1
|
The 40-Hz auditory steady-state response in bipolar disorder: A meta-analysis. Clin Neurophysiol 2022; 141:53-61. [PMID: 35853310 DOI: 10.1016/j.clinph.2022.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Bipolar disorder is characterized by aberrant neurophysiological responses as measured with electroencephalography (EEG) and magnetoencephalography (MEG), including the 40-Hz auditory steady-state response (ASSR). 40-Hz ASSR deficits are also found in patients with schizophrenia and may represent a transdiagnostic biomarker of neuronal circuit dysfunction. In this systematic review and meta-analysis, we summarize and evaluate the evidence for 40-Hz ASSR deficits in patients with bipolar disorder. METHODS We identified studies from PubMed, EMBASE, and SCOPUS. We assessed the risk of bias, calculated Hedges' g meta-level effect sizes, and investigated small-study effects using funnel plots and Egger regression. RESULTS Seven studies, comprising 396 patients with bipolar disorder and 404 healthy controls, were included in the meta-analysis. Studies displayed methodological heterogeneity and an overall high risk of bias. Patients with bipolar disorder showed consistent reductions in 40-Hz ASSR evoked power (Hedges' g = -0.49; 95% confidence intervals [-0.67, -0.31]) and inter-trial phase coherence (ITPC) (Hedges' g = -0.43; 95 %CI [-0.58, -0.29]) compared with healthy controls. CONCLUSIONS Our meta-analysis provides evidence that 40-Hz ASSRs are reduced in patients with bipolar disorder compared with healthy controls. SIGNIFICANCE Future large-scale studies are warranted to link 40-Hz ASSR deficits to clinical features and developmental trajectories.
Collapse
|
2
|
Mancini V, Rochas V, Seeber M, Roehri N, Rihs TA, Ferat V, Schneider M, Uhlhaas PJ, Eliez S, Michel CM. Aberrant Developmental Patterns of Gamma-Band Response and Long-Range Communication Disruption in Youths With 22q11.2 Deletion Syndrome. Am J Psychiatry 2022; 179:204-215. [PMID: 35236117 DOI: 10.1176/appi.ajp.2021.21020190] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Brain oscillations play a pivotal role in synchronizing responses of local and global ensembles of neurons. Patients with schizophrenia exhibit impairments in oscillatory response, which are thought to stem from abnormal maturation during critical developmental stages. Studying individuals at genetic risk for psychosis, such as 22q11.2 deletion carriers, from childhood to adulthood may provide insights into developmental abnormalities. METHODS The authors acquired 106 consecutive T1-weighted MR images and 40-Hz auditory steady-state responses (ASSRs) with high-density (256 channel) EEG in a group of 58 22q11.2 deletion carriers and 48 healthy control subjects. ASSRs were analyzed with 1) time-frequency analysis using Morlet wavelet decomposition, 2) intertrial phase coherence (ITPC), and 3) theta-gamma phase-amplitude coupling estimated in the source space between brain regions activated by the ASSRs. Additionally, volumetric analyses were performed with FreeSurfer. Subanalyses were conducted in deletion carriers who endorsed psychotic symptoms and in subgroups with different age bins. RESULTS Deletion carriers had decreased theta and late-latency 40-Hz ASSRs and phase synchronization compared with control subjects. Deletion carriers with psychotic symptoms displayed a further reduction of gamma-band response, decreased ITPC, and decreased top-down modulation of gamma-band response in the auditory cortex. Reduced gamma-band response was correlated with the atrophy of auditory cortex in individuals with psychotic symptoms. In addition, a linear increase of theta and gamma power from childhood to adulthood was found in control subjects but not in deletion carriers. CONCLUSIONS The results suggest that while all deletion carriers exhibit decreased gamma-band response, more severe local and long-range communication abnormalities are associated with the emergence of psychotic symptoms and gray matter loss. Additionally, the lack of age-related changes in deletion carriers indexes a potential developmental impairment in circuits underlying the maturation of neural oscillations during adolescence. The progressive disruption of gamma-band response in 22q11.2 deletion syndrome supports a developmental perspective toward understanding and treating psychotic disorders.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Vincent Rochas
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Martin Seeber
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Nicolas Roehri
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Tonia A Rihs
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Victor Ferat
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Peter J Uhlhaas
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Christoph M Michel
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| |
Collapse
|
3
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Parker DA, Trotti RL, McDowell JE, Keedy SK, Hill SK, Gershon ES, Ivleva EI, Pearlson GD, Keshavan MS, Tamminga CA, Clementz BA. Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and Their Relationship to Cognitive and Clinical Features. Am J Psychiatry 2021; 178:952-964. [PMID: 34407624 PMCID: PMC12082645 DOI: 10.1176/appi.ajp.2021.20071043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Neural activations during auditory oddball tasks may be endophenotypes for psychosis and bipolar disorder. The authors investigated oddball neural deviations that discriminate multiple diagnostic groups across the schizophrenia-bipolar spectrum (schizophrenia, schizoaffective disorder, psychotic bipolar disorder, and nonpsychotic bipolar disorder) and clarified their relationship to clinical and cognitive features. METHODS Auditory oddball responses to standard and target tones from 64 sensor EEG recordings were compared across patients with psychosis (total N=597; schizophrenia, N=225; schizoaffective disorder, N=201; bipolar disorder with psychosis, N=171), patients with bipolar disorder without psychosis (N=66), and healthy comparison subjects (N=415) from the second iteration of the Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP2) study. EEG activity was analyzed in voltage and in the time-frequency domain (low, beta, and gamma bands). Event-related potentials (ERPs) were compared with those from an independent sample collected during the first iteration of B-SNIP (B-SNIP1; healthy subjects, N=211; psychosis group, N=526) to establish the repeatability of complex oddball ERPs across multiple psychosis syndromes (r values >0.94 between B-SNIP1 and B-SNIP2). RESULTS Twenty-six EEG features differentiated the groups; they were used in discriminant and correlational analyses. EEG variables from the N100, P300, and low-frequency ranges separated the groups along a diagnostic continuum from healthy to bipolar disorder with psychosis/bipolar disorder without psychosis to schizoaffective disorder/schizophrenia and were strongly related to general cognitive function (r=0.91). P50 responses to standard trials and early beta/gamma frequency responses separated the bipolar disorder without psychosis group from the bipolar disorder with psychosis group. P200, N200, and late beta/gamma frequency responses separated the two bipolar disorder groups from the other groups. CONCLUSIONS Neural deviations during auditory processing are related to psychosis history and bipolar disorder. There is a powerful transdiagnostic relationship between severity of these neural deviations and general cognitive performance. These results have implications for understanding the neurobiology of clinical syndromes across the schizophrenia-bipolar spectrum that may have an impact on future biomarker research.
Collapse
Affiliation(s)
- David A Parker
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Rebekah L Trotti
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Sarah K Keedy
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - S Kristian Hill
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Elliot S Gershon
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Elena I Ivleva
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Godfrey D Pearlson
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Matcheri S Keshavan
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Carol A Tamminga
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens (Parker, Trotti, McDowell, Clementz); Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (Keedy, Gershon); Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago (Hill); Department of Psychiatry, UT Southwestern Medical Center, Dallas (Ivleva, Tamminga); Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, Conn. (Pearlson); Olin Center, Institute of Living, Hartford Healthcare Corporation, Hartford, Conn. (Pearlson); and Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, Mass. (Keshavan)
| |
Collapse
|
5
|
Barros C, Silva CA, Pinheiro AP. Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls. Artif Intell Med 2021; 114:102039. [PMID: 33875158 DOI: 10.1016/j.artmed.2021.102039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.
Collapse
Affiliation(s)
- Carla Barros
- Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Carlos A Silva
- Center for Microelectromechanical Systems (CMEMS), School of Engineering, University of Minho, Guimarães, Portugal
| | - Ana P Pinheiro
- Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal; CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
6
|
Kornmayer L, Leicht G, Mulert C. Attentional capture by physically salient stimuli in the gamma frequency is associated with schizophrenia symptoms. World J Biol Psychiatry 2019; 19:S52-S62. [PMID: 27844503 DOI: 10.1080/15622975.2016.1258491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Aberrant salience mainly is attributed to excessive dopaminergic processing in the ventral striatum. Increased gamma power during sensory processing of physical salience has been shown to be associated with positive trait schizotypy. In the present study, this is assessed in patients with schizophrenia. METHODS The early evoked visual gamma-band response (GBR) at 40 Hz was assessed for a schizophrenia patient group (N = 22) and a matched healthy control group (N = 22) applying EEG time-frequency analysis. The GBR was assessed for two conditions within a visual detection paradigm: a target with or without a physically salient distracter and evaluated in relation to the PANSS. RESULTS A 2 × 2 ANOVA revealed a significant main effect of condition and a trend interaction of group and condition for the GBR, with highest power for schizophrenia patients in the physically salient distracter condition. Moreover, evoked GBR power in this condition was correlated with positive (r = 0.664; P = 0.001**) and disorganised (r = 0.618; P = 0.002**) schizophrenia symptoms. CONCLUSIONS Evoked GBR power during processing of physical salience in schizophrenia was associated with positive symptoms. We suggest that abnormal processing of physically salient stimuli might be involved in the pathophysiological genesis of positive symptoms.
