1
|
Rambaud V, Frajerman A, Fournier M, Iftimovici A, Dwir D, Khadimallah I, Kebir O, Marzo A, Krebs MO, Chaumette B. Oxidative stress markers during the psychotic transition. J Psychiatr Res 2025; 186:137-144. [PMID: 40239390 DOI: 10.1016/j.jpsychires.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Ultra-high-risk state (UHR) concept was initially applied to promote the early detection of young help-seeking patients with higher risk of psychotic transition. However, most UHR individuals do not evolve to psychosis, stressing the need for biomarkers allowing the prediction of the transition. Substantial evidence suggest that redox dysregulation plays a major role in the pathophysiology of psychotic disorders. The aim of this study is to explore the relationship between the evolution of blood oxidative stress markers in UHR individuals. Blood samples were collected from 48 UHR individuals at their first visit and 12 months later for those who did not convert to psychosis (UHR-NC), or at the time of the transition for the converters (UHR-C). Markers for redox dysregulation, including the glutathione antioxidant system, superoxide dismutase, thioredoxin, TBARS, macrophage migration inhibitory factor, peroxiredoxin-4, MMP9 and sRAGE, were assessed in erythrocytes, serum and plasma. Statistical analyses revealed a combination of peripheral redox markers associated with the risk of transition to psychosis. These markers were able to discriminate between UHR-C and UHR-NC subjects at baseline. A decrease in blood levels of peroxiredoxin-4, an antioxidant enzyme, was associated with a lower risk of transition. GPx activity and TBARS levels were associated with the later severity of symptoms during the course of psychosis. These findings suggest the interest of peripheral biomarkers of oxidative stress to monitor the risk of psychosis. Overall, these findings hold promises for early detection and argue for the development of treatments targeting redox pathways in psychosis.
Collapse
Affiliation(s)
- Victoria Rambaud
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Ariel Frajerman
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Department of Psychiatry, Lausanne, Switzerland
| | - Anton Iftimovici
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Department of Psychiatry, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Department of Psychiatry, Lausanne, Switzerland
| | - Oussama Kebir
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Aude Marzo
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Boris Chaumette
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France; Department of Psychiatry, McGill University, Montreal, France.
| |
Collapse
|
2
|
Camporesi S, Xin L, Golay P, Eap CB, Cleusix M, Cuenod M, Fournier M, Hashimoto K, Jenni R, Ramain J, Restellini R, Solida A, Conus P, Do KQ, Khadimallah I. Neurocognition and NMDAR co-agonists pathways in individuals with treatment resistant first-episode psychosis: a 3-year follow-up longitudinal study. Mol Psychiatry 2024; 29:3669-3679. [PMID: 38849515 PMCID: PMC11541217 DOI: 10.1038/s41380-024-02631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
This study aims to determine whether 1) individuals with treatment-resistant schizophrenia display early cognitive impairment compared to treatment-responders and healthy controls and 2) N-methyl-D-aspartate-receptor hypofunction is an underlying mechanism of cognitive deficits in treatment-resistance. In this case‒control 3-year-follow-up longitudinal study, n = 697 patients with first-episode psychosis, aged 18 to 35, were screened for Treatment Response and Resistance in Psychosis criteria through an algorithm that assigns patients to responder, limited-response or treatment-resistant category (respectively resistant to 0, 1 or 2 antipsychotics). Assessments at baseline: MATRICS Consensus Cognitive Battery; N-methyl-D-aspartate-receptor co-agonists biomarkers in brain by MRS (prefrontal glutamate levels) and plasma (D-serine and glutamate pathways key markers). Patients were compared to age- and sex-matched healthy controls (n = 114). Results: patient mean age 23, 27% female. Treatment-resistant (n = 51) showed lower scores than responders (n = 183) in processing speed, attention/vigilance, working memory, verbal learning and visual learning. Limited responders (n = 59) displayed an intermediary phenotype. Treatment-resistant and limited responders were merged in one group for the subsequent D-serine and glutamate pathway analyses. This group showed D-serine pathway dysregulation, with lower levels of the enzymes serine racemase and serine-hydroxymethyltransferase 1, and higher levels of the glutamate-cysteine transporter 3 than in responders. Better cognition was associated with higher D-serine and lower glutamate-cysteine transporter 3 levels only in responders; this association was disrupted in the treatment resistant group. Treatment resistant patients and limited responders displayed early cognitive and persistent functioning impairment. The dysregulation of NMDAR co-agonist pathways provides underlying molecular mechanisms for cognitive deficits in treatment-resistant first-episode psychosis. If replicated, our findings would open ways to mechanistic biomarkers guiding response-based patient stratification and targeting cognitive improvement in clinical trials.
Collapse
Affiliation(s)
- Sara Camporesi
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of psychiatry and Emergency Department, Geneva University Hospital, Geneva, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Golay
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Chin Bin Eap
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Julie Ramain
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Training and Research Institute in Mental Health (IFRSM), Neuchâtel Centre of Psychiatry, Neuchâtel, Switzerland
| | - Romeo Restellini
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Emergency medicine department, Geneva University Hospital, Geneva, Switzerland
| | - Alessandra Solida
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Psychiatry Department for Adults 2, Neuchâtel Centre of Psychiatry, Prefargier, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Li F, Zong W, Xin C, Ren F, Li N, Li H, Li X, Wu L, Dai Z, Chen W, Li M, Gao F, Wang G. Unlocking the link: how hippocampal glutathione-glutamate coupling predicts cognitive impairment in multiple sclerosis patients. Cereb Cortex 2024; 34:bhad400. [PMID: 37943724 DOI: 10.1093/cercor/bhad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom of multiple sclerosis and profoundly impacts quality of life. Glutathione (GSH) and glutamate (Glu) are tightly linked in the brain, participating in cognitive function. However, GSH-Glu couplings in cognitive brain regions and their relationship with cognitive impairment in relapsing-remitting multiple sclerosis (RRMS) remains unclear. Forty-one RRMS patients and 43 healthy controls underwent magnetic resonance spectroscopy to measure GSH and Glu levels in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus. Neuropsychological tests were used to evaluate the cognitive function. The Glu/GSH ratio was used to indicate the coupling between GSH and Glu and was tested as a predictor of cognitive performance. The results show that RRMS patients exhibited reduced hippocampal GSH and Glu levels, which were found to be significant predictors of worse verbal and visuospatial memory, respectively. Moreover, GSH levels were dissociated from Glu levels in the left hippocampus of RRMS patients. Hippocampal Glu/GSH ratio is significantly correlated with processing speed and has a greater predictive effect. Here we show the hippocampal Glu/GSH ratio could serve as a new potential marker for characterizing cognitive impairment in RRMS, providing a new direction for clinical detection of cognitive impairment.
Collapse
Affiliation(s)
- Fuyan Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Wei Zong
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Chenxi Xin
- School of International Education, Xinxiang Medical University, No. 601, Jinsui Avenue, Hongqi District, Xinxiang 453003, China
| | - Fuxin Ren
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan,250021 China
| | - Ning Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan,250021 China
| | - Honghao Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Xiao Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan,250021 China
| | - Lili Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No. 16, Lincui Road, Beijing 100101, China
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, 500 S. State Street, Ann Arbor, Ann Arbor, MI 48109, United States
| | - Weibo Chen
- Philips Healthcare, Building 718, Lingshi Road, Jing'an District, Shanghai 200072, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Fei Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Guangbin Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| |
Collapse
|
4
|
Murray AJ, Humpston CS, Wilson M, Rogers JC, Zia Ul Haq Katshu M, Liddle PF, Upthegrove R. Measurement of brain glutathione with magnetic Resonance spectroscopy in Schizophrenia-Spectrum disorders - A systematic review and Meta-Analysis. Brain Behav Immun 2024; 115:3-12. [PMID: 37769980 DOI: 10.1016/j.bbi.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
Oxidative stress may contribute to declining course and poor outcomes in psychosis. However, in vivo Magnetic Resonance Spectroscopy studies yield disparate results due to clinical stage, sample demographics, neuroanatomical focus, sample size, and acquisition method variations. We investigated glutathione in brain regions from participants with psychosis, and the relation of glutathione to clinical features and spectroscopy protocols. Meta-analysis comprised 21 studies. Glutathione levels did not differ between total psychosis patients (N = 639) and controls (N = 704) in the Medial Prefrontal region (k = 21, d = -0.09, CI = -0.28 to 0.10, p = 0.37). Patients with stable schizophrenia exhibited a small but significant glutathione reduction compared to controls (k = 14, d = -0.20, CI = -0.40 to -0.00, p = 0.05). Meta-regression showed older studies had greater glutathione reductions, possibly reflecting greater accuracy related to spectroscopy advancements in more recent studies. No significant effects of methodological variables, such as voxel size or echo time were found. Reduced glutathione in patients with stable established schizophrenia may provide novel targets for precision medicine. Standardizing MRS acquisition methods in future studies may help address discrepancies in glutathione levels.
