1
|
Patlola SR, Holleran L, Dauvermann MR, Rokita K, Laighneach A, Hallahan B, McManus R, Kenyon M, McDonald C, Morris DW, Kelly JP, Donohoe G, McKernan DP. Investigating the relationship between toll-like receptor activity, low-grade inflammation and cognitive deficits in schizophrenia patients - A mediation analysis. Brain Behav Immun 2025; 128:529-539. [PMID: 40268064 DOI: 10.1016/j.bbi.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Schizophrenia is a debilitating psychiatric illness. Many studies report alterations in immune biomarkers (cytokines) in such patients. In addition, such prolonged low-grade inflammatory responses are associated with lowered cognitive performance. In this study, we investigated whether the expression and activity of Toll-like receptors (TLRs), receptors involved in initiating innate immune responses, are associated with the reported immune changes and, if so, whether they are associated with cognitive deficits in such patients. METHODS 300 participants (202 healthy controls (HC) and 98 patients with schizophrenia (SZ)) were recruited. A battery of cognitive tasks using WAIS-III and CANTAB were administered to the participants. Whole blood collected from participants was used to assess TLR2, 3, and 4 activity. mRNA expression of cytokines and TLR1-10 were quantified using RT-QPCR. Using ELISA, plasma was analysed for basal levels of cytokines such as IL-6, IL-8, IL-10, IL-12, TNF-α, IFN-γ and C-reactive proteins (CRP). RESULTS We found significantly elevated plasma levels of IL-6, IL-8, IL-10, TNF-α, and CRP in the SZ group. In the SZ patient-only group, significantly higher levels of TLR2 and -4 activity (as measured by IL-6, IL-8, and IL-10 release following agonist stimulation) were observed. Significant negative associations in patients were observed between plasma IL-6 levels and measures of attention & processing speed and working memory; IL-8 and intelligence quotient; TNF-α and logical memory; and social cognition and IL-10 and CRP. Multiple-linear regression analysis suggests that TLR2 and TLR4 activity was associated with increased and decreased cytokine levels respectively and decreased cognitive performance. Finally, the significant association between TLR activity and decreased cognitive performance was mediated by IL-6 and IL-8. CONCLUSION We have demonstrated that patients with schizophrenia have elevated protein and mRNA expression of a range of cytokines and Toll-like receptors. Some of these changes are associated with deficits in cognition. Finally, our study has demonstrated a modest relationship between TLR activity and cognitive deficits in schizophrenia patients in a manner that may be mediated by IL-6 and IL-8.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | | | | | | | - Aodán Laighneach
- School of Biological and Chemical Sciences, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Brian Hallahan
- School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Ross McManus
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Marcus Kenyon
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Colm McDonald
- School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Derek W Morris
- School of Biological and Chemical Sciences, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland.
| |
Collapse
|
2
|
Souza TP, Rodríguez-Vega A, Dutra-Tavares AC, Semeão KA, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nucleus Accumbens Proteome Disbalance in an Adolescent Mouse Model of Schizophrenia and Nicotine Misuse Comorbidity. Biomedicines 2025; 13:901. [PMID: 40299488 PMCID: PMC12025060 DOI: 10.3390/biomedicines13040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Schizophrenia and nicotine misuse are a comorbid condition that frequently develops during adolescence. Considering the role of the nucleus accumbens (NAcc) as a common neurobiological substrate for these psychiatric disorders, label-free proteomics was employed to identify NAcc deregulated proteins in male and female mouse models of schizophrenia with a history of adolescent nicotine exposure. Methods: Phencyclidine was used to model schizophrenia, and minipump infusions were used to model nicotine misuse. Results: Enrichment Reactome pathway and protein-protein interaction analyses showed that the cytoskeleton and associated synaptic plasticity mechanisms, energy metabolism, and nervous system development were affected in both sexes. In particular, Ncam1 (Neural cell adhesion molecule 1) could be of interest as a candidate marker of synaptic plasticity disbalance. Its deregulation in the NAcc of both sexes suggests that it lies at the core of the comorbidity pathophysiology. When considering sex-selective effects, Cs (Citrate synthase) and Mapk3 (Mitogen-activated protein kinase 3) were identified as exclusively deregulated in female and male mice, respectively. Since both proteins were previously shown to be exclusively deregulated in the medial prefrontal cortex of co-modeled mice, a common mesocortical and mesolimbic system effect can be inferred, supporting the role of aberrant energy metabolism and synaptic plasticity in the comorbidity model. Conclusions: The current data provide insights into the NAcc proteome disbalance in an adolescent preclinical model of combined schizophrenia and nicotine misuse, pointing to relevant pathways and early markers of the comorbidity.