Collapse
Affiliation(s)
- Laura Kornmayer
- a Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Gregor Leicht
- a Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christoph Mulert
- a Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
7
|
Baradits M, Kakuszi B, Bálint S, Fullajtár M, Mód L, Bitter I, Czobor P. Alterations in resting-state gamma activity in patients with schizophrenia: a high-density EEG study. Eur Arch Psychiatry Clin Neurosci 2019; 269:429-437. [PMID: 29569047 DOI: 10.1007/s00406-018-0889-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Alterations of EEG gamma activity in schizophrenia have been reported during sensory and cognitive tasks, but it remains unclear whether changes are present in resting state. Our aim was to examine whether changes occur in resting state, and to delineate those brain regions where gamma activity is altered. Furthermore, we wanted to identify the associations between changes in gamma activity and psychopathological characteristics. We studied gamma activity (30-48 Hz) in 60 patients with schizophrenia and 76 healthy controls. EEGs were acquired in resting state with closed eyes using a high-density, 256-channel EEG-system. The two groups were compared in absolute power measures in the gamma frequency range. Compared to controls, in patients with schizophrenia the absolute power was significantly elevated (false discovery rate corrected p < 0.05). The alterations clustered into fronto-central and posterior brain regions, and were positively associated with the severity of psychopathology, measured by the PANSS. Changes in gamma activity can lead to disturbed coordination of large-scale brain networks. Thus, the increased gamma activity in certain brain regions that we found may result in disturbances in temporal coordination of task-free/resting-state networks in schizophrenia. Positive association of increased gamma power with psychopathology suggests that altered gamma activity provides a contribution to symptom presentation.
Collapse
Affiliation(s)
- Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa street 6, 1083, Budapest, Hungary.
| | - Brigitta Kakuszi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa street 6, 1083, Budapest, Hungary
| | - Sára Bálint
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa street 6, 1083, Budapest, Hungary
| | - Máté Fullajtár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa street 6, 1083, Budapest, Hungary
| | - László Mód
- Department of Psychiatry, Szent Borbála Hospital, Tatabánya, Hungary
| | - István Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa street 6, 1083, Budapest, Hungary
| | - Pál Czobor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa street 6, 1083, Budapest, Hungary
| |
Collapse
|
8
|
Oribe N, Hirano Y, Del Re E, Seidman LJ, Mesholam-Gately RI, Woodberry KA, Wojcik JD, Ueno T, Kanba S, Onitsuka T, Shenton ME, Goldstein JM, Niznikiewicz MA, McCarley RW, Spencer KM. Progressive reduction of auditory evoked gamma in first episode schizophrenia but not clinical high risk individuals. Schizophr Res 2019; 208:145-152. [PMID: 31005464 DOI: 10.1016/j.schres.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
The early auditory-evoked gamma band response (EAGBR) may serve as an index of the integrity of fast recurrent inhibition or synaptic connectivity in the auditory cortex, where abnormalities in individuals with schizophrenia have been consistently found. The EAGBR has been rarely investigated in first episode schizophrenia patients (FESZ) and individuals at clinical high risk (CHR) for schizophrenia, and never been compared directly between these populations nor evaluated longitudinally. Here we examined the EAGBR in FESZ, CHR, and matched healthy controls (HC) at baseline and 1-year follow-up assessments to determine whether the EAGBR was affected in these clinical groups, and whether any EAGBR abnormalities changed over time. The electroencephalogram was recorded with a dense electrode array while subjects (18 FESZ, 18 CHR, and 40 HC) performed an auditory oddball task. Event-related spectral measures (phase locking factor [PLF] and evoked power) were computed on Morlet-wavelet-transformed single epochs from the standard trials. At baseline, EAGBR PLF and evoked power did not differ between groups. FESZ showed progressive reductions of PLF and evoked power from baseline to follow-up, and deficits in PLF at follow-up compared to HC. EAGBR peak frequency also increased at temporal sites in FESZ from baseline to follow-up. Longitudinal effects on the EAGBR were not found in CHR or HC, nor did these groups differ at follow-up. In conclusion, we detected neurophysiological changes of auditory cortex function in FESZ during a one-year period, which were not observed in CHR. These findings are discussed within the context of neurodevelopmental models of schizophrenia.
Collapse
Affiliation(s)
- Naoya Oribe
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan; National Hospital Organization, Hizen Psychiatric Center, Japan
| | - Yoji Hirano
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Elisabetta Del Re
- Laboratory of Neuroscience, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA, USA
| | - Larry J Seidman
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kristen A Woodberry
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joanne D Wojcik
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Takefumi Ueno
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan; National Hospital Organization, Hizen Psychiatric Center, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, Boston, MA, USA
| | - Margaret A Niznikiewicz
- Laboratory of Neuroscience, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Konte B, Leicht G, Giegling I, Pogarell O, Karch S, Hartmann AM, Friedl M, Hegerl U, Rujescu D, Mulert C. A genome-wide association study of early gamma-band response in a schizophrenia case-control sample. World J Biol Psychiatry 2018; 19:602-609. [PMID: 28922980 DOI: 10.1080/15622975.2017.1366054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Disturbances in the gamma-frequency band of electroencephalography (EEG) measures are among the most consistently observed intermediate phenotypes in schizophrenia. We assessed whether genetic variations are associated with gamma-band activity. METHODS We performed a genome-wide association analysis of the early auditory evoked gamma-band response in schizophrenia affected subjects and healthy control individuals (in total N = 315). RESULTS No marker surpassed the threshold for genome-wide significant association. Several of the markers that were closest to significance mapped to genes involved in neuronal development and the Neuregulin-ErbB signalling network, such as NRG2 and KALRN. Using a gene-set enrichment analysis, we found suggestive evidence for association with genes involved in EEG abnormality (P = .048). CONCLUSIONS We identified no marker genome-wide significantly associating with gamma response; independent replication of the gene-set analysis result and larger sample sizes will be required to provide leads to cellular pathways involved in gamma-band activity.
Collapse
Affiliation(s)
- Bettina Konte
- a Department of Psychiatry, Psychotherapy and Psychosomatics , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Gregor Leicht
- b Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and Department of Psychiatry and Psychotherapy , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Ina Giegling
- a Department of Psychiatry, Psychotherapy and Psychosomatics , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Oliver Pogarell
- c Department of Psychiatry and Psychotherapy , Ludwig-Maximilians-University , Munich , Germany
| | - Susanne Karch
- c Department of Psychiatry and Psychotherapy , Ludwig-Maximilians-University , Munich , Germany
| | - Annette M Hartmann
- a Department of Psychiatry, Psychotherapy and Psychosomatics , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Marion Friedl
- a Department of Psychiatry, Psychotherapy and Psychosomatics , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Ulrich Hegerl
- d Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Dan Rujescu
- a Department of Psychiatry, Psychotherapy and Psychosomatics , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Christoph Mulert
- b Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and Department of Psychiatry and Psychotherapy , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
10
|
|
11
|
Krol A, Wimmer RD, Halassa MM, Feng G. Thalamic Reticular Dysfunction as a Circuit Endophenotype in Neurodevelopmental Disorders. Neuron 2018; 98:282-295. [PMID: 29673480 PMCID: PMC6886707 DOI: 10.1016/j.neuron.2018.03.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Diagnoses of behavioral disorders such as autism spectrum disorder and schizophrenia are based on symptomatic descriptions that have been difficult to connect to mechanism. Although psychiatric genetics provide insight into the genetic underpinning of such disorders, with a majority of cases explained by polygenic factors, it remains difficult to design rational treatments. In this review, we highlight the value of understanding neural circuit function both as an intermediate level of explanatory description that links gene to behavior and as a pathway for developing rational diagnostics and therapeutics for behavioral disorders. As neural circuits perform hierarchically organized computational functions and give rise to network-level processes (e.g., macroscopic rhythms and goal-directed or homeostatic behaviors), correlated network-level deficits may indicate perturbation of a specific circuit. Therefore, identifying such correlated deficits or a circuit endophenotype would provide a mechanistic point of entry, enhancing both diagnosis and treatment of a given behavioral disorder. We focus on a circuit endophenotype of the thalamic reticular nucleus (TRN) and how its impairment in neurodevelopmental disorders gives rise to a correlated set of readouts across sleep and attention. Because TRN neurons express several disorder-relevant genes identified through genome-wide association studies, exploring the consequences of different TRN disruptions may be of broad translational significance.