Collapse
Affiliation(s)
- Alex J Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | - Clara S Humpston
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Department of Psychology, University of York, York, United Kingdom
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jack C Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom; Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F Liddle
- Institute of Mental Health, Division of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom; Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
5
|
Detcheverry F, Senthil S, Narayanan S, Badhwar A. Changes in levels of the antioxidant glutathione in brain and blood across the age span of healthy adults: A systematic review. Neuroimage Clin 2023; 40:103503. [PMID: 37742519 PMCID: PMC10520675 DOI: 10.1016/j.nicl.2023.103503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/22/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
Aging is characterized by a gradual decline of the body's biological functions, which can lead to increased production of reactive oxygen species (ROS). Antioxidants neutralize ROS and maintain balance between oxidation and reduction. If ROS production exceeds the ability of antioxidant systems to neutralize, a damaging state of oxidative stress (OS) may exist. The reduced form of glutathione (GSH) is the most abundant antioxidant, and decline of GSH is considered a marker of OS. Our review summarizes the literature on GSH variations with age in healthy adults in brain (in vivo, ex vivo) and blood (plasma, serum), and reliability of in vivo magnetic resonance spectroscopy (MRS) measurement of GSH. A systematic PubMed search identified 35 studies. All in vivo MRS studies (N = 13) reported good to excellent reproducibility of GSH measures. In brain, 3 out of 4 MRS studies reported decreased GSH with age, measured in precuneus, cingulate, and occipital regions, while 1 study reported increased GSH with age in frontal and sensorimotor regions. In post-mortem brain, out of 3 studies, 2 reported decreased GSH with age in hippocampal and frontal regions, while 1 study reported increased GSH with age in a frontal region. Oxidized glutathione disulfide (GSSG) was reported to be increased in caudate with age in 1 study, suggesting OS. Although findings in the brain lacked a clear consensus, the majority of studies suggested a decline of GSH with age. The low number of studies (particularly ex vivo) and potential regional differences may have contributed to variability in the findings in brain. In blood, in contrast, GSH levels predominately were reported to decrease with advancing age (except in the oldest-old, who may represent a select group of particularly successful agers), while GSSG findings lacked consensus. The larger number of studies assessing age-specific GSH level changes in blood (N = 16) allowed for more robust consensus across studies than in brain. Overall, the literature suggests that aging is associated with increased OS in brain and body, but the timing and regional distribution of changes in the brain require further study. The contribution of brain OS to brain aging, and the effect of interventions to raise brain GSH levels on decline of brain function, remain understudied. Given that reliable tools to measure brain GSH exist, we hope this paper will serve as a catalyst to stimulate more work in this field.
Collapse
Affiliation(s)
- Flavie Detcheverry
- Multiomics Investigation of Neurodegenerative Diseases (MIND) lab, Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada; Institut de Génie Biomédical, Université de Montréal, Montreal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Sneha Senthil
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - AmanPreet Badhwar
- Multiomics Investigation of Neurodegenerative Diseases (MIND) lab, Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada; Institut de Génie Biomédical, Université de Montréal, Montreal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.
| |
Collapse
|
6
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
7
|
Merritt K, McCutcheon RA, Aleman A, Ashley S, Beck K, Block W, Bloemen OJN, Borgan F, Boules C, Bustillo JR, Capizzano AA, Coughlin JM, David A, de la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galińska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes O, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan MS, Kim SY, King B, Kunugi H, Lauriello J, León-Ortiz P, Liemburg E, Mcilwain ME, Modinos G, Mouchlianitis E, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Patel T, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Reyes-Madrigal F, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone J, Szulc A, Taylor R, Thakkar KN, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H, McGuire P, Egerton A. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol Psychiatry 2023; 28:2039-2048. [PMID: 36806762 PMCID: PMC10575771 DOI: 10.1038/s41380-023-01991-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK.
| | | | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sarah Ashley
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Katherine Beck
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christiana Boules
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony David
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience (CNP), Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics (S2.06), Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, 8020978, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Lawrence S Kegeles
- Columbia University, Department of Psychiatry, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | | | | | - Bridget King
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - J Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edith Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Elias Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tulsi Patel
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, BR3 3BX, UK
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Reggie Taylor
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | | | - Peter C Williamson
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Stephen J Wood
- Orygen, Melbourne, VIC, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, UK
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Philip McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Do KQ. Bridging the gaps towards precision psychiatry: Mechanistic biomarkers for early detection and intervention. Psychiatry Res 2023; 321:115064. [PMID: 36716550 DOI: 10.1016/j.psychres.2023.115064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Early detection and intervention in schizophrenia, improving prognosis, requires mechanism-based biomarkers that capture circuitry dysfunction, allowing optimized patient stratification, disease monitoring and treatment. Dr. Do's translational research, bridging basic neuroscience and clinical psychiatry, tackles an urgent need to develop effective treatments that target mechanisms underlying cognitive deficits, a critical dimension of schizophrenia, currently not well treated. By adopting a reverse translation of validated circuitry relevant human endpoints, her research brought new insights in mechanism-based biomarker guided treatment of patients in early stages of psychosis. She showed that oxidative stress/redox dysregulation, in reciprocal interaction with dopamine imbalance, NMDAR hypofunction, neuroinflammation and mitochondrial bioenergetic dysfunction, may represent a "hub" on which both genetic and environmental risk factors converge during neurodevelopment. This leads to impairments of structural and functional connectivity in microcircuits, involving impaired parvalbumin fast-spiking GABA neurons, and macrocircuits, impacting myelination of fiber tracts, at the basis of neural synchronization abnormalities, as well as sensory and cognitive deficits. These unique insights led to successful proof-of-concept clinical trials, targeting oxidative stress through antioxidant-based strategies in patients at various disease stages, paving the way for precision medicine in psychiatry.
Collapse
Affiliation(s)
- Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Bhatt S, Upadhyay T, Patil CR, Pai KSR, Chellappan DK, Dua K. Role of Oxidative Stress in Pathophysiological Progression of
Schizophrenia. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2023; 19:11-27. [DOI: 10.2174/2666082218666220822154558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative stress (OS) is a chief contributing factor to the pathological
advancement of Schizophrenia (SCZ). In recent years, OS has emerged as an important aspect
in SCZ research and provides abundant opportunities and expectations for a better understanding
of its pathophysiology, which may lead to novel treatment strategies.
Introduction:
The increased OS and formation of reactive oxygen species (ROS) leads to damage
to cellular macromolecules. The excessive OS is associated with several physiological processes,
such as dysfunction of mitochondria and neuroglia, inflammation, underactive Nmethyl-
D-aspartate (NMDA) receptors, and the abnormalities of fast-spiking gammaaminobutyric
acid (GABA) interneurons.
Methods:
The methods adopted for the study are mainly based on the secondary search through
a systemic literature review. The role of various anti-oxidants, including vitamins, is discussed
in the reduction of SCZ.
Results:
Various preclinical and clinical studies suggest the involvement of OS and ROS in the
progression of the disease. Recent human trials have shown the treatment with antioxidants to
be effective in ameliorating symptoms and delaying the progression of SCZ pathology. The
studies have demonstrated that innate and dietary antioxidants exert beneficial effects by reducing
the severity of positive symptoms (PS) and/or negative symptoms (NS) of SCZ.