Collapse
Affiliation(s)
- Thainá Pereira Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Andrés Rodríguez-Vega
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Ana Carolina Dutra-Tavares
- Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Cabo Frio 28905-320, RJ, Brazil;
| | - Keila A. Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Claudio Carneiro Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro (UERJ), São Gonçalo 24435-005, RJ, Brazil;
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| |
Collapse
|
3
|
Weng J, Zhu X, Ouyang Y, Liu Y, Lu H, Yao J, Pan B. Identification of Immune-Related Biomarkers of Schizophrenia in the Central Nervous System Using Bioinformatic Methods and Machine Learning Algorithms. Mol Neurobiol 2025; 62:3226-3243. [PMID: 39243324 DOI: 10.1007/s12035-024-04461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Schizophrenia is a disastrous mental disorder. Identification of diagnostic biomarkers and therapeutic targets is of significant importance. In this study, five datasets of schizophrenia post-mortem prefrontal cortex samples were downloaded from the GEO database and then merged and de-batched for the analyses of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA). The WGCNA analysis showed the six schizophrenia-related modules containing 12,888 genes. The functional enrichment analyses indicated that the DEGs were highly involved in immune-related processes and functions. The immune cell infiltration analysis with the CIBERSORT algorithm revealed 12 types of immune cells that were significantly different between schizophrenia subjects and controls. Additionally, by intersecting DEGs, WGCNA module genes, and an immune gene set obtained from online databases, 151 schizophrenia-associated immune-related genes were obtained. Moreover, machine learning algorithms including LASSO and Random Forest were employed to further screen out 17 signature genes, including GRIN1, P2RX7, CYBB, PTPN4, UBR4, LTF, THBS1, PLXNB3, PLXNB1, PI15, RNF213, CXCL11, IL7, ARHGAP10, TTR, TYROBP, and EIF4A2. Then, SVM-RFE was added, and together with LASSO and Random Forest, a hub gene (EIF4A2) out of the 17 signature genes was revealed. Lastly, in a schizophrenia rat model, the EIF4A2 expression levels were reduced in the model rat brains in a brain-regional dependent manner, but can be reversed by risperidone. In conclusion, by using various bioinformatic and biological methods, this study found 17 immune-related signature genes and a hub gene of schizophrenia that might be potential diagnostic biomarkers and therapeutic targets of schizophrenia.
Collapse
Affiliation(s)
- Jianjun Weng
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Yu Ouyang
- Department of Clinical Laboratory, The Second People's Hospital of Taizhou Affiliated to Yangzhou University, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Hongmei Lu
- Department of Pathology, Affiliated Maternity and Child Care Service Centre of Yangzhou University, Yangzhou, Jiangsu, 225002, People's Republic of China.
| | - Jiakui Yao
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, People's Republic of China.
| | - Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China.
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China.
| |
Collapse
|
4
|
Ormerod MBEG, Ueland T, Aas M, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Mlakar V, Andreou D, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Limited evidence of association between dysregulated immune marker levels and telomere length in severe mental disorders. Acta Neuropsychiatr 2025; 37:e4. [PMID: 39844366 DOI: 10.1017/neu.2024.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders. METHODS Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ (N = 301) or BD (N = 211) and a healthy control group (HC, N = 378). TL was analysed with linear regressions for associations with levels of 12 immune markers linked to SCZ or BD. Adjustments were made for a broad range of potential confounding variables. TL was measured by quantitative polymerase chain reaction (qPCR) and the immune markers were measured by enzyme immunoassays. RESULTS A positive association between levels of soluble tumour necrosis factor receptor 1A (sTNF-R1) and TL in SCZ (β = 0.191, p = 0.012) was observed. Plasma levels of the other immune markers were not significantly associated with TL in the BD, SCZ or HC groups. CONCLUSION There was limited evidence of association between immune markers and TL in SCZ and BD. The results provide little support for involvement of immune dysregulation, as reflected by current systemic markers, in telomere attrition-related accelerated ageing in severe mental disorders.
Collapse
Affiliation(s)
- Monica B E G Ormerod
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Monica Aas
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England, UK
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Gabriela Hjell
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | - Linn Rødevand
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | | | - Vid Mlakar
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dimitrios Andreou
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine V Lagerberg
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
5
|
Qiu J, Yu C, Kuang Y, Hu Y, Zhu T, Qin K, Zhang W. Association between psychiatric symptoms with multiple peripheral blood sample test: a 10-year retrospective study. Front Psychiatry 2024; 15:1481006. [PMID: 39717378 PMCID: PMC11663843 DOI: 10.3389/fpsyt.2024.1481006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Background Psychiatric illness is thought to be a brain somatic crosstalk disorder. However, the existing phenomenology-based Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) diagnostic framework overlooks various dimensions other than symptoms. In this study, we investigated the associations between peripheral blood test indexes with various symptom levels of major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) to explore the availability of peripheral blood test indexes. Methods We extracted cases diagnosed with MDD, BD, and SCZ at West China Hospital from 2009 to 2021, translated their main complaints into Research Domain Criteria (RDoC) symptom severity scores using nature language processing (NLP), and collected their detailed psychiatric symptoms and peripheral blood test results. Then, generalized linear models were performed between seven types of peripheral blood test values with their transformed RDoC scores and detailed symptom information adjusted for age, gender, smoking, and alcohol history. Results Several inflammatory-related indexes were strongly associated with the negative valence system (NVS) domain (basophil percentage adjusted β = 0.275, lymphocyte percentage adjusted β = 0.271, monocyte percentage adjusted β = 0.223, neutrophil percentage adjusted β = -0.310, neutrophil count adjusted β = -0.301, glucose adjusted β = -0.287, leukocyte count adjusted β = -0.244, NLR adjusted β = -0.229, and total protein adjusted β = -0.170), the positive valence system (PVS) domain (monocyte percentage adjusted β = 0.228, basophil count adjusted β = 0.176, and glutamyl transpeptidase adjusted β = 0.171), and a wide range of mood, reward, and psychomotor symptoms. In addition, glucose, urea, urate, cystatin C, and albumin showed considerable associations with multiple symptoms. In addition, based on the direction of associations and the similarity of symptoms in terms of RDoC thinking, it is suggested that "positive" mood symptoms like mania and irritability and "negative" mood symptoms like depression and anxiety might be on a continuum considering their opposite relationships with similar blood indexes. Limitations The cross-sectional design, limited symptoms record, and high proportion of missing values in some other peripheral blood indexes limited our findings. Conclusion The proportion of high inflammatory indexes in SCZ was relatively high, but in terms of mean values, SCZ, BD, and MDD did not differ significantly. Inflammatory response showed a strong correlation with NVS, PVS, and a range of psychiatric symptoms especially mood symptoms, psychomotor symptoms, and cognitive abilities.
