONCLUSIONS These results provide novel evidence indicating while frontoparietal connectivity at rest appears intact in psychosis, when engaged during a cognitive state, it is impaired possibly undermining cognitive control capacities in FEP.
Collapse
Affiliation(s)
- Deepak K. Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gretchen L. Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu P. Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
32
|
Mizutani-Tiebel Y, Takahashi S, Karali T, Mezger E, Bulubas L, Papazova I, Dechantsreiter E, Stoecklein S, Papazov B, Thielscher A, Padberg F, Keeser D. Differences in electric field strength between clinical and non-clinical populations induced by prefrontal tDCS: A cross-diagnostic, individual MRI-based modeling study. Neuroimage Clin 2022; 34:103011. [PMID: 35487132 PMCID: PMC9125784 DOI: 10.1016/j.nicl.2022.103011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
MDD and SCZ showed lower prefrontal tDCS-induced e-field strengths compared to HC. Average e-field strengths did not significantly differ between MDD and SCZ patients. Inter-individual variability of e-field intensities and distribution was prominent. Inter-rater variability emphasizes the importance of standardized positioning.
Introduction Prefrontal cortex (PFC) regions are promising targets for therapeutic applications of non-invasive brain stimulation, e.g. transcranial direct current stimulation (tDCS), which has been proposed as a novel intervention for major depressive disorder (MDD) and negative symptoms of schizophrenia (SCZ). However, the effects of tDCS vary inter-individually, and dose–response relationships have not been established. Stimulation parameters are often tested in healthy subjects and transferred to clinical populations. The current study investigates the variability of individual MRI-based electric fields (e-fields) of standard bifrontal tDCS across individual subjects and diagnoses. Method The study included 74 subjects, i.e. 25 patients with MDD, 24 patients with SCZ, and 25 healthy controls (HC). Individual e-fields of a common tDCS protocol (i.e. 2 mA stimulation intensity, bifrontal anode-F3/cathode-F4 montage) were modeled by two investigators using SimNIBS (2.0.1) based on structural MRI scans. Result On a whole-brain level, the average e-field strength was significantly reduced in MDD and SCZ compared to HC, but MDD and SCZ did not differ significantly. Regions of interest (ROI) analysis for PFC subregions showed reduced e-fields in Sallet areas 8B and 9 for MDD and SCZ compared to HC, whereas there was again no difference between MDD and SCZ. Within groups, we generally observed high inter-individual variability of e-field intensities at a higher percentile of voxels. Conclusion MRI-based e-field modeling revealed significant differences in e-field strengths between clinical and non-clinical populations in addition to a general inter-individual variability. These findings support the notion that dose–response relationships for tDCS cannot be simply transferred from healthy to clinical cohorts and need to be individually established for clinical groups. In this respect, MRI-based e-field modeling may serve as a proxy for individualized dosing.
Collapse
Affiliation(s)
- Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany.
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Augsburg, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Boris Papazov
- NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; Munich Center for Neurosciences (MCN) - Brain & Mind, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
33
|
Sarpal DK, Blazer A, Wilson JD, Calabro FJ, Foran W, Kahn CE, Luna B, Chengappa KNR. Relationship between plasma clozapine/N-desmethylclozapine and changes in basal forebrain-dorsolateral prefrontal cortex coupling in treatment-resistant schizophrenia. Schizophr Res 2022; 243:170-177. [PMID: 35381515 PMCID: PMC9189030 DOI: 10.1016/j.schres.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
Clozapine (CLZ) demonstrates a unique clinical efficacy relative to other antipsychotic drugs. Previous work has linked the plasma ratio of CLZ and its major metabolite, N-desmethylclozapine (NDMC), to an inverse relationship with cognition via putative action on the cholinergic system. However, neuroimaging correlates of CLZ/NDMC remain unknown. Here, we examined changes in basal forebrain functional connectivity with the dorsolateral prefrontal cortex, and secondly, cognition in relation to the CLZ/NDMC ratio. A cohort of nineteen chronically ill participants with treatment-resistant schizophrenia (TRS) undergoing 12 weeks of CLZ treatment were included. Measures of cognition and plasma CLZ/NDMC ratios were obtained in addition to resting-state functional neuroimaging scans, captured at baseline and after 12 weeks of CLZ treatment. We observed a significant correlation between basal forebrain-DLPFC connectivity and CLZ/NDMC ratios across CLZ treatment (p = 0.02). Consistent with previous findings, we also demonstrate a positive relationship between CLZ/NDMC ratio and working memory (p = 0.03). These findings may reflect the action of CLZ and NDMC on the muscarinic cholinergic system, highlighting a possible neural correlate of cognition across treatment.