Conclusion:
The present review critically evaluates the effect of antioxidants and highlights
the role of OS in SCZ.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - CR Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research,
Karwand Naka, Shirpur 425405, Maharashtra, India
| | - K. Sreedhara R. Pai
- Manipal College of Pharmaceutical Sciences
(MCOPS), Manipal Academy of Higher Education (MAHE), Manipal -576104, Karnataka, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil
57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University
of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in
Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007
Australia
| |
Collapse
|
12
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
13
|
Zalachoras I, Ramos-Fernández E, Hollis F, Trovo L, Rodrigues J, Strasser A, Zanoletti O, Steiner P, Preitner N, Xin L, Astori S, Sandi C. Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife 2022; 11:77791. [DOI: 10.7554/elife.77791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence is implicating mitochondrial function and metabolism in the nucleus accumbens in motivated performance. However, the brain is vulnerable to excessive oxidative insults resulting from neurometabolic processes, and whether antioxidant levels in the nucleus accumbens contribute to motivated performance is not known. Here, we identify a critical role for glutathione (GSH), the most important endogenous antioxidant in the brain, in motivation. Using proton magnetic resonance spectroscopy at ultra-high field in both male humans and rodent populations, we establish that higher accumbal GSH levels are highly predictive of better, and particularly, steady performance over time in effort-related tasks. Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. In addition, systemic treatment with the GSH precursor N-acetyl-cysteine increased accumbal GSH levels in rats and led to improved performance, potentially mediated by a cell-type-specific shift in glutamatergic inputs to accumbal medium spiny neurons. Our data indicate a close association between accumbal GSH levels and an individual’s capacity to exert reward-incentivized effort over time. They also suggest that improvement of accumbal antioxidant function may be a feasible approach to boost motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Fiona Hollis
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine
| | - Laura Trovo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - João Rodrigues
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Alina Strasser
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Nicolas Preitner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), EPFL
| | - Simone Astori
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| |
Collapse
|
14
|
Mayén-Lobo YG, Alcaraz-Zubeldia M, Montellano DJDOD, Motilla-Frías BA, García-Manteca MY, Ortega-Vázquez A, Aviña-Cervantes CL, Crail-Meléndez ED, Ríos C, López-López M, Monroy-Jaramillo N. Influence of glutathione-related genetic variants in oxidative stress profile of Mexican patients with psychotic disorders. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2022; 45:117-126. [PMID: 36318479 PMCID: PMC10154007 DOI: 10.47626/1516-4446-2022-2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/27/2022] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Patients with psychotic disorders (PD) exhibit divergent outcomes in their clinical trajectories, which in part may result from glutathione (GSH)-related high-risk genotypes affecting their clinical course. We aimed to determine clozapine pharmacokinetic parameters, GSH levels, GSH peroxidase (GPx) activity, variants of genes involved in the synthesis and metabolism of GSH and its association with PD in Mexican patients on clozapine treatment and controls. METHODS 75 PD patients on clozapine therapy and 40 paired healthy controls were included. Plasma clozapine/N-desmethylclozapine, GSH concentrations and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1 and GSTM1. Clinical, molecular and biochemical data were analyzed by a logistic regression model. RESULTS GSH levels were significantly reduced and, conversely, GPx activity was higher in PD patients compared to controls. GCLC_GAG-7/9 genotype (OR=4.3, CI95=1.40-14.31, p=0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR=6.09, CI95=1.93-22.59, p=0.003) were found as risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or to metabolic ratio. CONCLUSIONS GCLC variants were associated with the oxidative stress profile of PD patients raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.
Collapse
Affiliation(s)
- Yerye G Mayén-Lobo
- Master's Program in Pharmaceutical Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Mireya Alcaraz-Zubeldia
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery (NINN), Manuel Velasco Suárez, Mexico City, Mexico
| | | | - Blanca A Motilla-Frías
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Mayumi Y García-Manteca
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Carlos L Aviña-Cervantes
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Edgar D Crail-Meléndez
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery (NINN), Manuel Velasco Suárez, Mexico City, Mexico. Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
15
|
Oxidative Stress and Emergence of Psychosis. Antioxidants (Basel) 2022; 11:antiox11101870. [PMID: 36290593 PMCID: PMC9598314 DOI: 10.3390/antiox11101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Treatment and prevention strategies for schizophrenia require knowledge about the mechanisms involved in the psychotic transition. Increasing evidence suggests a redox imbalance in schizophrenia patients. This narrative review presents an overview of the scientific literature regarding blood oxidative stress markers’ evolution in the early stages of psychosis and chronic patients. Studies investigating peripheral levels of oxidative stress in schizophrenia patients, first episode of psychosis or UHR individuals were considered. A total of 76 peer-reviewed articles published from 1991 to 2022 on PubMed and EMBASE were included. Schizophrenia patients present with increased levels of oxidative damage to lipids in the blood, and decreased levels of non-enzymatic antioxidants. Genetic studies provide evidence for altered antioxidant functions in patients. Antioxidant blood levels are decreased before psychosis onset and blood levels of oxidative stress correlate with symptoms severity in patients. Finally, adjunct treatment of antipsychotics with the antioxidant N-acetyl cysteine appears to be effective in schizophrenia patients. Further studies are required to assess its efficacy as a prevention strategy. Redox imbalance might contribute to the pathophysiology of emerging psychosis and could serve as a therapeutic target for preventive or adjunctive therapies, as well as biomarkers of disease progression.
Collapse
|
16
|
Yang YS, Maddock RJ, Zhang H, Lee J, Hellemann G, Marder SR, Green MF. N-Acetylcysteine effects on glutathione and glutamate in schizophrenia: A preliminary MRS study. Psychiatry Res Neuroimaging 2022; 325:111515. [PMID: 35839558 DOI: 10.1016/j.pscychresns.2022.111515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
N-acetylcysteine (NAC) is a commonly used antioxidant that may have beneficial effects for schizophrenia. In this double-blind, randomized, placebo-controlled preliminary study, 40 patients with schizophrenia or schizoaffective disorder were randomized to receive 2400 mg NAC daily or placebo over eight weeks to examine the effects of NAC on prefrontal magnetic resonance spectroscopy levels of glutathione and glutamate. Secondary outcomes included negative symptoms, cognition, and plasma glutathione levels. We found that NAC treatment was associated with increased glutathione (statistically significant) and decreased glutamate (trend-level) compared with placebo in medial prefrontal cortex but not dorsolateral prefrontal cortex. We also observed a baseline association between medial prefrontal cortex levels of glutathione and plasma reduced / oxidized glutathione ratios. No treatment effects on symptoms or cognition were observed. Taken together, these findings indicate that treatment with N-acetylcysteine may increase medial prefrontal cortical levels of glutathione after eight weeks of treatment. These changes in cortical levels of glutathione may serve as an early biomarker of later clinical change and may underlie the cognitive and symptomatic improvements reported in longer-term treatment studies.
Collapse
Affiliation(s)
- Yvonne S Yang
- VISN22 Mental Illness Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, U.S.A; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, U.S.A.
| | - Richard J Maddock
- Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, CA, U.S.A
| | - Huailin Zhang
- David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A
| | - Junghee Lee
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Gerhard Hellemann
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Stephen R Marder
- VISN22 Mental Illness Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, U.S.A; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, U.S.A
| | - Michael F Green
- VISN22 Mental Illness Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, U.S.A; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, U.S.A
| |
Collapse
|
17
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
18
|
MacKinley M, Ford SD, Jeon P, Théberge J, Palaniyappan L. Central Oxidative Stress and Early Vocational Outcomes in First Episode Psychosis: A 7-Tesla Magnetic Resonance Spectroscopy Study of Glutathione. Schizophr Bull 2022; 48:921-930. [PMID: 35307736 PMCID: PMC9212125 DOI: 10.1093/schbul/sbac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Following the first episode of psychosis, some patients develop poor social and occupational outcomes, while others display a pattern of preserved functioning. Evidence from preclinical, genetic, and biochemical studies suggest a role for high oxidative stress in poor functional outcomes among patients. The measurement of intracortical glutathione (GSH) using magnetic resonance spectroscopy (MRS) enables investigating the relationship between central antioxidant tone and functional outcomes at the time of first-episode psychosis (FEP). We hypothesized that patients with higher central antioxidant tone at first presentation will have better functional outcomes in early stages of illness. STUDY DESIGN We scanned 57 patients with FEP and 30 matched healthy controls and estimated GSH resonance using 7-Tesla MRS. We minimized the confounding effects of illness chronicity, long-term treatment exposure, and metabolic complications by recruiting patients with <2 weeks of lifetime antipsychotic exposure on average and followed up this cohort for the next 1 year to determine functional outcomes. STUDY RESULTS Patients who achieved employment/education or training status (EET) in the first year, had higher GSH at the baseline than healthy controls. Social and occupational functioning assessment scale (SOFAS) scores were also significantly higher in patients with higher GSH levels at the outset, after adjusting for various confounds including baseline SOFAS. Patients who were not in EET did not differ from healthy subjects in their GSH levels. CONCLUSION Our observations support a key role for the central antioxidant tone in the functional outcomes of early psychosis.