Collapse
Affiliation(s)
- Alexandra Krol
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Reilly TJ, Nottage JF, Studerus E, Rutigliano G, Micheli AID, Fusar-Poli P, McGuire P. Gamma band oscillations in the early phase of psychosis: A systematic review. Neurosci Biobehav Rev 2018; 90:381-399. [PMID: 29656029 DOI: 10.1016/j.neubiorev.2018.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Abnormal gamma oscillations, measured by electroencephalography (EEG), have been associated with chronic psychotic disorders, but their prevalence in the early phase of psychosis is less clear. We sought to address this by systematically reviewing the relevant literature. We searched for EEG studies of gamma band oscillations in subjects at high risk for psychosis and in patients with first episode psychosis. The following measures of gamma oscillations were extracted: resting power, evoked power, induced power, connectivity and peak frequency. Forty-five studies with a total of 3099 participants were included. There were potential sources of bias in the study designs and potential artefacts. Although there were few consistent findings, several studies reported decreased evoked or induced power in both high risk subjects and first episode patients. Studies using larger samples with serial EEG measurements, and designs that minimise artefacts that occur at the gamma frequency may advance work in this area.
Collapse
Affiliation(s)
- Thomas J Reilly
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Judith F Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Erich Studerus
- Center for Gender Research and Early Detection, University of Basel Psychiatric Clinics, Basel, Switzerland
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea I De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
13
|
Edgar JC, Fisk CL, Chen YH, Stone-Howell B, Liu S, Hunter MA, Huang M, Bustillo J, Cañive JM, Miller GA. Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures. Psychophysiology 2018; 55:e13074. [PMID: 29570815 DOI: 10.1111/psyp.13074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
Abstract
Magnetoencephalography (MEG) and EEG have identified poststimulus low frequency and 40 Hz steady-state auditory encoding abnormalities in schizophrenia (SZ). Negative findings have also appeared. To identify factors contributing to these inconsistencies, healthy control (HC) and SZ group differences were examined in MEG and EEG source space and EEG sensor space, with better group differentiation hypothesized for source than sensor measures given greater predictive utility for source measures. Fifty-five HC and 41 chronic SZ were presented 500 Hz sinusoidal stimuli modulated at 40 Hz during simultaneous whole-head MEG and EEG. MEG and EEG source models using left and right superior temporal gyrus (STG) dipoles estimated trial-to-trial phase similarity and percent change from prestimulus baseline. Group differences in poststimulus low-frequency activity and 40 Hz steady-state response were evaluated. Several EEG sensor analysis strategies were also examined. Poststimulus low-frequency group differences were observed across all methods. Given an age-related decrease in left STG 40 Hz steady-state activity in HC (HC > SZ), 40 Hz steady-state group differences were evident only in younger participants' source measures. Findings thus indicated that optimal data collection and analysis methods depend on the auditory encoding measure of interest. In addition, whereas results indicated that HC and SZ auditory encoding low-frequency group differences are generally comparable across modality and analysis strategy (and thus not dependent on obtaining construct-valid measures of left and right auditory cortex activity), 40 Hz steady-state group-difference findings are much more dependent on analysis strategy, with 40 Hz steady-state source-space findings providing the best group differentiation.
Collapse
Affiliation(s)
- J C Edgar
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles L Fisk
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Han Chen
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Breannan Stone-Howell
- Department of Psychiatry, The University of New Mexico School of Medicine, Center for Psychiatric Research, Albuquerque, New Mexico, USA.,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, New Mexico, USA
| | - Song Liu
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A Hunter
- Department of Psychiatry, The University of New Mexico School of Medicine, Center for Psychiatric Research, Albuquerque, New Mexico, USA.,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, New Mexico, USA
| | - Mingxiong Huang
- Department of Radiology, University of California, San Diego, San Diego, California, USA.,Department of Radiology, San Diego VA Healthcare System, San Diego, California, USA
| | - Juan Bustillo
- Department of Psychiatry, The University of New Mexico School of Medicine, Center for Psychiatric Research, Albuquerque, New Mexico, USA
| | - José M Cañive
- Department of Psychiatry, The University of New Mexico School of Medicine, Center for Psychiatric Research, Albuquerque, New Mexico, USA.,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, New Mexico, USA
| | - Gregory A Miller
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Lundin NB, Bartolomeo LA, O’Donnell BF, Hetrick WP. Reduced electroencephalogram responses to standard and target auditory stimuli in bipolar disorder and the impact of psychotic features: Analysis of event-related potentials, spectral power, and inter-trial coherence. Bipolar Disord 2018; 20:49-59. [PMID: 29024302 PMCID: PMC5807206 DOI: 10.1111/bdi.12561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/08/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with reductions in the P3b event-related potential (ERP) response to target auditory stimuli, which suggests deficits in context updating. Previous studies have typically examined these responses in the temporal domain, which may not capture alterations in specific frequencies of phase-locked or induced electrophysiological activity. Therefore, the present study examined early and late ERPs in temporal and frequency domains in a bipolar sample with and without current psychotic features. METHODS The electroencephalogram (EEG) was recorded during an auditory oddball task. Seventy-five BD patients and 98 healthy controls (HCs) discriminated between standard and target tones. N1 ERPs to standards and P3b ERPs to targets were analyzed in the temporal domain. Event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were analyzed in the frequency domain. RESULTS The early N1 response to standard tones was not significantly different between the total HC and BD samples irrespective of psychotic features. However, N1 amplitude was reduced in BD patients with psychotic features (BDP) compared to HCs and BD patients without psychotic features. P3b was reduced in BD patients versus HCs, with the BDP sample having the most reduced amplitude. In the time-frequency analysis, delta and theta ERSP and ITC were reduced across the time window for both standard and target stimuli in BD patients compared to HCs, but did not differ in the psychotic features analysis. CONCLUSIONS The results provide neural evidence that BD is associated with disrupted sensory, attentional, and cognitive processing of auditory stimuli, which may be worsened with the presence of psychotic features.
Collapse
Affiliation(s)
- Nancy B. Lundin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana School of Medicine, Indianapolis, IN
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana School of Medicine, Indianapolis, IN
| |
Collapse
|
15
|
Abstract
We review the changing conceptions of schizophrenia over the past 50 years as it became understood as a disorder of brain function and structure in which neurocognitive dysfunction was identified at different illness phases. The centrality of neurocognition has been recognized, especially because neurocognitive deficits are strongly related to social and role functioning in the illness, and as a result neurocognitive measures are used routinely in clinical assessment of individuals with schizophrenia. From the original definitions of the syndrome of schizophrenia in the early 20th century, impaired cognition, especially attention, was considered to be important. Neurocognitive impairments are found in the vast majority of individuals with schizophrenia, and they vary from mild, relatively restricted deficits, to dementia-like syndromes, as early as the first psychotic episode. Neurocognitive deficits are found in the premorbid phase in a substantial minority of pre-teenage youth who later develop schizophrenia, and they apparently worsen by the prodromal, high-risk phase in a majority of those who develop the illness. While there is limited evidence for reversibility of impairments from pharmacological interventions in schizophrenia, promising results have emerged from cognitive remediation studies. Thus, we expect cognitive interventions to play a larger role in schizophrenia in the coming years. Moreover, because youth at risk for schizophrenia can be identified by an emergent high-risk syndrome, earlier interventions might be applied in a pre-emptive way to reduce disability and improve adaptation. The notion of schizophrenia as a developmental neurocognitive disorder with stages opens up a window of possibilities for earlier interventions. (JINS, 2017, 23, 881-892).