Collapse
Affiliation(s)
- Deepak K. Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annie Blazer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James D. Wilson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles E. Kahn
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - KN Roy Chengappa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Llana T, Fernandez-Baizan C, Mendez-Lopez M, Fidalgo C, Mendez M. Functional near-infrared spectroscopy in the neuropsychological assessment of spatial memory: A systematic review. Acta Psychol (Amst) 2022; 224:103525. [PMID: 35123299 DOI: 10.1016/j.actpsy.2022.103525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging technique that employs near-infrared light to measure cortical brain oxygenation. The use of fNIRS has increased exponentially in recent years. Spatial memory is defined as the ability to learn and use spatial information. This neuropsychological process is constantly used in our daily lives and can be measured by fNIRS but no research has reviewed whether this technique can be useful in the neuropsychological assessment of spatial memory. This study aimed to review empirical work on the use of fNIRS in the neuropsychological assessment of human spatial memory. We used four databases: PubMed, PsycINFO, Scopus and Web of Science, and a total of 18 articles were found to be eligible. Most of the articles assessed spatial or visuospatial working memory with a predominance in computer-based tasks, used fNIRS equipment of 16 channels and mainly measured the prefrontal cortex (PFC). The studies analysed found linear or quadratic relationships between working memory load and PFC activity, greater activation of PFC activity and worse behavioural results in healthy older people in comparison with healthy adults, and hyperactivation of PFC as a form of compensation in clinical samples. We conclude that fNIRS is compatible with the standard neuropsychological assessment of spatial memory, making it possible to complement behavioural results with data of cortical functional activity.
Collapse
Affiliation(s)
- Tania Llana
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain
| | - Cristina Fernandez-Baizan
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain
| | - Camino Fidalgo
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
35
|
Abstract
OBJECTIVE Cognitive tasks are used to probe neuronal activity during functional magnetic resonance imaging (fMRI) to detect signs of aberrant cognitive functioning in patients diagnosed with schizophrenia (SZ). However, nonlinear (inverted-U-shaped) associations between neuronal activity and task difficulty can lead to misinterpretation of group differences between patients and healthy comparison subjects (HCs). In this paper, we evaluated a novel method for correcting these misinterpretations based on conditional performance analysis. METHOD Participants included 25 HCs and 27 SZs who performed a working memory (WM) task (N-back) with 5 load conditions while undergoing fMRI. Neuronal activity was regressed onto: 1) task load (i.e., parametric task levels), 2) marginal task performance (i.e., performance averaged over all load conditions), or 3) conditional task performance (i.e., performance within each load condition). RESULTS In most regions of interest, conditional performance analysis uniquely revealed inverted-U-shaped neuronal activity in both SZs and HCs. After accounting for conditional performance differences between groups, we observed few difference in both the pattern and level of neuronal activity between SZs and HCs within regions that are classically associated with WM functioning (e.g., posterior dorsolateral prefrontal and parietal association cortices). However, SZs did show aberrant activity within the anterior dorsolateral prefrontal cortex. CONCLUSIONS Interpretations of differences in neuronal activity between groups, and of associations between neuronal activity and performance, should be considered within the context of task performance. Whether conditional performance-based differences reflect compensation, dedifferentiation, or other processes is not a question that is easily resolved by examining activation and performance data alone.