Collapse
Affiliation(s)
| | | | - Peter Jeon
- Lawson Health Research Institute, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Jean Théberge
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- To whom correspondence should be addressed; 1151 Richmond Street N., Room 3208, UWO, London, ON, Canada, N6A 5B7; tel: (519) 931-5777 (ext. 24398), e-mail:
| |
Collapse
|
19
|
Terumitsu M, Takado Y, Fukuda KI, Kato E, Tanaka S. Neurometabolite Levels and Relevance to Central Sensitization in Chronic Orofacial Pain Patients: A Magnetic Resonance Spectroscopy Study. J Pain Res 2022; 15:1421-1432. [PMID: 35599974 PMCID: PMC9122062 DOI: 10.2147/jpr.s362793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
Background Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Makoto Terumitsu
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, Health Sciences University of Hokkaido, Hokkaido, Japan
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
- Correspondence: Makoto Terumitsu, Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido, 061-0293, Japan, Tel/Fax +81 133 23 1445, Email
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ken-Ichi Fukuda
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Eisuke Kato
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Sei Tanaka
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
20
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
21
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
22
|
Palaniyappan L, Sabesan P, Li X, Luo Q. Schizophrenia Increases Variability of the Central Antioxidant System: A Meta-Analysis of Variance From MRS Studies of Glutathione. Front Psychiatry 2021; 12:796466. [PMID: 34916980 PMCID: PMC8669304 DOI: 10.3389/fpsyt.2021.796466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with schizophrenia diverge in their clinical trajectories. Such diverge outcomes may result from the resilience provided by antioxidant response system centered on glutathione (GSH). Proton Magnetic Resonance Spectroscopy (1H-MRS) has enabled the precise in vivo measurement of intracortical GSH; but individual studies report highly variable results even when GSH levels are measured from the same brain region. This inconsistency could be due to the presence of distinct subgroups of schizophrenia with varying GSH-levels. At present, we do not know if schizophrenia increases the interindividual variability of intracortical GSH relative to matched healthy individuals. We reviewed all 1H-MRS GSH studies in schizophrenia focused on the Anterior Cingulate Cortex published until August 2021. We estimated the relative variability of ACC GSH levels in patients compared to control groups using the variability ratio (VR) and coefficient of variation ratio (CVR). The presence of schizophrenia significantly increases the variability of intracortical GSH in the ACC (logVR = 0.12; 95% CI: 0.03-0.21; log CVR = 0.15; 95% CI = 0.06-0.23). Insofar as increased within-group variability (heterogeneity) could result from the existence of subtypes, our results call for a careful examination of intracortical GSH distribution in schizophrenia to seek redox-deficient and redox-sufficient subgroups. An increase in GSH variability among patients also indicate that the within-group predictability of adaptive response to oxidative stress may be lower in schizophrenia. Uncovering the origins of this illness-related reduction in the redox system stability may provide novel treatment targets in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | | | - Xuan Li
- MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qiang Luo
- MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Smucny J, Carter CS, Maddock RJ. Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 90:643-651. [PMID: 34344534 PMCID: PMC9303057 DOI: 10.1016/j.biopsych.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Magnetic resonance spectroscopy studies measuring brain glutamate separately from glutamine are helping elucidate schizophrenia pathophysiology. An expanded literature and improved methodologies motivate an updated meta-analysis examining effects of measurement quality and other moderating factors in characterizing abnormal glutamate levels in schizophrenia. METHODS Searching previous meta-analyses and the MEDLINE database identified 83 proton magnetic resonance spectroscopy datasets published through March 25, 2020. Three quality metrics were extracted-Cramér-Rao lower bound (CRLB), line width, and coefficient of variation. Pooled effect sizes (Hedges' g) were calculated with random-effects, inverse variance-weighted models. Moderator analyses were conducted using quality metrics, field strength, echo time, medication, age, and stage of illness. RESULTS Across 36 datasets (2086 participants), medial prefrontal cortex glutamate was significantly reduced in patients (g = -0.19, confidence interval [CI] = -0.07 to -0.32). CRLB and coefficient of variation quality subgroups significantly moderated this effect. Glutamate was significantly more reduced in studies with lower CRLB or coefficient of variation (g = -0.44, CI = -0.29 to -0.60, and g = -0.43, CI = -0.29 to -0.57, respectively). Studies using echo time ≤20 ms also showed significantly greater reduction in glutamate (g = -0.41, CI = -0.26 to -0.55). Across 11 hippocampal datasets, group differences and moderator effects were nonsignificant. Group effects in thalamus and dorsolateral prefrontal cortex were also nonsignificant. CONCLUSIONS High-quality measurements reveal consistently reduced medial prefrontal cortex glutamate in schizophrenia. Stricter CRLB criteria and reduced nuisance variance may increase the sensitivity of future studies examining additional regions and the pathophysiological significance of abnormal glutamate levels in schizophrenia.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California.
| |
Collapse
|
24
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
25
|
Dwir D, Cabungcal JH, Xin L, Giangreco B, Parietti E, Cleusix M, Jenni R, Klauser P, Conus P, Cuénod M, Steullet P, Do KQ. Timely N-Acetyl-Cysteine and Environmental Enrichment Rescue Oxidative Stress-Induced Parvalbumin Interneuron Impairments via MMP9/RAGE Pathway: A Translational Approach for Early Intervention in Psychosis. Schizophr Bull 2021; 47:1782-1794. [PMID: 34080015 PMCID: PMC8530393 DOI: 10.1093/schbul/sbab066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Research in schizophrenia (SZ) emphasizes the need for new therapeutic approaches based on antioxidant/anti-inflammatory compounds and psycho-social therapy. A hallmark of SZ is a dysfunction of parvalbumin-expressing fast-spiking interneurons (PVI), which are essential for neuronal synchrony during sensory/cognitive processing. Oxidative stress and inflammation during early brain development, as observed in SZ, affect PVI maturation. We compared the efficacy of N-acetyl-cysteine (NAC) and/or environmental enrichment (EE) provided during juvenile and/or adolescent periods in rescuing PVI impairments induced by an additional oxidative insult during childhood in a transgenic mouse model with gluthation deficit (Gclm KO), relevant for SZ. We tested whether this rescue was promoted by the inhibition of MMP9/RAGE mechanism, both in the mouse model and in early psychosis (EP) patients, enrolled in a double-blind, randomized, placebo-controlled clinical trial of NAC supplementation for 6 months. We show that a sequential combination of NAC+EE applied after an early-life oxidative insult recovers integrity and function of PVI network in adult Gclm KO, via the inhibition of MMP9/RAGE. Six-month NAC treatment in EP patients reduces plasma sRAGE in association with increased prefrontal GABA, improvement of cognition and clinical symptoms, suggesting similar neuroprotective mechanisms. The sequential combination of NAC+EE reverses long-lasting effects of an early oxidative insult on PVI/perineuronal net (PNN) through the inhibition of MMP9/RAGE mechanism. In analogy, patients vulnerable to early-life insults could benefit from a combined pharmacological and psycho-social therapy.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Enea Parietti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
26
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Jeon P, Limongi R, Ford SD, Branco C, Mackinley M, Gupta M, Powe L, Théberge J, Palaniyappan L. Glutathione as a Molecular Marker of Functional Impairment in Patients with At-Risk Mental State: 7-Tesla 1H-MRS Study. Brain Sci 2021; 11:941. [PMID: 34356175 PMCID: PMC8307096 DOI: 10.3390/brainsci11070941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
A substantial number of individuals with clinical high-risk (CHR) mental state do not transition to psychosis. However, regardless of future diagnostic trajectories, many of these individuals develop poor social and occupational functional outcomes. The levels of glutathione, a crucial cortical antioxidant, may track variations in functional outcomes in early psychosis and prodromal states. Thirteen clinical high-risk and 30 healthy control volunteers were recruited for a 7-Tesla magnetic resonance spectroscopy scan with a voxel positioned within the dorsal anterior cingulate cortex (ACC). Clinical assessment scores were collected to determine if any association was observable with glutathione levels. The Bayesian Spearman's test revealed a positive association between the Social and Occupational Functioning Assessment Scale (SOFAS) and the glutathione concentration in the clinical high-risk group but not in the healthy control group. After accounting for variations in the SOFAS scores, the CHR group had higher GSH levels than the healthy subjects. This study is the first to use 7-Tesla magnetic resonance spectroscopy to test whether ACC glutathione levels relate to social and occupational functioning in a clinically high-risk group and offers preliminary support for glutathione levels as a clinically actionable marker of prognosis in emerging adults presenting with risk features for various severe mental illnesses.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
| | - Sabrina D. Ford
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Cassandra Branco
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Michael Mackinley
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Maya Gupta
- Department of Psychology, Western University, London, ON N6A 3K7, Canada;
| | - Laura Powe
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
- St. Joseph’s Health Care, Diagnostic Imaging, London, ON N6A 4V2, Canada
- Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| |
Collapse
|
28
|
A multimodal approach to studying the relationship between peripheral glutathione, brain glutamate, and cognition in health and in schizophrenia. Mol Psychiatry 2021; 26:3502-3511. [PMID: 33077854 PMCID: PMC9650557 DOI: 10.1038/s41380-020-00901-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Involvement of oxidative stress in the pathophysiology of schizophrenia (SZ) is suggested by studies of peripheral tissue. Nonetheless, it is unclear how such biological changes are linked to relevant, pathological neurochemistry, and brain function. We designed a multi-faceted study by combining biochemistry, neuroimaging, and neuropsychology to test how peripheral changes in a key marker for oxidative stress, glutathione (GSH), may associate with central neurochemicals or neuropsychological performance in health and in SZ. GSH in dorsal anterior cingulate cortex (dACC) was acquired as a secondary 3T 1H-MRS outcome using a MEGA-PRESS sequence. Fifty healthy controls and 46 patients with SZ were studied cross-sectionally, and analyses were adjusted for effects of confounding variables. We observed lower peripheral total GSH in SZ compared to controls in extracellular (plasma) and intracellular (lymphoblast) pools. Total GSH levels in plasma positively correlated with composite neuropsychological performance across the total population and within patients. Total plasma GSH levels were also positively correlated with the levels of Glx in the dACC across the total population, as well as within each individual group (controls, patients). Furthermore, the levels of dACC Glx and dACC GSH positively correlated with composite neuropsychological performance in the patient group. Exploring the relationship between systemic oxidative stress (in particular GSH), central glutamate, and cognition in SZ will benefit further from assessment of patients with more varied neuropsychological performance.