Collapse
Affiliation(s)
- Jianqing Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yalan Kuang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Ke Qin
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Duan L, Li S, Chen D, Shi Y, Zhou X, Feng Y. Causality between autoimmune diseases and schizophrenia: a bidirectional Mendelian randomization study. BMC Psychiatry 2024; 24:817. [PMID: 39550571 PMCID: PMC11568594 DOI: 10.1186/s12888-024-06287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Observational studies have shown a link between autoimmune diseases and schizophrenia, with conflicting conclusions. Due to the existence of confounding factors, the causal link between autoimmune diseases and schizophrenia is still unknown. METHOD We conducted a comprehensive Mendelian randomization (MR) analysis of schizophrenia and ten common autoimmune diseases in individuals of European descent using genome-wide association studies (GWASs). To evaluate the relationships between autoimmune diseases and schizophrenia, inverse variance weighted, MR-RAPS, Bayesian weighted MR, constrained maximum likelihood, debiased IVW, MR-Egger, and weighted median were utilized. Several sensitivity analyses were performed to ensure the reliability of the study's results. RESULTS Our findings reveal that genetically predicted ankylosing spondylitis is related to an increased risk of schizophrenia, whereas celiac disease, type 1 diabetes, and systemic lupus erythematosus are associated with a lower risk of schizophrenia. In the reverse MR analysis, our study indicated that genetically predicted schizophrenia is linked to higher risks of ankylosing spondylitis, Crohn's disease, ulcerative colitis, inflammatory bowel disease, and psoriasis. Neither multiple sclerosis nor rheumatoid arthritis have been linked to schizophrenia, and vice versa. CONCLUSION Despite contradicting some other observational reports, this study showed support for a causal link between autoimmune diseases and schizophrenia. To gain a better understanding of the mechanisms underlying the development of immune-mediated schizophrenia, additional research is required to identify potential mechanisms identified in observational studies.
Collapse
Affiliation(s)
- Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongnan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianhua Zhou
- Meishan Hospital of Traditional Chinese Medicine, Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China.
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Javidi Aghdam K, Baradaran B, Rahmani S, Manafzadeh F, Noor Azar SG, Aghayan S, Shayannia A, Ghafouri-Fard S. Expression pattern of long non-coding RNAs in treatment-naïve and medicated schizophrenia patients. Sci Rep 2024; 14:27654. [PMID: 39532914 PMCID: PMC11557838 DOI: 10.1038/s41598-024-78220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Schizophrenia is a disabling mental disorder that affects 1% of people over their lifetime. The etiology and mechanism of schizophrenia are very complex, and many genes are involved in many different signaling pathways in the etiology of this disease. According to recent studies, one of the important mechanisms altered in this disorder is the regulation of immune system and the inflammation mechanism. In the present study, we evaluated the peripheral blood expression pattern of four lncRNAs and three protein-coding genes in the treatment- naïve patients, and medicated patients compared with sex and age-matched controls. In the medicated-patients, expression levels of IFNG, IL18RAP, AC007278.2 were significantly up-regulated (P < 0.05); and the expression level of IFNG-AS1-001 was significantly down-regulated compared to healthy controls (P < 0.05). However, levels of IL18R1, AC007278.3 and IFNG-AS1-003 were not different between these groups. In the treatment-naïve patients, IFNG, IL18R1, IL18RAP, IFNG-AS1-001, AC007278.2, and AC007278.3 were significantly up-regulated compared to controls. On the other hand, IFNG-AS1-003 was significantly down-regulated in the treatment-naïve patients compared to controls. Based on the Spearman correlation matrix, there was a significant correlation between genes in the treatment-naïve patients. We also showed the high sensitivity and specificity of IFNG-AS1-003, IFNG, IL18R1, and AC007278.3 in the identification of treatment-naïve patients from controls. The current study contributes further evidence to the understanding of the role of lncRNAs in the pathogenesis of schizophrenia. Future research is necessary to establish the validity of lncRNAs as peripheral markers for this condition.