Collapse
|
36
|
Koch E, Nyberg L, Lundquist A, Kauppi K. Polygenic Risk for Schizophrenia Has Sex-Specific Effects on Brain Activity during Memory Processing in Healthy Individuals. Genes (Basel) 2022; 13:genes13030412. [PMID: 35327966 PMCID: PMC8950000 DOI: 10.3390/genes13030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Genetic risk for schizophrenia has a negative impact on memory and other cognitive abilities in unaffected individuals, and it was recently shown that this effect is specific to males. Using functional MRI, we investigated the effect of a polygenic risk score (PRS) for schizophrenia on brain activation during working memory and episodic memory in 351 unaffected participants (167 males and 184 females, 25–95 years), and specifically tested if any effect of PRS on brain activation is sex-specific. Schizophrenia PRS was significantly associated with decreased brain activation in the left dorsolateral prefrontal cortex (DLPFC) during working-memory manipulation and in the bilateral superior parietal lobule (SPL) during episodic-memory encoding and retrieval. A significant interaction effect between sex and PRS was seen in the bilateral SPL during episodic-memory encoding and retrieval, and sex-stratified analyses showed that the effect of PRS on SPL activation was male-specific. These results confirm previous findings of DLPFC inefficiency in schizophrenia, and highlight the SPL as another important genetic intermediate phenotype of the disease. The observed sex differences suggest that the previously shown male-specific effect of schizophrenia PRS on cognition translates into an additional corresponding effect on brain functioning.
Collapse
Affiliation(s)
- Elise Koch
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: ; Tel.: +46-90-786-50-00
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Radiation Sciences, Diagnostic Radiology, University Hospital, Umeå University, 901 87 Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Statistics, School of Business, Economics and Statistics, Umeå University, 901 87 Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Nobels väg 12A, 171 65 Solna, Sweden
| |
Collapse
|
37
|
Meiron O, David J, Yaniv A. Early Auditory Processing Predicts Efficient Working Memory Functioning in Schizophrenia. Brain Sci 2022; 12:brainsci12020212. [PMID: 35203975 PMCID: PMC8870168 DOI: 10.3390/brainsci12020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Early auditory processing (EAP) deficits have been consistently documented in individuals diagnosed with schizophrenia (SZ). However, a relationship between EAP and executive attention has not been confirmed in SZ versus healthy controls (HC). The current study aimed to demonstrate that unlike HC, in SZ patients, auditory change-detection event-related potentials (ERPs) are significantly associated with executive working memory (WM) functioning. Additionally, correlational analyses investigated the relationships between patients’ auditory ERPs, WM performance, and schizophrenia symptom severity scores. We examined verbal WM accuracy associated with “executive-control” prefrontal cortex mechanisms and EAP ERPs under midline prefrontal electrodes in 12 SZ patients versus 12 demographically matched HC. Mismatch negativity (MMN) amplitudes and latencies in SZ patients were not significantly different from HC, however, their verbal WM performance was significantly impaired versus HC. Importantly, prolonged MMN latencies in the SZ group were correlated with better WM accuracy. In the HC group, WM accuracy was unrelated to MMN latencies. Patients’ MMN parameters were unrelated to schizophrenia symptom-domain severity. However, patients’ WM RTs and accuracy were significantly related to illness severity and negative symptom severity, respectively. Therefore, inefficient sensory excitation related to EAP timing may underlie poor executive verbal WM functioning and might indirectly exacerbate the severity of negative symptoms in SZ. Treatments targeting prefrontal cortex dysfunction in schizophrenia are discussed.
Collapse
Affiliation(s)
- Oded Meiron
- Clinical Research Center for Brain Sciences, Herzog Medical Center, Jerusalem 91035, Israel; (J.D.); (A.Y.)
- Faculty of Education, Bar-Ilan University, Ramat Gan 5290002, Israel
- Correspondence:
| | - Jonathan David
- Clinical Research Center for Brain Sciences, Herzog Medical Center, Jerusalem 91035, Israel; (J.D.); (A.Y.)
| | - Asaf Yaniv
- Clinical Research Center for Brain Sciences, Herzog Medical Center, Jerusalem 91035, Israel; (J.D.); (A.Y.)