Collapse
|
29
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|
30
|
Merritt K, McGuire PK, Egerton A, Aleman A, Block W, Bloemen OJN, Borgan F, Bustillo JR, Capizzano AA, Coughlin JM, De la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galinska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes OD, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan M, Kim SY, Kunugi H, Lauriello J, Liemburg EJ, Mcilwain ME, Modinos G, Mouchlianitis ED, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone JM, Szulc A, Taylor R, Thakkar K, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H. Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia With Proton Magnetic Resonance Spectroscopy Brain Glutamate Level: A Mega-analysis of Individual Participant-Level Data. JAMA Psychiatry 2021; 78:667-681. [PMID: 33881460 PMCID: PMC8060889 DOI: 10.1001/jamapsychiatry.2021.0380] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, United Kingdom
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Philip K McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor
| | - Jennifer Marie Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Camilo De la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Munich, Germany
| | - Beata Galinska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jurgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, United Kingdom
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Beng Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City
| | - Oliver D Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York
| | | | | | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - John Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Edith Jantine Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Elias D Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
- Editor, JAMA Psychiatry
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley, Bethlem Royal Hospital, Beckenham, United Kingdom
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, Alberta, Canada
- Edmonton Early Intervention in Psychosis Clinic, Edmonton, Alberta, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - James M Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| | - Reggie Taylor
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Lawson Health Research Institute, London, Ontario, Canada
| | - Katy Thakkar
- Department of Psychology, Michigan State University, East Lansing
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | | | - Peter C Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Stephen James Wood
- Orygen, Melbourne, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, United Kingdom
- Centre for Youth Mental Health, University of Melbourne, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
31
|
Iwata Y, Nakajima S, Plitman E, Truong P, Bani-Fatemi A, Caravaggio F, Kim J, Shah P, Mar W, Chavez S, Remington G, Gerretsen P, De Luca V, Sailasuta N, Graff-Guerrero A. Glutathione Levels and Glutathione-Glutamate Correlation in Patients With Treatment-Resistant Schizophrenia. ACTA ACUST UNITED AC 2021; 2:sgab006. [PMID: 33969302 PMCID: PMC8086698 DOI: 10.1093/schizbullopen/sgab006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatment-resistant schizophrenia (TRS) has been suggested to involve glutamatergic dysfunction. Glutathione (GSH), a dominant antioxidant, is known to be involved in glutamatergic neurotransmission. To date, no study has examined GSH levels in patients with TRS. The aim of this study was to examine GSH levels in the dorsal anterior cingulate cortex (dACC) of patients with TRS. Patients with schizophrenia were categorized into 3 groups with respect to their antipsychotic response: (1) clozapine (CLZ) nonresponders, (2) CLZ responders, and (3) first-line responders (FLR). GSH and glutamine + glutamate (Glx) levels were measured using 3T proton magnetic resonance spectroscopy. Firstly, dACC GSH levels were compared among the patient groups and healthy controls (HCs). Further, relationships between GSH and Glx levels were compared between the groups and GSH levels were explored stratifying the patient groups based on the glutamate-cysteine ligase catalytic (GCLC) subunit polymorphism. There was no difference in GSH levels between the groups. FLR showed a more negative relationship between GSH and Glx levels in the dACC compared to HCs. There were no effects of GCLC genotype on the GSH levels. However, CLZ responders had a higher ratio of high-risk GCLC genotype compared to CLZ nonresponders. This study demonstrated different relationships between GSH and Glx in the dACC between groups. In addition, the results suggest a potential link between CLZ response and GCLC genotype. However, it still remains unclear how these differences are related to the underlying pathophysiology of schizophrenia subtypes or the mechanisms of action of CLZ.
Collapse
Affiliation(s)
- Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ali Bani-Fatemi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Parita Shah
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Tropical Medicine, University of Hawaii, Honolulu, HI, USA
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
32
|
Extracellular free water and glutathione in first-episode psychosis-a multimodal investigation of an inflammatory model for psychosis. Mol Psychiatry 2021; 26:761-771. [PMID: 31138893 PMCID: PMC6881530 DOI: 10.1038/s41380-019-0428-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
Evidence has been accumulating for an immune-based component to the etiology of psychotic disorders. Advancements in diffusion magnetic resonance imaging (MRI) have enabled estimation of extracellular free water (FW), a putative biomarker of neuroinflammation. Furthermore, inflammatory processes may be associated with altered brain levels of metabolites, such as glutathione (GSH). Consequently, we sought to test the hypotheses that FW is increased and associated with decreased GSH in patients with first-episode schizophrenia (SZ) compared with healthy controls (HC). SZ (n = 36) and HC (n = 40) subjects underwent a multi-shell diffusion MRI scan on a Siemens 3T scanner. 1H-MR spectroscopy data were acquired using a GSH-optimized MEGA-PRESS editing sequence and GSH/creatine ratios were calculated for DLPFC (SZ: n = 33, HC: n = 37) and visual cortex (SZ: n = 29, HC: n = 35) voxels. Symptoms and functioning were measured using the SANS, SAPS, BPRS, and GSF/GRF. SZ demonstrated significantly elevated FW in whole-brain gray (p = .001) but not white matter (p = .060). There was no significant difference between groups in GSH in either voxel. However, there was a significant negative correlation between DLPFC GSH and both whole-brain and DLPFC-specific gray matter FW in SZ (r = -.48 and -.47, respectively; both p < .05), while this relationship was nonsignificant in HC and in both groups in the visual cortex. These data illustrate an important relationship between a metabolite known to be important for immune function-GSH-and the diffusion extracellular FW measure, which provides additional support for these measures as neuroinflammatory biomarkers that could potentially provide tractable treatment targets to guide pharmacological intervention.
Collapse
|
33
|
Counteracting Effects of Glutathione on the Glutamate-Driven Excitation/Inhibition Imbalance in First-Episode Schizophrenia: A 7T MRS and Dynamic Causal Modeling Study. Antioxidants (Basel) 2021; 10:antiox10010075. [PMID: 33430154 PMCID: PMC7828075 DOI: 10.3390/antiox10010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress plays a key role in the pathophysiology of schizophrenia. While free radicals produced by glutamatergic excess and oxidative metabolism have damaging effects on brain tissue, antioxidants such as glutathione (GSH) counteract these effects. The interaction between glutamate (GLU) and GSH is centered on N-Methyl-D-aspartate (NMDA) receptors. GSH levels increase during glutamate-mediated excitatory neuronal activity, which serves as a checkpoint to protect neurons from oxidative damage and reduce excitatory overdrive. We studied the possible influence of GSH on the glutamate-mediated dysconnectivity in 19 first-episode schizophrenia (FES) patients and 20 healthy control (HC) subjects. Using ultra-high field (7 Tesla) magnetic resonance spectroscopy (MRS) and resting state functional magnetic resonance imaging (fMRI), we measured GSH and GLU levels in the dorsal anterior cingulate cortex (dACC) and blood-oxygenation level-dependent activity in both the dACC and the anterior insula (AI). Using spectral dynamic causal modeling, we found that when compared to HCs, in FES patients inhibitory activity within the dACC decreased with GLU levels whereas inhibitory activity in both the dACC and AI increased with GSH levels. Our model explains how higher levels of GSH can reverse the downstream pathophysiological effects of a hyperglutamatergic state in FES. This provides an initial insight into the possible mechanistic effect of antioxidant system on the excitatory overdrive in the salience network (dACC-AI).
Collapse
|
34
|
Topology predicts long-term functional outcome in early psychosis. Mol Psychiatry 2021; 26:5335-5346. [PMID: 32632207 PMCID: PMC8589664 DOI: 10.1038/s41380-020-0826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022]
Abstract
Early intervention in psychosis is crucial to improving patient response to treatment and the functional deficits that critically affect their long-term quality of life. Stratification tools are needed to personalize functional deficit prevention strategies at an early stage. In the present study, we applied topological tools to analyze symptoms of early psychosis patients, and detected a clear stratification of the cohort into three groups. One of the groups had a significantly better psychosocial outcome than the others after a 3-year clinical follow-up. This group was characterized by a metabolic profile indicative of an activated antioxidant response, while that of the groups with poorer outcome was indicative of oxidative stress. We replicated in a second cohort the finding that the three distinct clinical profiles at baseline were associated with distinct outcomes at follow-up, thus validating the predictive value of this new stratification. This approach could assist in personalizing treatment strategies.