Collapse
Affiliation(s)
- Kamran Javidi Aghdam
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Manafzadeh
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Gholamreza Noor Azar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrokh Aghayan
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Asghar Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
9
|
Pan YJ, Lin MC, Liou JM, Fan CC, Su MH, Chen CY, Wu CS, Chen PC, Huang YT, Wang SH. A population-based study of familial coaggregation and shared genetic etiology of psychiatric and gastrointestinal disorders. COMMUNICATIONS MEDICINE 2024; 4:180. [PMID: 39300237 DOI: 10.1038/s43856-024-00607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND It has been proposed that having a psychiatric disorder could increase the risk of developing a gastrointestinal disorder, and vice versa. The role of familial coaggregation and shared genetic loading between psychiatric and gastrointestinal disorders remains unclear. METHODS This study used the Taiwan National Health Insurance Research Database; 4,504,612 individuals born 1970-1999 with parental information, 51,664 same-sex twins, and 3,322,959 persons with full-sibling(s) were enrolled. Genotyping was available for 106,796 unrelated participants from the Taiwan Biobank. A logistic regression model was used to examine the associations of individual history, affected relatives, and polygenic risk scores (PRS) for schizophrenia (SCZ), bipolar disorder (BPD), major depressive disorder (MDD), and obsessive-compulsive disorder (OCD), with the risk of peptic ulcer disease (PUD), gastroesophageal reflux disease (GERD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD), and vice versa. RESULTS Here we show that parental psychiatric disorders are associated with gastrointestinal disorders. Full-siblings of psychiatric cases have an increased risk of gastrointestinal disorders except for SCZ/BPD and IBD; the magnitude of coaggregation is higher in same-sex twins than in full-siblings. The results of bidirectional analyses mostly remain unchanged. PRS for SCZ, MDD, and OCD are associated with IBS, PUD/GERD/IBS/IBD, and PUD/GERD/IBS, respectively. PRS for PUD, GERD, IBS, and IBD are associated with MDD, BPD/MDD, SCZ/BPD/MDD, and BPD, respectively. CONCLUSIONS There is familial coaggregation and shared genetic etiology between psychiatric and gastrointestinal comorbidity. Individuals with psychiatric disorder-affected relatives or with higher genetic risk for psychiatric disorders should be monitored for gastrointestinal disorders, and vice versa.
Collapse
Affiliation(s)
- Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Hsin Su
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Virginia Institute for Psychiatric Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cheng-Yun Chen
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Genkel V, Domozhirova E, Malinina E. Multimorbidity in Severe Mental Illness as Part of the Neurodevelopmental Continuum: Physical Health-Related Endophenotypes of Schizophrenia-A Narrative Review. Brain Sci 2024; 14:725. [PMID: 39061465 PMCID: PMC11274495 DOI: 10.3390/brainsci14070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The majority of deaths in patients with schizophrenia and other severe mental illnesses (SMIs) are caused by natural causes, such as cardiovascular diseases (CVDs). The increased risk of CVD and other somatic diseases in SMIs cannot be fully explained by the contribution of traditional risk factors, behavioral risk factors, patients' lifestyle peculiarities, and the influence of antipsychotics. The present review has the following main objectives: (1) to aggregate evidence that neurodevelopmental disorders are the basis of SMIs; (2) to provide a review of studies that have addressed the shared genetic architecture of SMI and cardiovascular disease; and (3) to propose and substantiate the consideration of somatic diseases as independent endophenotypes of SMIs, which will make it possible to place the research of somatic diseases in SMIs within the framework of the concepts of the "neurodevelopmental continuum and gradient" and "endophenotype". METHODS A comprehensive literature search was performed on 1 July 2024. The search was performed using PubMed and Google Scholar databases up to June 2024. RESULTS The current literature reveals considerable overlap between the genetic susceptibility loci for SMIs and CVDs. We propose that somatic diseases observed in SMIs that have a shared genetic architecture with SMIs can be considered distinct physical health-related endophenotypes. CONCLUSIONS In this narrative review, the results of recent studies of CVDs in SMIs are summarized. Reframing schizophrenia as a multisystem disease should contribute to the activation of new research on somatic diseases in SMIs.