| |
Collapse
|
38
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
39
|
Jiang W, Rootes-Murdy K, Chen J, Bizzozero NIP, Calhoun VD, van Erp TGM, Ehrlich S, Agartz I, Jönsson EG, Andreassen OA, Wang L, Pearlson GD, Glahn DC, Hong E, Liu J, Turner JA. Multivariate alterations in insula - Medial prefrontal cortex linked to genetics in 12q24 in schizophrenia. Psychiatry Res 2021; 306:114237. [PMID: 34655926 PMCID: PMC8643340 DOI: 10.1016/j.psychres.2021.114237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
The direct effect of genetic variations on clinical phenotypes within schizophrenia (SZ) remains elusive. We examined the previously identified association of reduced gray matter concentration in the insula - medial prefrontal cortex and a quantitative trait locus located in 12q24 in a SZ dataset. The main analysis was performed on 1461 SNPs and 830 participants. The highest contributing SNPs were localized in five genes including TMEM119, which encodes a microglial marker, that is associated with neuroinflammation and Alzheimer's disease. The gene set in 12q4 may partially explain brain alterations in SZ, but they may also relate to other psychiatric and developmental disorders.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Psychology, Georgia State University, United States of America; Department of Psychosomatics and Psychiatry, Zhongda Hospital, Institute of Psychosomatics, Medical School, Southeast University, Nanjing, China
| | - Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, United States of America
| | - Jiayu Chen
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| | | | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, United States of America; Qureshey Research Laboratory, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA,United States of America
| | - Stefan Ehrlich
- Department of Psychiatry, Massachusetts General Hospital, United States of America; Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, United States of America
| | | | - David C Glahn
- Boston Children's Hospital and Harvard Medical School, United States of America
| | - Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, United States of America
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| | - Jessica A Turner
- Department of Psychology, Georgia State University, United States of America; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, United States of America
| |
Collapse
|
40
|
Dimitriadis SI, Lancaster TM, Perry G, Tansey KE, Jones DK, Singh KD, Zammit S, Smith GD, Hall J, O'Donovan MC, Owen MJ, Linden DE. Global Brain Flexibility During Working Memory Is Reduced in a High-Genetic-Risk Group for Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1176-1184. [PMID: 33524599 PMCID: PMC7613444 DOI: 10.1016/j.bpsc.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Altered functional brain connectivity has been proposed as an intermediate phenotype between genetic risk loci and clinical expression of schizophrenia. Genetic high-risk groups of healthy subjects are particularly suited for the investigation of this proposition because they can be tested in the absence of medication or other secondary effects of schizophrenia. METHODS Here, we applied dynamic functional connectivity analysis to functional magnetic resonance imaging data to reveal the reconfiguration of brain networks during a cognitive task. We recruited healthy carriers of common risk variants using the recall-by-genotype design. We assessed 197 individuals: 99 individuals (52 female, 47 male) with low polygenic risk scores (schizophrenia risk profile scores [SCZ-PRSs]) and 98 individuals (52 female, 46 male) with high SCZ-PRSs from both tails of the SCZ-PRS distribution from a genotyped population cohort, the Avon Longitudinal Study of Parents and Children (N = 8169). We compared groups both on conventional brain activation profiles, using the general linear model of the experiment, and on the neural flexibility index, which quantifies how frequent a brain region's community affiliation changes over experimental time. RESULTS Behavioral performance and standard brain activation profiles did not differ significantly between groups. High SCZ-PRS was associated with reduced flexibility index and network modularity across n-back levels. The whole-brain flexibility index and that of the frontoparietal working memory network was associated with n-back performance. We identified a dynamic network phenotype related to high SCZ-PRS. CONCLUSIONS Such neurophysiological markers can become important for the elucidation of biological mechanisms of schizophrenia and, particularly, the associated cognitive deficit.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, United Kingdom; Neuroinformatics Group, School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Thomas M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Psychology, Bath University, Bath, United Kingdom
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Katherine E Tansey
- MRC Integrative Epidemiology Unit, University of Bristol, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Stanley Zammit
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael C O'Donovan
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David E Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, United Kingdom; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
41
|
Tarasi L, Trajkovic J, Diciotti S, di Pellegrino G, Ferri F, Ursino M, Romei V. Predictive waves in the autism-schizophrenia continuum: A novel biobehavioral model. Neurosci Biobehav Rev 2021; 132:1-22. [PMID: 34774901 DOI: 10.1016/j.neubiorev.2021.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022]
Abstract
The brain is a predictive machine. Converging data suggests a diametric predictive strategy from autism spectrum disorders (ASD) to schizophrenic spectrum disorders (SSD). Whereas perceptual inference in ASD is rigidly shaped by incoming sensory information, the SSD population is prone to overestimate the precision of their priors' models. Growing evidence considers brain oscillations pivotal biomarkers to understand how top-down predictions integrate bottom-up input. Starting from the conceptualization of ASD and SSD as oscillopathies, we introduce an integrated perspective that ascribes the maladjustments of the predictive mechanism to dysregulation of neural synchronization. According to this proposal, disturbances in the oscillatory profile do not allow the appropriate trade-off between descending predictive signal, overweighted in SSD, and ascending prediction errors, overweighted in ASD. These opposing imbalances both result in an ill-adapted reaction to external challenges. This approach offers a neuro-computational model capable of linking predictive coding theories with electrophysiological findings, aiming to increase knowledge on the neuronal foundations of the two spectra features and stimulate hypothesis-driven rehabilitation/research perspectives.