Collapse
|
35
|
Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr Res 2020; 226:95-110. [PMID: 30935700 DOI: 10.1016/j.schres.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Due to the limitations of analytical techniques and the complicity of schizophrenia, nowadays it is still a challenge to diagnose and stratify schizophrenia patients accurately. Many attempts have been made to identify and validate available biomarkers for schizophrenia from CSF and/or peripheral blood in clinical studies with consideration to disease stages, antipsychotic effects and even gender differences. However, conflicting results handicap the validation and application of biomarkers for schizophrenia. In view of availability and feasibility, peripheral biomarkers have superior advantages over biomarkers in CNS. Meanwhile, schizophrenia is considered to be a devastating neuropsychiatric disease mainly taking place in CNS featured by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to difficult to investigate. Evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions among relevant biochemical pathways. Taken these points together, it will be interesting to investigate possible associations of biomarkers between CNS and periphery. Numerous studies have suggested putative correlations within peripheral and CNS systems especially for dopaminergic and glutamatergic metabolic biomarkers. In addition, it has been demonstrated that blood concentrations of BDNF protein can also reflect its changes in the nervous system. In turn, BDNF also interacts with glutamatergic, dopaminergic and serotonergic systems. Therefore, this review will summarize metabolic biomarkers identified both in the CNS (brain tissues and CSF) and peripheral blood. Further, more attentions will be paid to discussing possible physical and functional associations between CNS and periphery, especially with respect to BDNF.
Collapse
|
36
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160:149-162. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo I Rana, Norway.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Božena Hosnedlová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic; Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olga P Ajsuvakova
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Afaf El-Ansary
- Medicinal Chemistry Department, King Saud University, Riyadh, Saudi Arabia; Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
37
|
Dwir D, Giangreco B, Xin L, Tenenbaum L, Cabungcal JH, Steullet P, Goupil A, Cleusix M, Jenni R, Chtarto A, Baumann PS, Klauser P, Conus P, Tirouvanziam R, Cuenod M, Do KQ. MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol Psychiatry 2020; 25:2889-2904. [PMID: 30911107 PMCID: PMC7577857 DOI: 10.1038/s41380-019-0393-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/09/2023]
Abstract
Various mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34). We aim to investigate underlying mechanisms linking oxidative stress with neuroinflammatory and their long-lasting harmful consequences. In a transgenic mouse of redox dysregulation carrying a permanent deficit of glutathione synthesis (gclm-/-), the anterior cingulate cortex presented early in the development increased oxidative stress which was prevented by the antioxidant N-acetylcysteine (Eur J Neurosci. 2000;12:3721-8). This oxidative stress induced microglia activation and redox-sensitive matrix metalloproteinase 9 (MMP9) stimulation, leading to the receptor for advanced glycation end-products (RAGE) shedding into soluble and nuclear forms, and subsequently to nuclear factor-kB (NF-kB) activation and secretion of various cytokines. Blocking MMP9 activation prevented this sequence of alterations and rescued the normal maturation of PVI/PNN, even if performed after an additional insult that exacerbated the long term PVI/PNN impairments. MMP9 inhibition thus appears to be able to interrupt the vicious circle that maintains the long-lasting deleterious effects of the reciprocal interaction between oxidative stress and neuroinflammation, impacting on PVI/PNN integrity. Translation of these experimental findings to first episode patients revealed an increase in plasma soluble RAGE relative to healthy controls. This increase was associated with low prefrontal GABA levels, potentially predicting a central inhibitory/excitatory imbalance linked to RAGE shedding. This study paves the way for mechanistically related biomarkers needed for early intervention and MMP9/RAGE pathway modulation may lead to promising drug targets.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neuroscience, CHUV, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Audrey Goupil
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles, Erasme Hospital, 22, route de Lennik, B-1070, Bruxelles, Belgium
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland.
| |
Collapse
|
38
|
Perkins DO, Jeffries CD, Do KQ. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol Psychiatry 2020; 88:326-336. [PMID: 32560962 PMCID: PMC7395886 DOI: 10.1016/j.biopsych.2020.03.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Converging evidence implicates redox dysregulation as a pathological mechanism driving the emergence of psychosis. Increased oxidative damage and decreased capacity of intracellular redox modulatory systems are consistent findings in persons with schizophrenia as well as in persons at clinical high risk who subsequently developed frank psychosis. Levels of glutathione, a key regulator of cellular redox status, are reduced in the medial prefrontal cortex, striatum, and thalamus in schizophrenia. In humans with schizophrenia and in rodent models recapitulating various features of schizophrenia, redox dysregulation is linked to reductions of parvalbumin containing gamma-aminobutyric acid (GABA) interneurons and volumes of their perineuronal nets, white matter abnormalities, and microglia activation. Importantly, the activity of transcription factors, kinases, and phosphatases regulating diverse aspects of neurodevelopment and synaptic plasticity varies according to cellular redox state. Molecules regulating interneuron function under redox control include NMDA receptor subunits GluN1 and GluN2A as well as KEAP1 (regulator of transcription factor NRF2). In a rodent schizophrenia model characterized by impaired glutathione synthesis, the Gclm knockout mouse, oxidative stress activated MMP9 (matrix metalloprotease 9) via its redox-responsive regulatory sites, causing a cascade of molecular events leading to microglia activation, perineural net degradation, and impaired NMDA receptor function. Molecular pathways under redox control are implicated in the etiopathology of schizophrenia and are attractive drug targets for individualized drug therapy trials in the contexts of prevention and treatment of psychosis.
Collapse
Affiliation(s)
- Diana O. Perkins
- corresponding author: CB 7160, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, Office: 919-962-1401, Cell: 919-360-1602,
| | - Clark D. Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill NC
| | - Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| |
Collapse
|
39
|
Liu S, Li A, Liu Y, Yan H, Wang M, Sun Y, Fan L, Song M, Xu K, Chen J, Chen Y, Wang H, Guo H, Wan P, Lv L, Yang Y, Li P, Lu L, Yan J, Wang H, Zhang H, Wu H, Ning Y, Zhang D, Jiang T, Liu B. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. Br J Psychiatry 2020; 216:267-274. [PMID: 31169117 DOI: 10.1192/bjp.2019.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated. AIMS To investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia. METHOD Genomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant. RESULTS The imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia. CONCLUSIONS These findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Shu Liu
- MSc Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences.,School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Ang Li
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Yong Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Hao Yan
- Associate Professor, Peking University Sixth Hospital, Institute of Mental Health.,Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Meng Wang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Yuqing Sun
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Lingzhong Fan
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Ming Song
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Associate Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Kaibin Xu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Jun Chen
- Associate Professor, Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Yunchun Chen
- Associate Professor, Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Huaning Wang
- Associate Professor, Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Hua Guo
- Professor, Zhumadian Psychiatric Hospital, China
| | - Ping Wan
- Professor, Zhumadian Psychiatric Hospital, China
| | - Luxian Lv
- Professor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China.,Attending Doctor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University
| | - Peng Li
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Associate Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Lin Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Jun Yan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Huiling Wang
- Professor, Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Hongxing Zhang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China.,Professor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University
| | - Huawang Wu
- Attending Doctor, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Yuping Ning
- Professor, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Bing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| |
Collapse
|
40
|
Lv Q, Hu Q, Zhang W, Huang X, Zhu M, Geng R, Cheng X, Bao C, Wang Y, Zhang C, He Y, Li Z, Yi Z. Disturbance of Oxidative Stress Parameters in Treatment-Resistant Bipolar Disorder and Their Association With Electroconvulsive Therapy Response. Int J Neuropsychopharmacol 2020; 23:207-216. [PMID: 31967315 PMCID: PMC7177162 DOI: 10.1093/ijnp/pyaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is an effective option for treatment-resistant bipolar disorder (trBD). However, the mechanisms of its effect are unknown. Oxidative stress is thought to be involved in the underpinnings of BD. Our study is the first, to our knowledge, to report the association between notable oxidative stress parameters (superoxide dismutase [SOD], glutathione peroxidase [GSH-Px], catalase [CAT], and malondialdehyde [MDA]) levels and ECT response in trBD patients. METHODS A total 28 trBD patients and 49 controls were recruited. Six-week ECT and naturalistic follow-up were conducted. SOD, GSH-Px, CAT, and MDA levels were measured by enzyme-linked immunosorbent assay, and the 17-item Hamilton Depression Rating Scale and Young Mania Rating Scale were administered at baseline and the end of the 6th week. MANCOVA, ANCOVA, 2 × 2 ANCOVA, and a multiple regression model were conducted. RESULTS SOD levels were lower in both trBD mania and depression (P = .001; P = .001), while GSH-Px (P = .01; P = .001) and MDA (P = .001; P = .001) were higher in both trBD mania and depression compared with controls. CAT levels were positively associated with 17-item Hamilton Depression Rating Scale scores in trBD depression (radjusted = 0.83, P = .005). MDA levels in trBD decreased after 6 weeks of ECT (P = .001). Interestingly, MDA levels decreased in responders (P = .001) but not in nonresponders (P > .05). CONCLUSIONS Our study indicates that decreased SOD could be a trait rather than a state in trBD. Oxidative stress levels are associated with illness severity and ECT response. This suggests that the mechanism of oxidative stress plays a crucial role in the pathophysiology of trBD.