Collapse
Affiliation(s)
- Vadim Genkel
- Department of Internal Medicine, South-Ural State Medical University, Chelyabinsk 454092, Russia
| | - Elena Domozhirova
- Department of Psychiatry, South-Ural State Medical University, Chelyabinsk 454092, Russia; (E.D.); (E.M.)
| | - Elena Malinina
- Department of Psychiatry, South-Ural State Medical University, Chelyabinsk 454092, Russia; (E.D.); (E.M.)
| |
Collapse
|
12
|
Lori A, Pearce BD, Katrinli S, Carter S, Gillespie CF, Bradley B, Wingo AP, Jovanovic T, Michopoulos V, Duncan E, Hinrichs RC, Smith A, Ressler KJ. Genetic risk for hospitalization of African American patients with severe mental illness reveals HLA loci. Front Psychiatry 2024; 15:1140376. [PMID: 38469033 PMCID: PMC10925622 DOI: 10.3389/fpsyt.2024.1140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Background Mood disorders such as major depressive and bipolar disorders, along with posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and other psychotic disorders, constitute serious mental illnesses (SMI) and often lead to inpatient psychiatric care for adults. Risk factors associated with increased hospitalization rate in SMI (H-SMI) are largely unknown but likely involve a combination of genetic, environmental, and socio-behavioral factors. We performed a genome-wide association study in an African American cohort to identify possible genes associated with hospitalization due to SMI (H-SMI). Methods Patients hospitalized for psychiatric disorders (H-SMI; n=690) were compared with demographically matched controls (n=4467). Quality control and imputation of genome-wide data were performed following the Psychiatric Genetic Consortium (PGC)-PTSD guidelines. Imputation of the Human Leukocyte Antigen (HLA) locus was performed using the HIBAG package. Results Genome-wide association analysis revealed a genome-wide significant association at 6p22.1 locus in the ubiquitin D (UBD/FAT10) gene (rs362514, p=9.43x10-9) and around the HLA locus. Heritability of H-SMI (14.6%) was comparable to other psychiatric disorders (4% to 45%). We observed a nominally significant association with 2 HLA alleles: HLA-A*23:01 (OR=1.04, p=2.3x10-3) and HLA-C*06:02 (OR=1.04, p=1.5x10-3). Two other genes (VSP13D and TSPAN9), possibly associated with immune response, were found to be associated with H-SMI using gene-based analyses. Conclusion We observed a strong association between H-SMI and a locus that has been consistently and strongly associated with SCZ in multiple studies (6p21.32-p22.1), possibly indicating an involvement of the immune system and the immune response in the development of severe transdiagnostic SMI.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Aliza P. Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, MI, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Rebecca C. Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Alicia Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| |
Collapse
|
13
|
O'Brien O, Arumuham A, Mizuno Y, Baxter L, Lobo M, Parmar S, Jolles S, Howes OD. Immune response to vaccination in people with psychotic disorders relative to healthy controls: prospective study of SARS-CoV-2 vaccination. BJPsych Open 2024; 10:e49. [PMID: 38362901 PMCID: PMC10897702 DOI: 10.1192/bjo.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/11/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
This prospective study examines the immune response to SARS-CoV-2 vaccination in patients with psychotic disorders compared with healthy volunteers. Participants were recruited naturalistically as part of the UK's COVID-19 vaccination programme. Prior to receiving their first COVID-19 vaccine, blood samples were provided by participants to examine anti-SARS-CoV-2 immunoglobulins (IgG) at baseline, followed by a repeat assay 1 month after receiving their first vaccine to assess vaccine response. The increase of IgG levels from baseline to 1 month post-vaccination was significantly lower in patients compared with controls, supporting evidence of impaired vaccine response in people with psychotic disorders. When excluding patients treated with clozapine from the analysis, this difference was no longer significant, suggesting that effects may be particularly marked in people taking clozapine.
Collapse
Affiliation(s)
- Oisín O'Brien
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, London, UK; and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, UK
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, London, UK; and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, UK
| | - Yuya Mizuno
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, London, UK; and Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Luke Baxter
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Lobo
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Sita Parmar
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, London, UK; and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
14
|
Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, Pasaniuc B, Gandal MJ. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet 2023; 55:2117-2128. [PMID: 38036788 PMCID: PMC10703692 DOI: 10.1038/s41588-023-01560-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Methods integrating genetics with transcriptomic reference panels prioritize risk genes and mechanisms at only a fraction of trait-associated genetic loci, due in part to an overreliance on total gene expression as a molecular outcome measure. This challenge is particularly relevant for the brain, in which extensive splicing generates multiple distinct transcript-isoforms per gene. Due to complex correlation structures, isoform-level modeling from cis-window variants requires methodological innovation. Here we introduce isoTWAS, a multivariate, stepwise framework integrating genetics, isoform-level expression and phenotypic associations. Compared to gene-level methods, isoTWAS improves both isoform and gene expression prediction, yielding more testable genes, and increased power for discovery of trait associations within genome-wide association study loci across 15 neuropsychiatric traits. We illustrate multiple isoTWAS associations undetectable at the gene-level, prioritizing isoforms of AKT3, CUL3 and HSPD1 in schizophrenia and PCLO with multiple disorders. Results highlight the importance of incorporating isoform-level resolution within integrative approaches to increase discovery of trait associations, especially for brain-relevant traits.