Collapse
Affiliation(s)
- Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy.
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
| | - Giuseppe di Pellegrino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mauro Ursino
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
42
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
43
|
No association between cortical dopamine D2 receptor availability and cognition in antipsychotic-naive first-episode psychosis. NPJ SCHIZOPHRENIA 2021; 7:46. [PMID: 34548499 PMCID: PMC8455597 DOI: 10.1038/s41537-021-00176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
Cognitive impairment is an important predictor of disability in schizophrenia. Dopamine neurotransmission in cortical brain regions has been suggested to be of importance for higher-order cognitive processes. The aim of this study was to examine the relationship between extrastriatal dopamine D2-R availability and cognitive function, using positron emission tomography and the high-affinity D2-R radioligand [11C]FLB 457, in an antipsychotic-naive sample of 18 first-episode psychosis patients and 16 control subjects. We observed no significant associations between D2-R binding in the dorsolateral prefrontal cortex or hippocampus (β = 0.013–0.074, partial r = −0.037–0.273, p = 0.131–0.841). Instead, using Bayesian statistics, we found moderate support for the null hypothesis of no relationship (BFH0:H1 = 3.3–8.2). Theoretically, our findings may suggest a lack of detrimental effects of D2-R antagonist drugs on cognition in schizophrenia patients, in line with clinical observations.
Collapse
|
44
|
Sklar AL, Coffman BA, Salisbury DF. Fronto-parietal network function during cued visual search in the first-episode schizophrenia spectrum. J Psychiatr Res 2021; 141:339-345. [PMID: 34304038 PMCID: PMC8364882 DOI: 10.1016/j.jpsychires.2021.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Cognitive impairments account for significant morbidity in schizophrenia and are present at disease onset. Controlled processes are particularly susceptible and may contribute to pervasive selective attention deficits. The present study assessed fronto-parietal attention network (FPAN) functioning during cue presentation on a visual search task in first-episode schizophrenia spectrum patients (FE) and its relation to symptom burden and community functioning. Brain activity was recorded with magnetoencephalography from 38 FE and 38 healthy controls (HC) during blocks of pop-out and serial search target detection. Activity during cue presentation was compared between groups across bilateral FPAN regions (frontal eye fields (FEF), inferior frontal gyrus (IFG), midcingulate cortex (MCC), and intraparietal sulcus (IPS)). FE exhibited greater right hemisphere IFG activity despite worse performance relative to HC. Performance and FPAN activity were not correlated in HC. Among FE, however, stronger activity within right hemisphere FEF and IFG was associated with faster responses. Stronger right IPS and left IFG activity in patients was also associated with reduced negative symptoms and improved community functioning, respectively. Increased reliance on the FPAN for task completion suggests an inefficient cognitive control network and might reflect a compensation for impaired attentional deployment during target detection, a strategy employed by those with less severe illness. These findings represent a critical step towards identifying the neural substrates of negative symptoms and impaired neurocognition at disease onset.