Collapse
|
16
|
Edgar JC, Fisk CL, Chen YH, Stone-Howell B, Hunter MA, Huang M, Bustillo JR, Cañive JM, Miller GA. By our bootstraps: Comparing methods for measuring auditory 40 Hz steady-state neural activity. Psychophysiology 2017; 54:1110-1127. [PMID: 28421620 DOI: 10.1111/psyp.12876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
Abstract
Although the 40 Hz auditory steady-state response (ASSR) is of clinical interest, the construct validity of EEG and MEG measures of 40 Hz ASSR cortical microcircuits is unclear. This study evaluated several MEG and EEG metrics by leveraging findings of (a) an association between the 40 Hz ASSR and age in the left but not right hemisphere, and (b) right- > left-hemisphere differences in the strength of the 40 Hz ASSR. The contention is that, if an analysis method does not demonstrate a left 40 Hz ASSR and age relationship or hemisphere differences, then the obtained measures likely have low validity. Fifty-three adults were presented 500 Hz stimuli modulated at 40 Hz while MEG and EEG were collected. ASSR activity was examined as a function of phase similarity (intertrial coherence) and percent change from baseline (total power). A variety of head models (spherical and realistic) and a variety of dipole source modeling strategies (dipole source localization and dipoles fixed to Heschl's gyri) were compared. Several sensor analysis strategies were also tested. EEG sensor measures failed to detect left 40 Hz ASSR and age associations or hemisphere differences. A comparison of MEG and EEG head-source models showed similarity in the 40 Hz ASSR measures and in estimating age and left 40 Hz ASSR associations, indicating good construct validity across models. Given a goal of measuring the 40 Hz ASSR cortical microcircuits, a source-modeling approach was shown to be superior in measuring this construct versus methods that rely on EEG sensor measures.
Collapse
Affiliation(s)
- J Christopher Edgar
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles L Fisk
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu-Han Chen
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Breannan Stone-Howell
- University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, New Mexico.,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, New Mexico
| | - Michael A Hunter
- University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, New Mexico.,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, New Mexico
| | - Mingxiong Huang
- University of California, San Diego, Department of Radiology, San Diego, California.,San Diego VA Healthcare System, Department of Radiology, San Diego, California
| | - Juan R Bustillo
- University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, New Mexico
| | - José M Cañive
- University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, New Mexico.,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, New Mexico
| | - Gregory A Miller
- University of California, Los Angeles, Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| |
Collapse
|
17
|
Radhu N, Dominguez LG, Greenwood TA, Farzan F, Semeralul MO, Richter MA, Kennedy JL, Blumberger DM, Chen R, Fitzgerald PB, Daskalakis ZJ. Investigating Cortical Inhibition in First-Degree Relatives and Probands in Schizophrenia. Sci Rep 2017; 7:43629. [PMID: 28240740 PMCID: PMC5378912 DOI: 10.1038/srep43629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/26/2017] [Indexed: 01/16/2023] Open
Abstract
Deficits in GABAergic inhibitory neurotransmission are a reliable finding in schizophrenia (SCZ) patients. Previous studies have reported that unaffected first-degree relatives of patients with SCZ demonstrate neurophysiological abnormalities that are intermediate between probands and healthy controls. In this study, first-degree relatives of patients with SCZ and their related probands were investigated to assess frontal cortical inhibition. Long-interval cortical inhibition (LICI) was measured from the dorsolateral prefrontal cortex (DLPFC) using combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG). The study presents an extended sample of 129 subjects (66 subjects have been previously reported): 19 patients with SCZ or schizoaffective disorder, 30 unaffected first-degree relatives of these SCZ patients, 13 obsessive-compulsive disorder (OCD) patients, 18 unaffected first-degree relatives of these OCD patients and 49 healthy subjects. In the DLPFC, cortical inhibition was significantly decreased in patients with SCZ compared to healthy subjects. First-degree relatives of patients with SCZ showed significantly more cortical inhibition than their SCZ probands. No differences were demonstrated between first-degree relatives of SCZ patients and healthy subjects. Taken together, these findings show that more studies are needed to establish an objective biological marker for potential diagnostic usage in severe psychiatric disorders.
Collapse
Affiliation(s)
- Natasha Radhu
- Novartis Pharmaceuticals Canada Inc., Dorval, Quebec, Canada
| | - Luis Garcia Dominguez
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Tiffany A Greenwood
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Mawahib O Semeralul
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Margaret A Richter
- Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Victoria, Australia
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Schnakenberg Martin AM, O’Donnell BF, Millward JB, Vohs JL, Leishman E, Bolbecker AR, Rass O, Morzorati SL. Acute Phencyclidine Alters Neural Oscillations Evoked by Tones in the Auditory Cortex of Rats. Neuropsychobiology 2017; 75:53-62. [PMID: 29065422 PMCID: PMC5752597 DOI: 10.1159/000480511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The onset response to a single tone as measured by electroencephalography (EEG) is diminished in power and synchrony in schizophrenia. Because neural synchrony, particularly at gamma frequencies (30-80 Hz), is hypothesized to be supported by the N-methyl-D-aspartate receptor (NMDAr) system, we tested whether phencyclidine (PCP), an NMDAr antagonist, produced similar deficits to tone stimuli in rats. METHODS Experiment 1 tested the effect of a PCP dose (1.0, 2.5, and 4.5 mg/kg) on response to single tones on intracranial EEG recorded over the auditory cortex in rats. Experiment 2 evaluated the effect of PCP after acute administration of saline or PCP (5 mg/kg), after continuous subchronic administration of saline or PCP (5 mg/kg/day), and after a week of drug cessation. In both experiments, a time-frequency analysis quantified mean power (MP) and phase locking factor (PLF) between 1 and 80 Hz. Event-related potentials (ERPs) were also measured to tones, and EEG spectral power in the absence of auditory stimuli. RESULTS Acute PCP increased PLF and MP between 10 and 30 Hz, while decreasing MP and PLF between approximately 50 and 70 Hz. Acute PCP produced a dose-dependent broad-band increase in EEG power that extended into gamma range frequencies. There were no consistent effects of subchronic administration on gamma range activity. Acute PCP increased ERP amplitudes for the P16 and N70 components. CONCLUSIONS Findings suggest that acute PCP-induced NMDAr hypofunction has differential effects on neural power and synchrony which vary with dose, time course of administration and EEG frequency. EEG synchrony and power appear to be sensitive translational biomarkers for disrupted NMDAr function, which may contribute to the pathophysiology of schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ashley M. Schnakenberg Martin
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 E. 10 Street, Bloomington, Indiana 47405, United States of America,Larue D. Carter Memorial Hospital, 2601 Cold Springs Road, Indianapolis, Indiana 46222, United States of America,Corresponding author: Ashley M. Schnakenberg Martin, Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 East 10 Street, Bloomington, Indiana 47405, United States of America, Phone: 812-856-4676,
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 E. 10 Street, Bloomington, Indiana 47405, United States of America,Department of Psychiatry, Indiana University School of Medicine, 340 West 10 Street, Suite 6200, Indianapolis, Indiana 46202, United States of America,Larue D. Carter Memorial Hospital, 2601 Cold Springs Road, Indianapolis, Indiana 46222, United States of America
| | - James B. Millward
- Department of Psychiatry, Indiana University School of Medicine, 340 West 10 Street, Suite 6200, Indianapolis, Indiana 46202, United States of America,Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana 46202
| | - Jenifer L. Vohs
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 E. 10 Street, Bloomington, Indiana 47405, United States of America,Department of Psychiatry, Indiana University School of Medicine, 340 West 10 Street, Suite 6200, Indianapolis, Indiana 46202, United States of America,Larue D. Carter Memorial Hospital, 2601 Cold Springs Road, Indianapolis, Indiana 46222, United States of America
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 E. 10 Street, Bloomington, Indiana 47405, United States of America
| | - Amanda R. Bolbecker
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 E. 10 Street, Bloomington, Indiana 47405, United States of America,Department of Psychiatry, Indiana University School of Medicine, 340 West 10 Street, Suite 6200, Indianapolis, Indiana 46202, United States of America,Larue D. Carter Memorial Hospital, 2601 Cold Springs Road, Indianapolis, Indiana 46222, United States of America
| | - Olga Rass
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, 1101 E. 10 Street, Bloomington, Indiana 47405, United States of America
| | - Sandra L. Morzorati
- Department of Psychiatry, Indiana University School of Medicine, 340 West 10 Street, Suite 6200, Indianapolis, Indiana 46202, United States of America,Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana 46202
| |
Collapse
|
19
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
20
|
Bochkarev VK, Kirenskaya AV, Solnceva SV, Tkachenko AA. Specificity of spatial organization of evoked EEG rhythms in patients with paranoid schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:29-35. [DOI: 10.17116/jnevro20171171129-35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
22
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
23
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
24
|
Başar E, Gölbaşı BT, Tülay E, Aydın S, Başar-Eroğlu C. Best method for analysis of brain oscillations in healthy subjects and neuropsychiatric diseases. Int J Psychophysiol 2016; 103:22-42. [DOI: 10.1016/j.ijpsycho.2015.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Leicht G, Vauth S, Polomac N, Andreou C, Rauh J, Mußmann M, Karow A, Mulert C. EEG-Informed fMRI Reveals a Disturbed Gamma-Band-Specific Network in Subjects at High Risk for Psychosis. Schizophr Bull 2016; 42:239-49. [PMID: 26163477 PMCID: PMC4681551 DOI: 10.1093/schbul/sbv092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Abnormalities of oscillatory gamma activity are supposed to reflect a core pathophysiological mechanism underlying cognitive disturbances in schizophrenia. The auditory evoked gamma-band response (aeGBR) is known to be reduced across all stages of the disease. The present study aimed to elucidate alterations of an aeGBR-specific network mediated by gamma oscillations in the high-risk state of psychosis (HRP) by means of functional magnetic resonance imaging (fMRI) informed by electroencephalography (EEG). METHODS EEG and fMRI were simultaneously recorded from 27 HRP individuals and 26 healthy controls (HC) during performance of a cognitively demanding auditory reaction task. We used single trial coupling of the aeGBR with the corresponding blood oxygen level depending response (EEG-informed fMRI). RESULTS A gamma-band-specific network was significantly lower active in HRP subjects compared with HC (random effects analysis, P < .01, Bonferroni-corrected for multiple comparisons) accompanied by a worse task performance. This network involved the bilateral auditory cortices, the thalamus and frontal brain regions including the anterior cingulate cortex, as well as the bilateral dorsolateral prefrontal cortex. CONCLUSIONS For the first time we report a reduced activation of an aeGBR-specific network in HRP subjects brought forward by EEG-informed fMRI. Because the HRP reflects the clinical risk for conversion to psychotic disorders including schizophrenia and the aeGBR has repeatedly been shown to be altered in patients with schizophrenia the results of our study point towards a potential applicability of aeGBR disturbances as a marker for the prediction of transition of HRP subjects to schizophrenia.