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Daniel D Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Cindy Wen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Fryar-Williams S, Strobel J, Clements P. Molecular Mechanisms Provide a Landscape for Biomarker Selection for Schizophrenia and Schizoaffective Psychosis. Int J Mol Sci 2023; 24:15296. [PMID: 37894974 PMCID: PMC10607016 DOI: 10.3390/ijms242015296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Research evaluating the role of the 5,10-methylenetetrahydrofolate reductase (MTHFR C677T) gene in schizophrenia has not yet provided an extended understanding of the proximal pathways contributing to the 5-10-methylenetetrahydrofolate reductase (MTHFR) enzyme's activity and the distal pathways being affected by its activity. This review investigates these pathways, describing mechanisms relevant to riboflavin availability, trace mineral interactions, and the 5-methyltetrahydrofolate (5-MTHF) product of the MTHFR enzyme. These factors remotely influence vitamin cofactor activation, histamine metabolism, catecholamine metabolism, serotonin metabolism, the oxidative stress response, DNA methylation, and nicotinamide synthesis. These biochemical components form a broad interactive landscape from which candidate markers can be drawn for research inquiry into schizophrenia and other forms of mental illness. Candidate markers drawn from this functional biochemical background have been found to have biomarker status with greater than 90% specificity and sensitivity for achieving diagnostic certainty in schizophrenia and schizoaffective psychosis. This has implications for achieving targeted treatments for serious mental illness.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley Annexe, Mary Street, Unley, SA 5061, Australia
- Department of Nanoscale BioPhotonics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jörg Strobel
- Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Peter Clements
- Department of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| |
Collapse
|
16
|
Hou L, Xiong X, Park Y, Boix C, James B, Sun N, He L, Patel A, Zhang Z, Molinie B, Van Wittenberghe N, Steelman S, Nusbaum C, Aguet F, Ardlie KG, Kellis M. Multitissue H3K27ac profiling of GTEx samples links epigenomic variation to disease. Nat Genet 2023; 55:1665-1676. [PMID: 37770633 PMCID: PMC10562256 DOI: 10.1038/s41588-023-01509-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Genetic variants associated with complex traits are primarily noncoding, and their effects on gene-regulatory activity remain largely uncharacterized. To address this, we profile epigenomic variation of histone mark H3K27ac across 387 brain, heart, muscle and lung samples from Genotype-Tissue Expression (GTEx). We annotate 282 k active regulatory elements (AREs) with tissue-specific activity patterns. We identify 2,436 sex-biased AREs and 5,397 genetically influenced AREs associated with 130 k genetic variants (haQTLs) across tissues. We integrate genetic and epigenomic variation to provide mechanistic insights for disease-associated loci from 55 genome-wide association studies (GWAS), by revealing candidate tissues of action, driver SNPs and impacted AREs. Lastly, we build ARE-gene linking scores based on genetics (gLink scores) and demonstrate their unique ability to prioritize SNP-ARE-gene circuits. Overall, our epigenomic datasets, computational integration and mechanistic predictions provide valuable resources and important insights for understanding the molecular basis of human diseases/traits such as schizophrenia.
Collapse
Affiliation(s)
- Lei Hou
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xushen Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yongjin Park
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Carles Boix
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin James
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Na Sun
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liang He
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aman Patel
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhizhuo Zhang
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benoit Molinie
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Scott Steelman
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chad Nusbaum
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - François Aguet
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
17
|
Wang Y, Fang X, Wang G, Tang W, Liu S, Yang Y, Chen J, Ling Y, Zhou C, Zhang X, Zhang C, Su KP. The association between inflammation and kynurenine pathway metabolites in electroconvulsive therapy for schizophrenia: Implications for clinical efficacy. Brain Behav Immun 2023; 113:1-11. [PMID: 37353059 DOI: 10.1016/j.bbi.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