Collapse
Affiliation(s)
- Alfredo L Sklar
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Wang X, Cheng B, Roberts N, Wang S, Luo Y, Tian F, Yue S. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Hum Brain Mapp 2021; 42:5458-5476. [PMID: 34431584 PMCID: PMC8519858 DOI: 10.1002/hbm.25618] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Working memory (WM) impairments are common features of psychiatric disorders. A systematic meta-analysis was performed to determine common and disorder-specific brain fMRI response during performance of WM tasks in patients with SZ and patients with MDD relative to healthy controls (HC). Thirty-four published fMRI studies of WM in patients with SZ and 18 published fMRI studies of WM in patients with MDD, including relevant HC, were included in the meta-analysis. In both SZ and MDD there was common stronger fMRI response in right medial prefrontal cortex (MPFC) and bilateral anterior cingulate cortex (ACC), which are part of the default mode network (DMN). The effects were of greater magnitude in SZ than MDD, especially in prefrontal-temporal-cingulate-striatal-cerebellar regions. In addition, a disorder-specific weaker fMRI response was observed in right middle frontal gyrus (MFG) in MDD, relative to HC. For both SZ and MDD a significant correlation was observed between the severity of clinical symptoms and lateralized fMRI response relative to HC. These findings indicate that there may be common and distinct anomalies in brain function underlying deficits in WM in SZ and MDD, which may serve as a potential functional neuroimaging-based diagnostic biomarker with value in supporting clinical diagnosis, measuring illness severity and assessing the efficacy of treatments for SZ and MDD at the brain level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Suping Yue
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
46
|
Sanford N, Woodward TS. Functional Delineation of Prefrontal Networks Underlying Working Memory in Schizophrenia: A Cross-data-set Examination. J Cogn Neurosci 2021; 33:1880-1908. [PMID: 34375420 DOI: 10.1162/jocn_a_01726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Working memory (WM) impairment in schizophrenia substantially impacts functional outcome. Although the dorsolateral pFC has been implicated in such impairment, a more comprehensive examination of brain networks comprising pFC is warranted. The present research used a whole-brain, multi-experiment analysis to delineate task-related networks comprising pFC. Activity was examined in schizophrenia patients across a variety of cognitive demands. METHODS One hundred schizophrenia patients and 102 healthy controls completed one of four fMRI tasks: a Sternberg verbal WM task, a visuospatial WM task, a Stroop set-switching task, and a thought generation task (TGT). Task-related networks were identified using multi-experiment constrained PCA for fMRI. Effects of task conditions and group differences were examined using mixed-model ANOVA on the task-related time series. Correlations between task performance and network engagement were also performed. RESULTS Four spatially and temporally distinct networks with pFC activation emerged and were postulated to subserve (1) internal attention, (2) auditory-motor attention, (3) motor responses, and (4) task energizing. The "energizing" network-engaged during WM encoding and diminished in patients-exhibited consistent trend relationships with WM capacity across different data sets. The dorsolateral-prefrontal-cortex-dominated "internal attention" network exhibited some evidence of hypoactivity in patients, but was not correlated with WM performance. CONCLUSIONS Multi-experiment analysis allowed delineation of task-related, pFC-anchored networks across different cognitive constructs. Given the results with respect to the early-responding "energizing" network, WM deficits in schizophrenia may arise from disruption in the "energization" process described by Donald Stuss' model of pFC functions.