Collapse
Affiliation(s)
- Gregor Leicht
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Sebastian Vauth
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and,These authors contributed equally to the article
| | - Nenad Polomac
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Marius Mußmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Anne Karow
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| |
Collapse
|
26
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
27
|
Pinheiro AP, Barros C, Pedrosa J. Salience in a social landscape: electrophysiological effects of task-irrelevant and infrequent vocal change. Soc Cogn Affect Neurosci 2015; 11:127-39. [PMID: 26468268 DOI: 10.1093/scan/nsv103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/30/2015] [Indexed: 11/14/2022] Open
Abstract
In a dynamically changing social environment, humans have to face the challenge of prioritizing stimuli that compete for attention. In the context of social communication, the voice is the most important sound category. However, the existing studies do not directly address whether and how the salience of an unexpected vocal change in an auditory sequence influences the orientation of attention. In this study, frequent tones were interspersed with task-relevant infrequent tones and task-irrelevant infrequent vocal sounds (neutral, happy and angry vocalizations). Eighteen healthy college students were asked to count infrequent tones. A combined event-related potential (ERP) and EEG time-frequency approach was used, with the focus on the P3 component and on the early auditory evoked gamma band response, respectively. A spatial-temporal principal component analysis was used to disentangle potentially overlapping ERP components. Although no condition differences were observed in the 210-310 ms window, larger positive responses were observed for emotional than neutral vocalizations in the 310-410 ms window. Furthermore, the phase synchronization of the early auditory evoked gamma oscillation was enhanced for happy vocalizations. These findings support the idea that the brain prioritizes the processing of emotional stimuli, by devoting more attentional resources to salient social signals even when they are not task-relevant.
Collapse
Affiliation(s)
- Ana P Pinheiro
- Neuropsychophysiology Laboratory, School of Psychology, University of Minho, Braga, Portugal
| | - Carla Barros
- Neuropsychophysiology Laboratory, School of Psychology, University of Minho, Braga, Portugal
| | - João Pedrosa
- Neuropsychophysiology Laboratory, School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
28
|
Leicht G, Andreou C, Polomac N, Lanig C, Schöttle D, Lambert M, Mulert C. Reduced auditory evoked gamma band response and cognitive processing deficits in first episode schizophrenia. World J Biol Psychiatry 2015; 16:387-397. [PMID: 25774562 DOI: 10.3109/15622975.2015.1017605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Gamma-band oscillations (e.g., the early auditory evoked gamma-band response, aeGBR) have been suggested to mediate cognitive and perceptual processes by driving the synchronization of local neuronal populations. Reduced aeGBR is a consistent finding in patients with schizophrenia and high-risk subjects, and has been proposed to represent an endophenotype for the illness. However, it is still unclear whether this reduction represents a deficit in sensory or cognitive processes, or a combination of the two. The present study investigated this question by manipulating the difficulty of an auditory reaction task in patients with first-episode schizophrenia and healthy controls. METHODS A 64-channel EEG was recorded in 23 patients with first-episode schizophrenia and 22 healthy controls during two conditions of an auditory reaction task: an easy condition that merely required low-level vigilance, and a difficult condition that placed significant demands on attention and working memory. RESULTS In contrast to healthy controls, patients failed to increase aeGBR power and phase-locking in the difficult condition. In patients, aeGBR power and phase-locking indices were associated with working memory deficits. CONCLUSIONS The observed results confirm the applicability of aeGBR disturbances as a stable endophenotype of schizophrenia, and suggest a cognitive, rather than sensory, deficit at their origin.
Collapse
Affiliation(s)
- Gregor Leicht
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christina Andreou
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Nenad Polomac
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Clarissa Lanig
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Daniel Schöttle
- b Department of Psychiatry and Psychotherapy , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Martin Lambert
- b Department of Psychiatry and Psychotherapy , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christoph Mulert
- a Department of Psychiatry and Psychotherapy , Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
29
|
Tomimatsu Y, Hibino R, Ohta H. Brown Norway rats, a putative schizophrenia model, show increased electroencephalographic activity at rest and decreased event-related potential amplitude, power, and coherence in the auditory sensory gating paradigm. Schizophr Res 2015; 166:171-7. [PMID: 26004687 DOI: 10.1016/j.schres.2015.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/11/2015] [Accepted: 05/01/2015] [Indexed: 01/16/2023]
Abstract
In recent schizophrenia clinical research, electroencephalographic (EEG) oscillatory activities induced by a sensory stimulus or behavioral tasks have gained considerable interest as functional and pathophysiological biomarkers. The Brown Norway (BN) rat is a putative schizophrenia model that shows naturally low sensorimotor gating and deficits in cognitive performance, although other phenotypes have not been studied. The present study aimed to investigate the neurophysiological features of BN rats, particularly EEG/event-related potential (ERP). EEG activity was recorded at rest and during the auditory sensory gating paradigm under an awake, freely moving condition. Frequency and ERP analysis were performed along with time-frequency analysis of evoked power and intertrial coherence. Compared with Wistar-Kyoto rats, a well-documented control line, BN rats showed increased EEG power at rest, particularly in the theta and gamma ranges. In ERP analysis, BN rats showed reduced N40-P20 amplitude but normal sensory gating. The rats also showed reduced evoked power and intertrial coherence against auditory stimuli. These results suggest that BN rats show features of EEG/ERP measures clinically relevant to schizophrenia and may provide additional opportunities for translational research.
Collapse
Affiliation(s)
- Yoshiro Tomimatsu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Ryosuke Hibino
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Hiroyuki Ohta
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| |
Collapse
|
30
|
Andreou C, Nolte G, Leicht G, Polomac N, Hanganu-Opatz IL, Lambert M, Engel AK, Mulert C. Increased Resting-State Gamma-Band Connectivity in First-Episode Schizophrenia. Schizophr Bull 2015; 41:930-9. [PMID: 25170031 PMCID: PMC4466170 DOI: 10.1093/schbul/sbu121] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Schizophrenia has long been suggested to represent a disorder with prominent neural dysconnectivity. Gamma-band oscillations are highly relevant in this context, due both to their proposed involvement in neuronal synchronization and to their association with neurotransmitter systems relevant for schizophrenia. Several task-related studies have confirmed reduced power and synchronization of gamma-band oscillations in schizophrenia, but it has been suggested that these findings might not apply to the resting state. The present study aimed to investigate resting-state gamma-band connectivity in patients with schizophrenia. METHODS Sixty-four channel resting-state electroencephalography (eyes closed) was recorded in 22 patients with first-episode schizophrenia and 22 healthy controls matched for age and gender. Orthogonalized power envelope correlation was used as a measure of connectivity across 80 cortical regions at 40 Hz. Mean connectivity at each region was compared across groups using the nonparametric randomization approach. Additionally, the network-based statistic was applied to identify affected networks in patients. RESULTS Patients displayed increased mean functional gamma-band connectivity compared to controls in the left rolandic operculum. Network-based analyses indicated increased connectivity in patients within a strongly lateralized network consisting mainly of left inferior frontal/orbitofrontal, lateral and medial temporal, and inferior parietal areas. Within this network, gamma-band connectivity was higher in patients with low positive and disorganization symptom levels. CONCLUSIONS The present study provides a link between resting-state gamma-band connectivity and the core symptoms of schizophrenia. The observed findings are different than those reported by task-related studies, suggesting that resting-state studies might reveal new aspects in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Christina Andreou
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nenad Polomac
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L. Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Lambert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Pittman-Polletta BR, Kocsis B, Vijayan S, Whittington MA, Kopell NJ. Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 2015; 77:1020-30. [PMID: 25850619 PMCID: PMC4444389 DOI: 10.1016/j.biopsych.2015.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings, we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive and perceptual disturbances observed in schizophrenia.