The kynurenine pathway (KP) of tryptophan has been implicated in the pathogenesis of schizophrenia and its interaction with the immune system has been suggested to play a role. In this study, 28 schizophrenia patients and 25 healthy controls were recruited and divided into different inflammatory subgroups using a two-step recursive clustering analysis. Cytokine gene expression and plasma KP metabolites were measured before, during and after treatment. Our findings indicated that schizophrenia patients had lower levels of Tryptophan (TRP), N-formylkynurenine (NFK), xanthinic acid (XA), quinolinic acid (QA), kynurenic acid (KYNA), KYNA/KYN and QA/KYNA, but higher levels of IL-18 mRNA, KYN/TRP compared to healthy controls (all p < 0.05). After electroconvulsive therapy (ECT), patients with low inflammation achieved better clinical improvement (PANSS scores) compared to those with high inflammation (F = 5.672, P = 0.025), especially in negative symptoms (F = 6.382, P = 0.018, η2 = 0.197). While IL-18 mRNA (F = 32.910, P < 0.0001) was significantly decreased following ECT, the KYN/TRP (F = 3.455, p = 0.047) and KYNA/TRP (F = 4.264, P = 0.026) only significantly decreased in patients with low inflammation. Correlation analyses revealed that baseline IL-18 gene expression significantly correlated with pre- (r = 0.537, p = 0.008) and post-KYNA/TRP (r = 0.443, p = 0.034), post-KYN/TRP (r = 0.510, p = 0.013), and post-negative symptoms (r = 0.525, p = 0.010). Moreover, baseline TRP (r = -0.438, p = 0.037) and XA (r = -0.516, p = 0.012) were negatively correlated with baseline PANSS, while post-KYN (r = -0.475, p = 0.022), 2-AA (r = -0.447, p = 0.032) and KYN/TRP (r = -0.566, p = 0.005) were negatively correlated with Montreal Cognitive Assessment (MoCA) following ECT. Overall, these findings suggested that the association between inflammation and kynurenine pathway plays an essential role in mechanism of ECT for schizophrenia and that the regulation of ECT on KP is influenced by inflammatory characteristics, which may relate to clinical efficacy in schizophrenia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfa Wang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wei Tang
- The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, China
| | - Shasha Liu
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yujing Yang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin Chen
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
18
|
Steen NE, Rahman Z, Szabo A, Hindley GFL, Parker N, Cheng W, Lin A, O’Connell KS, Sheikh MA, Shadrin A, Bahrami S, Karthikeyan S, Hoseth EZ, Dale AM, Aukrust P, Smeland OB, Ueland T, Frei O, Djurovic S, Andreassen OA. Shared Genetic Loci Between Schizophrenia and White Blood Cell Counts Suggest Genetically Determined Systemic Immune Abnormalities. Schizophr Bull 2023; 49:1345-1354. [PMID: 37319439 PMCID: PMC10483470 DOI: 10.1093/schbul/sbad082] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandeep Karthikeyan
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eva Z Hoseth
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen—Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Yan L, Li Y, Fan F, Gou M, Xuan F, Feng W, Chithanathan K, Li W, Huang J, Li H, Chen W, Tian B, Wang Z, Tan S, Zharkovsky A, Hong LE, Tan Y, Tian L. CSF1R regulates schizophrenia-related stress response and vascular association of microglia/macrophages. BMC Med 2023; 21:286. [PMID: 37542262 PMCID: PMC10403881 DOI: 10.1186/s12916-023-02959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.
Collapse
Affiliation(s)
- Ling Yan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Yanli Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Fengmei Fan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Mengzhuang Gou
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Fangling Xuan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Wei Feng
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Keerthana Chithanathan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Wei Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Junchao Huang
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Hongna Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Wenjin Chen
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Baopeng Tian
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Zhiren Wang
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Shuping Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L Elliot Hong
- Department of Psychiatry, School of Medicine, Maryland Psychiatric Research Center, University of Maryland, Baltimore, USA
| | - Yunlong Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China.
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China.
| |
Collapse
|
20
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
21
|
Elkjaer Greenwood Ormerod MB, Ueland T, Frogner Werner MC, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Composite immune marker scores associated with severe mental disorders and illness course. Brain Behav Immun Health 2022; 24:100483. [PMID: 35856063 PMCID: PMC9287150 DOI: 10.1016/j.bbih.2022.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Low-grade inflammation has been implicated in the pathophysiology of severe mental disorders (SMDs) and a link between immune activation and clinical characteristics is suggested. However, few studies have investigated how patterns across immune markers are related to diagnosis and illness course. Methods A total of 948 participants with a diagnosis of schizophrenia (SCZ, N = 602) or bipolar (BD, N = 346) spectrum disorder, and 814 healthy controls (HC) were included. Twenty-five immune markers comprising cell adhesion molecules (CAMs), interleukin (IL)-18-system factors, defensins, chemokines and other markers, related to neuroinflammation, blood-brain barrier (BBB) function, inflammasome activation and immune cell orchestration were analyzed. Eight immune principal component (PC) scores were constructed by PC Analysis (PCA) and applied in general linear models with diagnosis and illness course characteristics. Results Three PC scores were significantly associated with a SCZ and/or BD diagnosis (HC reference), with largest, however small, effect sizes of scores based on CAMs, BBB markers and defensins (p < 0.001, partial η2 = 0.02-0.03). Number of psychotic episodes per year in SCZ was associated with a PC score based on IL-18 system markers and the potential neuroprotective cytokine A proliferation-inducing ligand (p = 0.006, partial η2 = 0.071). Conclusion Analyses of composite immune markers scores identified specific patterns suggesting CAMs-mediated BBB dysregulation pathways associated with SMDs and interrelated pro-inflammatory and neuronal integrity processes associated with severity of illness course. This suggests a complex pattern of immune pathways involved in SMDs and SCZ illness course.