Collapse
Affiliation(s)
- Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyue Hu
- Qingdao Mental Health Center, Qingdao, China
| | | | - Xinxin Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijie Geng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguang He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Fisher E, Gillam J, Upthegrove R, Aldred S, Wood SJ. Role of magnetic resonance spectroscopy in cerebral glutathione quantification for youth mental health: A systematic review. Early Interv Psychiatry 2020; 14:147-162. [PMID: 31148383 PMCID: PMC7065077 DOI: 10.1111/eip.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/27/2019] [Accepted: 04/14/2019] [Indexed: 01/01/2023]
Abstract
AIM Oxidative stress is strongly implicated in many psychiatric disorders, which has resulted in the development of new interventions to attempt to perturb this pathology. A great deal of attention has been paid to glutathione, which is the brain's dominant antioxidant and plays a fundamental role in removing free radicals and other reactive oxygen species. Measurement of glutathione concentration in the brain in vivo can provide information on redox status and potential for oxidative stress to develop. Glutathione might also represent a marker to assess treatment response. METHODS This paper systematically reviews studies that assess glutathione concentration (measured using magnetic resonance spectroscopy) in various mental health conditions. RESULTS There is limited evidence showing altered brain glutathione concentration in mental disorders; the best evidence suggests glutathione is decreased in depression, but is not altered in bipolar disorder. The review then outlines the various methodological options for acquiring glutathione data using spectroscopy. CONCLUSIONS Analysis of the minimum effect size measurable in existing studies indicates that increased number of participants is required to measure subtle but possibly important differences and move the field forward.
Collapse
Affiliation(s)
- Emily Fisher
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - John Gillam
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Rachel Upthegrove
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
- Department of PsychiatryUniversity of BirminghamBirminghamUK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - Stephen J. Wood
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
| |
Collapse
|
42
|
Kumar J, Liddle EB, Fernandes CC, Palaniyappan L, Hall EL, Robson SE, Simmonite M, Fiesal J, Katshu MZ, Qureshi A, Skelton M, Christodoulou NG, Brookes MJ, Morris PG, Liddle PF. Glutathione and glutamate in schizophrenia: a 7T MRS study. Mol Psychiatry 2020; 25:873-882. [PMID: 29934548 PMCID: PMC7156342 DOI: 10.1038/s41380-018-0104-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate, and/or glutamine in the cerebral cortex, consistent with a post-inflammatory response, and that this reduction would be most marked in patients with "residual schizophrenia", in whom an early stage with positive psychotic symptoms has progressed to a late stage characterized by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender, and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton magnetic resonance spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal components analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excitotoxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness.
Collapse
Affiliation(s)
- Jyothika Kumar
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| | - Elizabeth B. Liddle
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| | - Carolina C. Fernandes
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Lena Palaniyappan
- 0000 0004 1936 8884grid.39381.30Departments of Psychiatry, Medical Biophysics and Neuroscience, Western University, London, ON Canada ,Lawson Research, Brain and Mind & Robarts Research Institutes, London, ON Canada
| | - Emma L. Hall
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Siân E. Robson
- 0000 0000 8610 2323grid.482042.8Healthcare Improvement Scotland, Gyle Square, Edinburgh, UK
| | - Molly Simmonite
- 0000000086837370grid.214458.eDepartment of Psychology, University of Michigan, Ann Arbor, MI USA
| | - Jan Fiesal
- grid.500956.fSouth Staffordshire and Shropshire Healthcare NHS Foundation Trust, Stafford, UK
| | - Mohammad Z. Katshu
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK ,0000 0001 1514 761Xgrid.439378.2Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Ayaz Qureshi
- 0000 0004 0430 6955grid.450837.dGreater Manchester West Mental Health NHS Foundation Trust, Manchester, UK
| | - Michael Skelton
- 0000 0004 0396 1667grid.418388.eDerbyshire Healthcare NHS Foundation Trust, Derby, UK
| | - Nikolaos G. Christodoulou
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK ,0000 0001 1514 761Xgrid.439378.2Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Matthew J. Brookes
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Peter G. Morris
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Peter F. Liddle
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Dystrophy of Oligodendrocytes and Adjacent Microglia in Prefrontal Gray Matter in Schizophrenia. Front Psychiatry 2020; 11:204. [PMID: 32292358 PMCID: PMC7135882 DOI: 10.3389/fpsyt.2020.00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Some evidence support the notion that microglia activation in acute state of schizophrenia might contribute to damage of oligodendrocytes and myelinated fibers. Previously we found dystrophic changes of oligodendrocytes in prefrontal white matter in schizophrenia subjects displaying predominantly positive symptoms as compared to controls. The aim of the study was to verify whether microglial activation might contribute to dystrophic changes of oligodendrocytes in prefrontal gray matter in this clinical subgroup. METHODS Transmission electron microscopy and morphometry of microglia and adjacent oligodendrocytes were performed in layer 5 of the prefrontal cortex (BA10) in the schizophrenia subjects displaying predominantly positive symptoms (SPPS, n = 12), predominantly negative symptoms (SPNS, n = 9) and healthy controls (n = 20). RESULTS Qualitative study showed microglial activation and dystrophic alterations of microglia and oligodendrocytes adjacent to each other in both subgroups as compared to controls. A significant reduction in volume density (Vv) and the number (N) of mitochondria and an increase in N of lipofuscin granules were found in oligodendrocytes and adjacent microglia in both subgroups. Vv of lipofuscin granules, Vv and N of vacuoles of endoplasmic reticulum in microglia were increased significantly in the SPPS subgroup as compared to controls. In the SPPS subgroup Vv and N of mitochondria in microglia were correlated with N of vacuoles in microglia (r = -0.61, p < 0.05) and with Vv (r = 0.79, p < 0.01) and N (r = 0.59, p < 0.05) of mitochondria in oligodendrocytes. Vv of mitochondria in microglia was also correlated with Vv and N of vacuoles in oligodendrocytes in the SPPS subgroup (r = 0.76, p < 0.01). Area of nucleus of microglial cells was correlated negatively with age (r = -0.76, p < 0.01) and age at illness onset (r = -0.65, p < 0.05) in the SPPS subgroup. In the SPNS subgroup N of mitochondria in microglia was correlated with Vv of lipofuscin granules in oligodendrocytes (r = -0.9, p < 0.01). There were no significant correlations between these parameters in the control group. DISCUSSION Microglial dystrophy might contribute to oligodendrocyte dystrophy in the schizophrenia subjects with predominantly positive symptoms during relapse. Mitochondria in microglia and oligodendrocytes may be a target for treatment strategy of schizophrenia.