Collapse
Affiliation(s)
- Benjamin R. Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA,Corresponding author. Please send correspondence to: 111 Cummington Mall, Boston MA 02215. Phone: 617-353-2560. Fax: 617-353-8100., (Benjamin R. Pittman-Polletta)
| | - Bernat Kocsis
- Cognitive Rhythms Collaborative, Boston, MA,Department of Psychiatry, Beth Israel Medical Center, Harvard Medical School, Boston MA
| | - Sujith Vijayan
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| | - Miles A. Whittington
- Cognitive Rhythms Collaborative, Boston, MA,Department of Neuroscience, Hull York Medical School, York University, UK
| | - Nancy J. Kopell
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| |
Collapse
|
32
|
Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 2015; 77:1098-107. [PMID: 25891221 PMCID: PMC4444380 DOI: 10.1016/j.biopsych.2015.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Low-frequency (delta/theta) oscillations in the thalamocortical system are elevated in schizophrenia during wakefulness and are also induced in the N-methyl-D-asparate receptor hypofunction rat model. To determine whether abnormal delta oscillations might produce functional deficits, we used optogenetic methods in awake rats. We illuminated channelrhodopsin-2 in the thalamic nucleus reuniens (RE) at delta frequency and measured the effect on working memory (WM) performance (the RE is involved in WM, a process affected in schizophrenia [SZ]). METHODS We injected RE with adeno-associated virus to transduce cells with channelrhodopsin-2. An optical fiber was implanted just dorsal to the hippocampus in order to illuminate RE axon terminals. RESULTS During optogenetic delta frequency stimulation, rats displayed a strong WM deficit. On the following day, performance was normal if illumination was omitted. CONCLUSIONS The optogenetic experiments show that delta frequency stimulation of a thalamic nucleus is sufficient to produce deficits in WM. This result supports the hypothesis that delta frequency bursting in particular thalamic nuclei has a causal role in producing WM deficits in SZ. The action potentials in these bursts may "jam" communication through the thalamus, thereby interfering with behaviors dependent on WM. Studies in thalamic slices using the N-methyl-D-asparate receptor hypofunction model show that delta frequency bursting is dependent on T-type Ca(2+) channels, a result that we confirmed here in vivo. These channels, which are strongly implicated in SZ by genome-wide association studies, may thus be a therapeutic target for treatment of SZ.
Collapse
|
33
|
Hall MH, Chen CY, Cohen BM, Spencer KM, Levy DL, Öngür D, Smoller JW. Genomewide association analyses of electrophysiological endophenotypes for schizophrenia and psychotic bipolar disorders: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:151-61. [PMID: 25740047 PMCID: PMC4458348 DOI: 10.1002/ajmg.b.32298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023]
Abstract
Several event-related potentials (ERP), including P3, sensory gating (P50), and gamma oscillation, are robustly impaired in patients with schizophrenia (SCZ) and bipolar disorder (BIP). Although these ERPs are known to be heritable, little is known about the specific genetic loci involved and the degree to which they overlap with loci influencing mood and psychotic disorders. In the present study, we conducted GWAS to a) identify common variants associated with ERP endophenotypes, and b) construct polygenic risk scores (PRS) to examine overlap between genetic components of ERPs and mood and psychotic disorders. The sample consisted of 271 patients with SCZ or psychotic BIP diagnosis and 128 controls for whom ERP and genomewide data were available. GWAS were conducted using the full sample. PRS, derived from the Psychiatric Genomics Consortium (PGC) analyses of SCZ, BIP, and major depressive disorder were applied to each ERP phenotype. We identified a region on chromosome 14 that was significantly associated with sensory gating (peak SNP rs10132223, P = 1.27 × 10(-9) ). This locus has not been previously associated with psychotic illness in PGC-GWAS. In the PRS analyses, patients with a higher load of SCZ risk alleles had reduced gamma response whereas patients with a higher load of BIP risk alleles had smaller P3 amplitude. We observed a genomewide significant locus on chromosome 14 for P50. This locus may influence P50 but not psychotic illness. Among patients with psychotic illness, PRS results indicated genetic overlap between SCZ loci and gamma oscillation and between BIP loci and P3 amplitude.
Collapse
Affiliation(s)
- Mei-Hua Hall
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
- Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Bruce M. Cohen
- Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin M. Spencer
- VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Deborah L. Levy
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dost Öngür
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts
| |
Collapse
|
34
|
Nakamura T, Matsumoto J, Takamura Y, Ishii Y, Sasahara M, Ono T, Nishijo H. Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice. PLoS One 2015; 10:e0119258. [PMID: 25803852 PMCID: PMC4372342 DOI: 10.1371/journal.pone.0119258] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 01/09/2015] [Indexed: 12/23/2022] Open
Abstract
Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic) neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO) mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI); reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Jumpei Matsumoto
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Yoko Ishii
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| |
Collapse
|
35
|
Pyramidal cell selective ablation of N-methyl-D-aspartate receptor 1 causes increase in cellular and network excitability. Biol Psychiatry 2015; 77:556-68. [PMID: 25156700 PMCID: PMC4297754 DOI: 10.1016/j.biopsych.2014.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is considered critical for cognitive performance. Such impairments are thought to be due to reduced N-methyl-D-aspartate receptor (NMDAR)-mediated inhibition from parvalbumin interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. However, recent studies suggest a direct role of pyramidal neurons in regulating gamma oscillations. In particular, a computational model has been proposed in which phasic currents from pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, this computational model has not been tested experimentally and the molecular mechanisms underlying pyramidal neuron dysfunction in SZ remain unclear. METHODS In the present study, we tested the hypothesis that SZ-related phenotypes could arise from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neuron specific NMDA receptor 1 knockout mice. RESULTS The mice displayed increased baseline gamma power, as well as sociocognitive impairments. These phenotypes were associated with increased pyramidal cell excitability due to changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression of GIRK2 channels, which has been linked to increased neuronal excitability. CONCLUSIONS Our data demonstrate for the first time that NMDAR hypofunction in pyramidal cells is sufficient to cause electrophysiological, molecular, neuropathological, and behavioral changes related to SZ.
Collapse
|
36
|
Preliminary evidence for reduced auditory lateral suppression in schizophrenia. Schizophr Res 2015; 162:269-75. [PMID: 25583249 PMCID: PMC4339496 DOI: 10.1016/j.schres.2014.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Well-documented auditory processing deficits such as impaired frequency discrimination and reduced suppression of auditory brain responses in schizophrenia (SZ) may contribute to abnormal auditory functioning in everyday life. Lateral suppression of non-stimulated neurons by stimulated neurons has not been extensively assessed in SZ and likely plays an important role in precise encoding of sounds. Therefore, this study evaluated whether lateral suppression of activity in auditory cortex is impaired in SZ. METHODS SZ participants and control participants watched a silent movie with subtitles while listening to trials composed of a 0.5s control stimulus (CS), a 3s filtered masking noise (FN), and a 0.5s test stimulus (TS). The CS and TS were identical on each trial and had energy corresponding to the high energy (recurrent suppression) or low energy (lateral suppression) portions of the FN. Event-related potentials were recorded and suppression was measured as the amplitude change between CS and TS. RESULTS Peak amplitudes of the auditory P2 component (160-260ms) showed reduced lateral but not recurrent suppression in SZ participants. CONCLUSIONS Reduced lateral suppression in SZ participants may lead to overlap of neuronal populations representing different auditory stimuli. Such imprecise neural representations may contribute to the difficulties SZ participants have in discriminating complex stimuli in everyday life.