Collapse
Affiliation(s)
| | - Todd S Woodward
- University of British Columbia, Vancouver, Canada.,BC Mental Health and Substance Use Services Research Institute, Vancouver, Canada
| |
Collapse
|
47
|
Schilling TM, Bossert M, König M, Wirtz G, Weisbrod M, Aschenbrenner S. Acute effects of a single dose of 2 mA of anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex on executive functions in patients with schizophrenia-A randomized controlled trial. PLoS One 2021; 16:e0254695. [PMID: 34270620 PMCID: PMC8284793 DOI: 10.1371/journal.pone.0254695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/27/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Cognitive impairments are a frequent and difficult to treat symptom in patients with schizophrenia and the strongest predictor for a successful reintegration in occupational and everyday life. Recent research suggests transcranial direct current stimulation (tDCS) to enhance cognition in this patient group. However, the question regarding its acute effectiveness on executive functions remains largely unanswered. Here, we examined in a randomized, double blind, sham-controlled repeated-measures design the impact of tDCS on performance in several executive functions in patients with schizophrenia, schizoaffective disorder or acute transient psychotic disorder. Methods Patients (N = 48) were tested twice using standardized, well-constructed and clinically validated neuropsychological tests assessing verbal working memory, response inhibition, mental flexibility and problem solving. In session 1 they solely underwent the neuropsychological assessment, whereas in session 2 they additionally received 2 mA of anodal tDCS stimulation over the left dorsolateral prefrontal cortex (DLPFC), cathode right supraorbital ridge, or sham stimulation for 20 minutes. Results Patients of both groups were not able to correctly discriminate the type of stimulation received confirming the success of the blinding procedure. However, analyzing the whole sample the change in performance from session 1 to session 2 was the same in the verum as in the sham condition (all p >.5). Moreover, a subsequent exploratory analysis showed that performance in the response inhibition task was worse for patients that engaged in the task within 20 minutes after the end of the verum stimulation. Conclusion Hence, 2 mA of anodal tDCS applied over the left DLPFC did not acutely enhance executive functions in patients with schizophrenia or related disorders but impaired performance in the response inhibition task shortly after. Future studies should continue to seek for effective stimulation configurations for this patient group. Clinical trial registration The study is registered in the “Deutsches Register Klinischer Studien DRKS”, German Clinical Trial Register and has been allocated the following number: DRKS00022126.
Collapse
Affiliation(s)
- Thomas M. Schilling
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
- * E-mail:
| | - Magdalena Bossert
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Miriam König
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Gustav Wirtz
- SRH Psychiatric Rehabilitation Center, Karlsbad, Germany
| | - Matthias Weisbrod
- Department of Psychiatry and Psychotherapy, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
- Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| |
Collapse
|
48
|
Csipo T, Lipecz A, Mukli P, Bahadli D, Abdulhussein O, Owens CD, Tarantini S, Hand RA, Yabluchanska V, Kellawan JM, Sorond F, James JA, Csiszar A, Ungvari ZI, Yabluchanskiy A. Increased cognitive workload evokes greater neurovascular coupling responses in healthy young adults. PLoS One 2021; 16:e0250043. [PMID: 34010279 PMCID: PMC8133445 DOI: 10.1371/journal.pone.0250043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding how the brain allocates resources to match the demands of active neurons under physiological conditions is critically important. Increased metabolic demands of active brain regions are matched with hemodynamic responses known as neurovascular coupling (NVC). Several methods that allow noninvasive assessment of brain activity in humans detect NVC and early detection of NVC impairment may serve as an early marker of cognitive impairment. Therefore, non-invasive NVC assessments may serve as a valuable tool to detect early signs of cognitive impairment and dementia. Working memory tasks are routinely employed in the evaluation of cognitive task-evoked NVC responses. However, recent attempts that utilized functional near-infrared spectroscopy (fNIRS) or transcranial Doppler sonography (TCD) while using a similar working memory paradigm did not provide convincing evidence for the correlation of the hemodynamic variables measured by these two methods. In the current study, we aimed to compare fNIRS and TCD in their performance of differentiating NVC responses evoked by different levels of working memory workload during the same working memory task used as cognitive stimulation. Fourteen healthy young individuals were recruited for this study and performed an n-back cognitive test during TCD and fNIRS monitoring. During TCD monitoring, the middle cerebral artery (MCA) flow was bilaterally increased during the task associated with greater cognitive effort. fNIRS also detected significantly increased activation during a more challenging task in the left dorsolateral prefrontal cortex (DLPFC), and in addition, widespread activation of the medial prefrontal cortex (mPFC) was also revealed. Robust changes in prefrontal cortex hemodynamics may explain the profound change in MCA blood flow during the same cognitive task. Overall, our data support our hypothesis that both TCD and fNIRS methods can discriminate NVC evoked by higher demand tasks compared to baseline or lower demand tasks.