Collapse
Affiliation(s)
- Natalya A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - Olga V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | | | - Diana D Orlovskaya
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
44
|
Dempster K, Jeon P, MacKinley M, Williamson P, Théberge J, Palaniyappan L. Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol Psychiatry 2020; 25:1640-1650. [PMID: 32205866 PMCID: PMC7387300 DOI: 10.1038/s41380-020-0704-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023]
Abstract
Early response to antipsychotic medications is one of the most important determinants of later symptomatic and functional outcomes in psychosis. Glutathione and glutamate have emerged as promising therapeutic targets for patients demonstrating inadequate response to dopamine-blocking antipsychotics. Nevertheless, the role of these neurochemicals in the mechanism of early antipsychotic response remains poorly understood. Using a longitudinal design and ultrahigh field 7-T magnetic resonance spectroscopy (MRS) protocol in 53 subjects, we report the association between dorsal anterior cingulate cortex glutamate and glutathione, with time to treatment response in drug naive (34.6% of the sample) or minimally medicated first episode patients with schizophreniform disorder, schizophrenia, and schizoaffective disorder. Time to response was defined as the number of weeks required to reach a 50% reduction in the PANSS-8 scores. Higher glutathione was associated with shorter time to response (F = 4.86, P = 0.017), while higher glutamate was associated with more severe functional impairment (F = 5.33, P = 0.008). There were no significant differences between patients and controls on measures of glutamate or glutathione. For the first time, we have demonstrated an association between higher glutathione and favorable prognosis in FEP. We propose that interventions that increase brain glutathione levels may improve outcomes of early intervention in psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Peter Jeon
- 0000 0004 1936 8884grid.39381.30Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Michael MacKinley
- 0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada
| | - Peter Williamson
- 0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada ,0000 0004 1936 8884grid.39381.30Department of Psychiatry, University of Western Ontario, London, ON Canada ,0000 0001 0556 2414grid.415847.bLawson Health Research Institute, London, ON Canada
| | - Jean Théberge
- 0000 0004 1936 8884grid.39381.30Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada ,0000 0001 0556 2414grid.415847.bLawson Health Research Institute, London, ON Canada ,0000 0000 9674 4717grid.416448.bDepartment of Diagnostic Imaging, St. Joseph’s Health Care London, London, ON Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Robarts Research Institute, London, ON, Canada. .,Department of Psychiatry, University of Western Ontario, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
45
|
Abstract
OBJECTIVE Oxidative stress is implicated in the aetiology of schizophrenia, and the antioxidant defence system (AODS) may be protective in this illness. We examined the major antioxidant glutathione (GSH) in prefrontal brain and its correlates with clinical and demographic variables in schizophrenia. METHODS GSH levels were measured in the dorsolateral prefrontal region of 28 patients with chronic schizophrenia using a magnetic resonance spectroscopy sequence specifically adapted for GSH. We examined correlations of GSH levels with age, age at onset of illness, duration of illness, and clinical symptoms. RESULTS We found a negative correlation between GSH levels and age at onset (r = -0.46, p = 0.015), and a trend-level positive relationship between GSH and duration of illness (r = 0.34, p = 0.076). CONCLUSION Our findings are consistent with a possible compensatory upregulation of the AODS with longer duration of illness and suggest that the AODS may play a role in schizophrenia.
Collapse
|
46
|
Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol 2019; 33:1199-1214. [PMID: 31039654 DOI: 10.1177/0269881119845820] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glutathione is among the important antioxidants to prevent oxidative stress. However, the relationships between abnormality in the glutathione system and pathophysiology of schizophrenia remain uncertain due to inconsistent findings on glutathione levels and/or glutathione-related enzyme activities in patients with schizophrenia. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies, in which three metabolite levels (glutathione, glutathione disulfide, and total glutathione (glutathione+glutathione disulfide)) and five enzyme activities (glutathione peroxidase, glutathione reductase, glutamate-cysteine ligase, glutathione synthetase, and glutathione S-transferase) were measured with any techniques in both patients with schizophrenia and healthy controls, were included. Standardized mean differences were calculated to determine the group differences in the glutathione levels with a random-effects model. RESULTS We identified 41, 9, 15, 38, and seven studies which examined glutathione, glutathione disulfide, total glutathione, glutathione peroxidase, and glutathione reductase, respectively. Patients with schizophrenia had lower levels of both glutathione and total glutathione and decreased activity of glutathione peroxidase compared to controls. Glutathione levels were lower in unmedicated patients with schizophrenia than those in controls while glutathione levels did not differ between patients with first-episode psychosis and controls. CONCLUSIONS Our findings suggested that there may be glutathione deficits and abnormalities in the glutathione redox cycle in patients with schizophrenia. However, given the small number of studies examined the entire glutathione system, further studies are needed to elucidate a better understanding of disrupted glutathione function in schizophrenia, which may pave the way for the development of novel therapeutic strategies in this disorder.
Collapse
Affiliation(s)
- Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Pharmacogenetic Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Muhammad Elsalhy
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Minori Kuromiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Morita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
48
|
Association between Brain and Plasma Glutamine Levels in Healthy Young Subjects Investigated by MRS and LC/MS. Nutrients 2019; 11:nu11071649. [PMID: 31330962 PMCID: PMC6682979 DOI: 10.3390/nu11071649] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Both glutamine (Gln) and glutamate (Glu) are known to exist in plasma and brain. However, despite the assumed relationship between brain and plasma, no studies have clarified the association between them. Proton magnetic resonance spectroscopy (MRS) was sequentially performed twice, with a 60-min interval, on 10 males and 10 females using a 3T scanner. Blood samples for liquid chromatography-mass spectrometry (LC/MS) to measure Gln and Glu concentrations in plasma were collected during the time interval between the two MRS sessions. MRS voxels of interest were localized at the posterior cingulate cortex (PCC) and cerebellum (Cbll) and measured by the SPECIAL sequence. Spearman's correlation coefficient was used to examine the association between brain and plasma metabolites. The Gln concentrations in PCC (mean of two measurements) were positively correlated with Gln concentrations in plasma (p < 0.01, r = 0.72). However, the Glu concentrations in the two regions were not correlated with those in plasma. Consideration of the different dynamics of Gln and Glu between plasma and brain is crucial when addressing the pathomechanism and therapeutic strategies for brain disorders such as Alzheimer's disease and hepatic encephalopathy.
Collapse
|
49
|
Mullier E, Roine T, Griffa A, Xin L, Baumann PS, Klauser P, Cleusix M, Jenni R, Alemàn-Gómez Y, Gruetter R, Conus P, Do KQ, Hagmann P. N-Acetyl-Cysteine Supplementation Improves Functional Connectivity Within the Cingulate Cortex in Early Psychosis: A Pilot Study. Int J Neuropsychopharmacol 2019; 22:478-487. [PMID: 31283822 PMCID: PMC6672595 DOI: 10.1093/ijnp/pyz022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed. METHODS We investigated the effect of N-acetyl-cysteine supplementation on the functional connectivity between regions of the cingulate cortex, which have been linked to positive symptoms and processing speed decline. In this pilot study, we compared structural connectivity and resting-state functional connectivity between early psychosis patients treated with 6-month N-acetyl-cysteine (n = 9) or placebo (n = 11) supplementation with sex- and age-matched healthy control subjects (n = 74). RESULTS We observed that 6-month N-acetyl-cysteine supplementation increases functional connectivity along the cingulum and more precisely between the caudal anterior part and the isthmus of the cingulate cortex. These functional changes can be partially explained by an increase of centrality of these regions in the functional brain network. CONCLUSIONS N-acetyl-cysteine supplementation has a positive effect on functional connectivity within the cingulate cortex in early psychosis patients. To our knowledge, this is the first study suggesting that increased brain glutathione levels via N-acetyl-cysteine supplementation may improve brain functional connectivity.
Collapse
Affiliation(s)
- Emeline Mullier
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Correspondence: Emeline Mullier, Centre de recherche en Radiologie RC7, CHUV, Rue du Bugnon 46, 1011 Lausanne, Suisse ()
| | - Timo Roine
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Turku Brain and Mind Center, University of Turku, Turku, Finland,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alessandra Griffa
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU Amsterdam, Amsterdam, The Netherlands
| | - Lijing Xin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yasser Alemàn-Gómez
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Treatment and Early Intervention in Psychosis Program (TIPP), Service of General Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Treatment and Early Intervention in Psychosis Program (TIPP), Service of General Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
50
|
Reyes-Madrigal F, León-Ortiz P, Mao X, Mora-Durán R, Shungu DC, de la Fuente-Sandoval C. Striatal Glutathione in First-episode Psychosis Patients Measured In Vivo with Proton Magnetic Resonance Spectroscopy. Arch Med Res 2019; 50:207-213. [PMID: 31499481 PMCID: PMC10624128 DOI: 10.1016/j.arcmed.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022]
Abstract
Deficits of brain glutathione (GSH), the most abundant and primary antioxidant in living tissue, and associated redox imbalance are postulated to be implicated in schizophrenia. This pilot clinical study compared the levels of striatal GSH, measured in vivo with proton magnetic resonance spectroscopy (1H MRS) at 3T, in 10 drug-naïve, first-episode psychosis (FEP) patients with those in 9 matched healthy control subjects. The results revealed a significant GSH deficit in FEP patients (0.92 ± 0.24 × 10-3) compared to the healthy control group (1.10 ± 0.10 × 10-3) (U = 25.00, p = 0.02), as well as a positive correlation between GSH levels and the Positive Symptoms subscale of the PANSS in the FEP group (ρ = 0.96; p <0.001). These preliminary findings suggest a possible role of striatal oxidative stress in early-stage psychosis that warrants further scrutiny and confirmation in larger studies.
Collapse
Affiliation(s)
- Francisco Reyes-Madrigal
- Laboratorio de Psiquiatría Experimental, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Pablo León-Ortiz
- Laboratorio de Psiquiatría Experimental, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México; Subdirección de Enseñanza, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Ricardo Mora-Durán
- Departamento de Urgencias, Hospital Fray Bernardino Álvarez, Ciudad de México, México
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Camilo de la Fuente-Sandoval
- Laboratorio de Psiquiatría Experimental, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México; Departamento de Neuropsiquiatría, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México.
| |
Collapse
|