Collapse
|
37
|
Event-related potential and time-frequency endophenotypes for schizophrenia and psychotic bipolar disorder. Biol Psychiatry 2015; 77:127-36. [PMID: 24923619 PMCID: PMC5314434 DOI: 10.1016/j.biopsych.2014.03.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/20/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND The investigators compared event-related potential (ERP) amplitudes and event-related oscillations across a broad frequency range during an auditory oddball task using a comprehensive analysis approach to describe shared and unique neural auditory processing characteristics among healthy subjects (HP), schizophrenia probands (SZ) and their first-degree relatives, and bipolar disorder I with psychosis probands (BDP) and their first-degree relatives. METHODS This Bipolar-Schizophrenia Network on Intermediate Phenotypes sample consisted of clinically stable SZ (n = 229) and BDP (n = 188), HP (n = 284), first-degree relatives of schizophrenia probands (n = 264), and first-degree relatives of bipolar disorder I with psychosis probands (n = 239). They were administered an auditory oddball task in the electroencephalography environment. Principal components analysis derived data-driven frequency bands evoked power. Spatial principal components analysis reduced ERP and frequency data to component waveforms for each subject. Clusters of time bins with significant group differences on response magnitude were assessed for proband/relative differences from HP and familiality. RESULTS Nine variables survived a linear discriminant analysis between HP, SZ, and BDP. Of those, two showed evidence (deficit in relatives and familiality) as genetic risk markers more specific to SZ (N1, P3b), one was specific to BDP (P2) and one for psychosis in general (N2). CONCLUSIONS This study supports for both shared and unique deficits in early sensory and late cognitive processing across psychotic diagnostic groups. Additional ERP and time-frequency component alterations (frontal N2/P2, late high, early, mid, and low frequency) may provide insight into deficits in underlying neural architecture and potential protective/compensatory mechanisms in unaffected relatives.
Collapse
|
38
|
Nottage JF, Stone J, Murray RM, Sumich A, Bramon-Bosch E, ffytche D, Morrison PD. Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis. Psychopharmacology (Berl) 2015; 232:519-28. [PMID: 25038870 PMCID: PMC4302232 DOI: 10.1007/s00213-014-3684-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/05/2014] [Indexed: 01/05/2023]
Abstract
RATIONALE An acute challenge with delta-9-tetrahydrocannabinol (THC) can induce psychotic symptoms including delusions. High electroencephalography (EEG) frequencies, above 20 Hz, have previously been implicated in psychosis and schizophrenia. OBJECTIVES The objective of this study is to determine the effect of intravenous THC compared to placebo on high-frequency EEG. METHODS A double-blind cross-over study design was used. In the resting state, the high-beta to low-gamma magnitude (21-45 Hz) was investigated (n = 13 pairs + 4 THC only). Also, the event-related synchronisation (ERS) of motor-associated high gamma was studied using a self-paced button press task (n = 15). RESULTS In the resting state, there was a significant condition × frequency interaction (p = 0.00017), consisting of a shift towards higher frequencies under THC conditions (reduced high beta [21-27 Hz] and increased low gamma [27-45 Hz]). There was also a condition × frequency × location interaction (p = 0.006), such that the reduction in 21-27-Hz magnitude tended to be more prominent in anterior regions, whilst posterior areas tended to show greater 27-45-Hz increases. This effect was correlated with positive symptoms, as assessed on the Positive and Negative Syndrome Scale (PANSS) (r = 0.429, p = 0.042). In the motor task, there was a main effect of THC to increase 65-130-Hz ERS (p = 0.035) over contra-lateral sensorimotor areas, which was driven by increased magnitude in the higher, 85-130-Hz band (p = 0.02) and not the 65-85-Hz band. CONCLUSIONS The THC-induced shift to faster gamma oscillations may represent an over-activation of the cortex, possibly related to saliency misattribution in the delusional state.
Collapse
Affiliation(s)
- Judith F. Nottage
- Institute of Psychiatry, King’s College London, P089 DeCrespigny Park, Denmark Hill, London, SE5 8AF UK
| | - James Stone
- Institute of Psychiatry, King’s College London, P089 DeCrespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Robin M. Murray
- Institute of Psychiatry, King’s College London, P089 DeCrespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Alex Sumich
- Nottingham Trent University, Nottingham, NG1 4BU UK
| | | | - Dominic ffytche
- Institute of Psychiatry, King’s College London, P089 DeCrespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Paul D. Morrison
- Institute of Psychiatry, King’s College London, P089 DeCrespigny Park, Denmark Hill, London, SE5 8AF UK
| |
Collapse
|
39
|
Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 2014; 6:28. [PMID: 25505409 PMCID: PMC4243504 DOI: 10.3389/fnsyn.2014.00028] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| |
Collapse
|
40
|
Abstract
Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.
Collapse
Affiliation(s)
- Peter J Uhlhaas
- Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschorclenstr. 46, Frankfurt am Main, 60528, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with Max Planck Society, Deutschorclenstr. 46, Frankfurt am Main, 60528, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillheacl Street, Glasgow G12 8QB, UK
| | | |
Collapse
|
41
|
Steinmann S, Leicht G, Ertl M, Andreou C, Polomac N, Westerhausen R, Friederici AD, Mulert C. Conscious auditory perception related to long-range synchrony of gamma oscillations. Neuroimage 2014; 100:435-43. [PMID: 24945670 DOI: 10.1016/j.neuroimage.2014.06.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/08/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022] Open
Abstract
While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. In contrast, the left ear (LE) input initially accesses the right hemisphere and needs additional transfer via interhemispheric pathways before it is processed in the left hemisphere. Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Matthias Ertl
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - René Westerhausen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland Hospital, Bergen, Norway
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Dickerson DD, Bilkey DK. Aberrant neural synchrony in the maternal immune activation model: using translatable measures to explore targeted interventions. Front Behav Neurosci 2013; 7:217. [PMID: 24409130 PMCID: PMC3873515 DOI: 10.3389/fnbeh.2013.00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023] Open
Abstract
Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural, functional, behavioral, and electrophysiological phenotypes in the adult offspring that model those seen in schizophrenia. We used this model to explore the role of synchronization in brain neural networks, a process thought to be dysfunctional in schizophrenia and previously associated with positive, negative, and cognitive symptoms of schizophrenia. Exposure of pregnant dams to Poly I:C on GD15 produced an impairment in long-range neural synchrony in adult offspring between two regions implicated in schizophrenia pathology; the hippocampus and the medial prefrontal cortex (mPFC). This reduction in synchrony was ameliorated by acute doses of the antipsychotic clozapine. MIA animals have previously been shown to have impaired pre-pulse inhibition (PPI), a gold-standard measure of schizophrenia-like deficits in animal models. Our data showed that deficits in synchrony were positively correlated with the impairments in PPI. Subsequent analysis of LFP activity during the PPI response also showed that reduced coupling between the mPFC and the hippocampus following processing of the pre-pulse was associated with reduced PPI. The ability of the MIA intervention to model neurodevelopmental aspects of schizophrenia pathology provides a useful platform from which to investigate the ontogeny of aberrant synchronous processes. Further, the way in which the model expresses translatable deficits such as aberrant synchrony and reduced PPI will allow researchers to explore novel intervention strategies targeted to these changes.
Collapse
Affiliation(s)
| | - David K Bilkey
- Department of Psychology, University of Otago Dunedin, New Zealand
| |
Collapse
|
43
|
Edgar JC, Chen YH, Lanza M, Howell B, Chow VY, Heiken K, Liu S, Wootton C, Hunter MA, Huang M, Miller GA, Cañive JM. Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NEUROIMAGE-CLINICAL 2013; 4:122-9. [PMID: 24371794 PMCID: PMC3871288 DOI: 10.1016/j.nicl.2013.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
Abstract
Introduction Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function–structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Methods Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time–frequency group differences and associations with STG structure and age were also examined. Results Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Discussion Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function–structure relationships observed in controls. Associations between brain oscillations and structure were investigated in SZ The present study examined how superior temporal gyrus (STG) structure and agerelate to auditory STG low-frequency and 40 Hz steady-state activity Decreased total power and inter-trial coherence in SZ were observed in the left STG for early low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms) Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG function-structure relationships observed in controls.
Collapse
Affiliation(s)
- J Christopher Edgar
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Han Chen
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Matthew Lanza
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Breannan Howell
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Vivian Y Chow
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Kory Heiken
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Song Liu
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra Wootton
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Michael A Hunter
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Mingxiong Huang
- The University of California San Diego, Department of Radiology, San Diego, CA, USA ; San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA
| | - Gregory A Miller
- University of California, Los Angeles, Department of Psychology, USA
| | - José M Cañive
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| |
Collapse
|
44
|
Tan HRM, Lana L, Uhlhaas PJ. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 2013; 4:621. [PMID: 24130535 PMCID: PMC3793130 DOI: 10.3389/fpsyg.2013.00621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder.