Collapse
Affiliation(s)
- Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Dhay Bahadli
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Osamah Abdulhussein
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Cameron D. Owens
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Rachel A. Hand
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Valeriya Yabluchanska
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Bon Secours St. Francis Family Medicine Center, Midlothian, Virginia, United States of America
| | - J. Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Farzaneh Sorond
- Division of Stroke and Neurocritical, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Judith A. James
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Section of Geriatrics, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
49
|
Folorunso OO, Harvey TL, Brown SE, Cruz C, Shahbo E, Ajjawi I, Balu DT. Forebrain expression of serine racemase during postnatal development. Neurochem Int 2021; 145:104990. [PMID: 33592203 PMCID: PMC8012237 DOI: 10.1016/j.neuint.2021.104990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are important for synaptogenesis, synaptic maturation and refinement during the early postnatal weeks after birth. Defective synapse formation or refinement underlie cognitive and emotional abnormalities in various neurodevelopmental disorders (NDDs), including schizophrenia (Sz) and autism spectrum disorder (ASD). Serine racemase (SR) is a neuronal enzyme that produces D-serine, a co-agonist required for full NMDAR activation. NMDAR hypofunction as a result of genetic SR elimination and reduced synaptic availability of D-serine reduces neuronal dendritic arborization and spine density. In adult mouse brain, the expression of SR parallels that of NMDARs across forebrain regions including the striatum, amygdala, hippocampus, and medial prefrontal cortex (mPFC). However, there have yet to be studies providing a detailed characterization of the spatial and temporal expression of SR during early periods of synaptogenesis. Here, we examined the postnatal expression of SR in cortical and subcortical brain regions important for learning, memory and emotional regulation, during the first four weeks after birth. Using dual-antigen immunofluorescence, we demonstrate that the number of SR+ neurons steadily increases with postnatal age across the mPFC, amygdala, hippocampus and striatum. We also identified differences in the rate of SR protein induction both across and within brain regions. Analyzing existing human post-mortem brain in situ data, there was a similar developmental mRNA expression profile of SRR and GRIN1 (GluN1 subunit) from infancy through the first decade of life. Our findings further support a developmental role for D-serine mediated NMDAR activation regulating synaptogenesis and neural circuit refinement, which has important implications for the pathophysiology of Sz and other NDDs.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, United States; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Theresa L Harvey
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Stephanie E Brown
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Cristina Cruz
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Ellie Shahbo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Ismail Ajjawi
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, United States; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States.
| |
Collapse
|
50
|
Plagenhoef MR, Callahan PM, Beck WD, Blake DT, Terry AV. Aged rhesus monkeys: Cognitive performance categorizations and preclinical drug testing. Neuropharmacology 2021; 187:108489. [PMID: 33561449 PMCID: PMC8286428 DOI: 10.1016/j.neuropharm.2021.108489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022]
Abstract
Rodent models have facilitated major discoveries in neurobiology, however, the low success rate of novel medications in clinical trials have led to questions about their translational value in neuropsychiatric drug development research. For age-related disorders of cognition such as Alzheimer' disease (AD) there is interest in moving beyond transgenic amyloid-β and/or tau-expressing rodent models and focusing more on natural aging and dissociating "healthy" from "pathological" aging to identify new therapeutic targets and treatments. In complex disorders such as AD, it can also be argued that animals with closer neurobiology to humans (e.g., nonhuman primates) should be employed more often particularly in the later phases of drug development. The purpose of the work described here was to evaluate the cognitive capabilities of rhesus monkeys across a wide range of ages in different delayed response tasks, a computerized delayed match to sample (DMTS) task and a manual delayed match to position (DMTP) task. Based on specific performance criteria and comparisons to younger subjects, the older subjects were generally less proficient, however, some performed as well as young subjects, while other aged subjects were markedly impaired. Accordingly, the older subjects could be categorized as aged "cognitively-unimpaired" or aged "cognitively-impaired" with a third group (aged-other) falling in between. Finally, as a proof of principle, we demonstrated using the DMTP task that aged cognitively-impaired monkeys are sensitive to the pro-cognitive effects of a nicotinic acetylcholine receptor (nAChR) partial agonist, encenicline, suggesting that nAChR ligands remain viable as potential treatments for age-related disorders of cognition.
Collapse
Affiliation(s)
- Marc R Plagenhoef
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|