Collapse
Affiliation(s)
- Heng-Ru May Tan
- Institute of Neuroscience and Psychology, College of Science and Engineering and College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|
45
|
Uhlhaas PJ. High-frequency oscillations and the neurobiology of schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2013; 15:301-13. [PMID: 24174902 PMCID: PMC3811102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.
Collapse
Affiliation(s)
- Peter J. Uhlhaas
- Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschorclenstr. 46, Frankfurt am Main, 60528, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with Max Planck Society, Deutschorclenstr. 46, Frankfurt am Main, 60528, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillheacl Street, Glasgow G12 8QB, UK
| |
Collapse
|
46
|
A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychophysiol 2013; 90:99-117. [PMID: 23892065 DOI: 10.1016/j.ijpsycho.2013.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
Abstract
This review describes a wide range of functional correlates of gamma oscillations in whole-brain work, in neuroethology, sensory-cognitive dynamics, emotion, and cognitive impairment. This survey opens a new window towards understanding the brain's gamma activity. Gamma responses are selectively distributed in the whole brain, and do not reflect only a unique, specific function of the nervous system. Sensory responses from cortex, thalamus, hippocampus, and reticular formations in animal and human brains, and also cognitive responses, were described by several authors. According to reviewed results, it becomes obvious that cognitive disorders, and medication-which influence the transmitter release-change entirely the understanding of the big picture in cognitive processes. Gamma activity is evoked or induced by different sensory stimuli or cognitive tasks. Thus, it is argued that gamma-band synchronization is an elementary and fundamental process in whole-brain operation. In conclusion, reasoning and suggestions for understanding gamma activity are highlighted.
Collapse
|
47
|
Furth KE, Mastwal S, Wang KH, Buonanno A, Vullhorst D. Dopamine, cognitive function, and gamma oscillations: role of D4 receptors. Front Cell Neurosci 2013; 7:102. [PMID: 23847468 PMCID: PMC3698457 DOI: 10.3389/fncel.2013.00102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022] Open
Abstract
Cognitive deficits in individuals with schizophrenia (SCZ) are considered core symptoms of this disorder, and can manifest at the prodromal stage. Antipsychotics ameliorate positive symptoms but only modestly improve cognitive symptoms. The lack of treatments that improve cognitive abilities currently represents a major obstacle in developing more effective therapeutic strategies for this debilitating disorder. While D4 receptor (D4R)-specific antagonists are ineffective in the treatment of positive symptoms, animal studies suggest that D4R drugs can improve cognitive deficits. Moreover, recent work from our group suggests that D4Rs synergize with the neuregulin/ErbB4 signaling pathway, genetically identified as risk factors for SCZ, in parvalbumin (PV)-expressing interneurons to modulate gamma oscillations. These high-frequency network oscillations correlate with attention and increase during cognitive tasks in healthy subjects, and this correlation is attenuated in affected individuals. This finding, along with other observations indicating impaired GABAergic function, has led to the idea that abnormal neural activity in the prefrontal cortex (PFC) in individuals with SCZ reflects a perturbation in the balance of excitation and inhibition. Here we review the current state of knowledge of D4R functions in the PFC and hippocampus, two major brain areas implicated in SCZ. Special emphasis is given to studies focusing on the potential role of D4Rs in modulating GABAergic transmission and to an emerging concept of a close synergistic relationship between dopamine/D4R and neuregulin/ErbB4 signaling pathways that tunes the activity of PV interneurons to regulate gamma frequency network oscillations and potentially cognitive processes.
Collapse
Affiliation(s)
- Katrina E Furth
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Graduate Program for Neuroscience, Boston University Boston, MA, USA
| | | | | | | | | |
Collapse
|
48
|
Kocsis B, Brown RE, McCarley RW, Hajos M. Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther 2013; 19:437-47. [PMID: 23611295 PMCID: PMC3663928 DOI: 10.1111/cns.12081] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022] Open
Abstract
Subanesthetic doses of the psychomimetic, ketamine, have been used for many years to elicit behavioral effects reminiscent of schizophrenia in both healthy humans and in animal models of the disease. More recently, there has been a move toward the use of simple neurophysiological measures (event-related potentials, brain oscillations) to assay the functional integrity of neuronal circuits in schizophrenia as these measures can be assessed in patients, healthy controls, intact animals, and even in brain slices. Furthermore, alterations of these measures are correlated with basic information processing deficits that are now considered central to the disease. Thus, here we review recent studies that determine the effect of ketamine on these measures and discuss to what extent they recapitulate findings in patients with schizophrenia. In particular, we examine methodological differences between human and animal studies and compare in vivo and in vitro effects of ketamine. Ketamine acts on multiple cortical and subcortical sites, as well as on receptors other than the N-methyl-d-aspartate receptor. Acute ketamine models' changes correlated with psychotic states (e.g. increased baseline gamma-band oscillations), whereas chronic ketamine causes cortical circuit changes and neurophysiological deficits (e.g. impaired event-related gamma-band oscillations) correlated with cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Bernat Kocsis
- Laboratory of Neurophysiology, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
49
|
de Almeida J, Jourdan I, Murer MG, Belforte JE. Refinement of neuronal synchronization with gamma oscillations in the medial prefrontal cortex after adolescence. PLoS One 2013; 8:e62978. [PMID: 23646166 PMCID: PMC3639907 DOI: 10.1371/journal.pone.0062978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
The marked anatomical and functional changes taking place in the medial prefrontal cortex (PFC) during adolescence set grounds for the high incidence of neuropsychiatric disorders with adolescent onset. Although circuit refinement through synapse pruning may constitute the anatomical basis for the cognitive differences reported between adolescents and adults, a physiological correlate of circuit refinement at the level of neuronal ensembles has not been demonstrated. We have recorded neuronal activity together with local field potentials in the medial PFC of juvenile and adult mice under anesthesia, which allowed studying local functional connectivity without behavioral or sensorial interference. Entrainment of pyramidal neurons and interneurons to gamma oscillations, but not to theta or beta oscillations, was reduced after adolescence. Interneurons were synchronized to gamma oscillations across a wider area of the PFC than pyramidal neurons, and the span of interneuron synchronization was shorter in adults than juvenile mice. Thus, transition from childhood to adulthood is characterized by reduction of the strength and span of neuronal synchronization specific to gamma oscillations in the mPFC. The more restricted and weak ongoing synchronization in adults may allow a more dynamic rearrangement of neuronal ensembles during behavior and promote parallel processing of information.
Collapse
Affiliation(s)
- Julián de Almeida
- Neural Circuit Physiology Lab, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Iván Jourdan
- Neural Circuit Physiology Lab, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- Instituto de Ingeniería Biomédica, School of Engineering; University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Neural Circuit Physiology Lab, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan E. Belforte
- Neural Circuit Physiology Lab, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- Physiology of Animal Behavior Lab, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
50
|
Roach BJ, Ford JM, Hoffman RE, Mathalon DH. Converging evidence for gamma synchrony deficits in schizophrenia. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:163-80. [PMID: 24053039 DOI: 10.1016/b978-0-7020-5307-8.00011-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND In electroencephalogram (EEG) studies of auditory steady-state responses (ASSRs), patients with schizophrenia show a deficit in power and/or phase-locking, particularly at the 40 Hz frequency where these responses resonate. In addition, studies of the transient gamma-band response (GBR) elicited by single tones have revealed deficits in gamma power and phase-locking in schizophrenia. We examined the degree to which the 40 Hz ASSR and the transient GBR to single tones are correlated and whether they assess overlapping or distinct gamma-band abnormalities in schizophrenia. METHODS EEG was recorded during 40 Hz ASSR and auditory oddball paradigms from 28 patients with schizophrenia or schizoaffective disorder (SZ) and 25 age- and gender-matched healthy controls (HC). The ASSR was elicited by 500 ms click trains, and the transient GBR was elicited by the standard tones from the oddball paradigm. Gamma phase and magnitude values, calculated using Morlet wavelet transformations, were used to derive total power and phase-locking measures. RESULTS Relative to HC, SZ patients had significant deficits in total gamma power and phase-locking for both ASSR- and GBR-based measures. Within both groups, the 40 Hz ASSR and GBR phase-locking measures were significantly correlated, with a similar trend evident for the total power measures. Moreover, co-varying for GBR substantially reduced 40 Hz ASSR power and phase-locking differences between the groups. CONCLUSIONS 40 Hz ASSR and transient GBR measures provide very similar information about auditory gamma abnormalities in schizophrenia, despite the overall enhancement of 40 Hz ASSR total power and phase-locking values relative to the corresponding GBR values.
Collapse
Affiliation(s)
- B J Roach
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|