Collapse
Affiliation(s)
| | - Thor Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- KG Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Maren Caroline Frogner Werner
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Graalum, Norway
| | - Linn Rødevand
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Andreas Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Hatzimanolis A, Foteli S, Stefanatou P, Ntigrintaki AA, Ralli I, Kollias K, Nikolaou C, Gazouli M, Stefanis NC. Deregulation of complement components C4A and CSMD1 peripheral expression in first-episode psychosis and links to cognitive ability. Eur Arch Psychiatry Clin Neurosci 2022; 272:1219-1228. [PMID: 35532796 PMCID: PMC9508018 DOI: 10.1007/s00406-022-01409-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022]
Abstract
Up-regulation of the complement component 4A (C4A) in the brain has been associated with excessive synaptic pruning and increased schizophrenia (SZ) susceptibility. Over-expression of C4A has been observed in SZ postmortem brain tissue, and the gene encoding for a protein inhibitor of C4A activity, CUB and Sushi multiple domains 1 (CSMD1) gene, has been implicated in SZ risk and cognitive ability. Herein, we examined C4A and CSMD1 mRNA expression in peripheral blood from antipsychotic-naive individuals with first-episode psychosis (FEP; n = 73) and mentally healthy volunteers (n = 48). Imputed C4 locus structural alleles and C4A serum protein levels were investigated. Associations with symptom severity and cognitive domains performance were explored. A significant decrease in CSMD1 expression levels was noted among FEP patients compared to healthy volunteers, further indicating a positive correlation between C4A and CSMD1 mRNA levels in healthy volunteers but not in FEP cases. In addition, C4 copy number variants previously associated with SZ risk correlated with higher C4A mRNA levels in FEP cases, which confirms the regulatory effect of C4 structural variants on gene expression. Evidence also emerged for markedly elevated C4A serum concentrations in FEP cases. Within the FEP patient group, higher C4A mRNA levels correlated with more severe general psychopathology symptoms and lower CSMD1 mRNA levels predicted worse working memory performance. Overall, these findings suggest C4A complement pathway perturbations in individuals with FEP and corroborate the involvement of CSMD1 in prefrontal-mediated cognitive functioning.
Collapse
Affiliation(s)
- Alex Hatzimanolis
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece.
- Neurobiological Research Institute, Theodor-Theohari Cozzika Foundation, 69-71 Souidias St., 115 21, Athens, Greece.
| | - Stefania Foteli
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Pentagiotissa Stefanatou
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Angeliki-Aikaterini Ntigrintaki
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Irene Ralli
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Konstantinos Kollias
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Chrysoula Nikolaou
- Department of Biopathology and Immunology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, School of Medicine, National and Kapodistrian University of Athens, 176 Michalakopoulou Ave., 115 27, Athens, Greece
- School of Science and Technology, Hellenic Open University, 18 Aristotelous St., 263 35, Patras, Greece
| | - Nikos C Stefanis
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
- Neurobiological Research Institute, Theodor-Theohari Cozzika Foundation, 69-71 Souidias St., 115 21, Athens, Greece
| |
Collapse
|
23
|
Susai SR, Mongan D, Healy C, Cannon M, Cagney G, Wynne K, Byrne JF, Markulev C, Schäfer MR, Berger M, Mossaheb N, Schlögelhofer M, Smesny S, Hickie IB, Berger GE, Chen EYH, de Haan L, Nieman DH, Nordentoft M, Riecher-Rössler A, Verma S, Street R, Thompson A, Ruth Yung A, Nelson B, McGorry PD, Föcking M, Paul Amminger G, Cotter D. Machine learning based prediction and the influence of complement - Coagulation pathway proteins on clinical outcome: Results from the NEURAPRO trial. Brain Behav Immun 2022; 103:50-60. [PMID: 35341915 DOI: 10.1016/j.bbi.2022.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Functional outcomes are important measures in the overall clinical course of psychosis and individuals at clinical high-risk (CHR), however, prediction of functional outcome remains difficult based on clinical information alone. In the first part of this study, we evaluated whether a combination of biological and clinical variables could predict future functional outcome in CHR individuals. The complement and coagulation pathways have previously been identified as being of relevance to the pathophysiology of psychosis and have been found to contribute to the prediction of clinical outcome in CHR participants. Hence, in the second part we extended the analysis to evaluate specifically the relationship of complement and coagulation proteins with psychotic symptoms and functional outcome in CHR. MATERIALS AND METHODS We carried out plasma proteomics and measured plasma cytokine levels, and erythrocyte membrane fatty acid levels in a sub-sample (n = 158) from the NEURAPRO clinical trial at baseline and 6 months follow up. Functional outcome was measured using Social and Occupational Functional assessment Score (SOFAS) scale. Firstly, we used support vector machine learning techniques to develop predictive models for functional outcome at 12 months. Secondly, we developed linear regression models to understand the association between 6-month follow-up levels of complement and coagulation proteins with 6-month follow-up measures of positive symptoms summary (PSS) scores and functional outcome. RESULTS AND CONCLUSION A prediction model based on clinical and biological data including the plasma proteome, erythrocyte fatty acids and cytokines, poorly predicted functional outcome at 12 months follow-up in CHR participants. In linear regression models, four complement and coagulation proteins (coagulation protein X, Complement C1r subcomponent like protein, Complement C4A & Complement C5) indicated a significant association with functional outcome; and two proteins (coagulation factor IX and complement C5) positively associated with the PSS score. Our study does not provide support for the utility of cytokines, proteomic or fatty acid data for prediction of functional outcomes in individuals at high-risk for psychosis. However, the association of complement protein levels with clinical outcome suggests a role for the complement system and the activity of its related pathway in the functional impairment and positive symptom severity of CHR patients.
Collapse
Affiliation(s)
- Subash Raj Susai
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - David Mongan
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Colm Healy
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Jonah F Byrne
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Connie Markulev
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Miriam R Schäfer
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Maximus Berger
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Nilufar Mossaheb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Monika Schlögelhofer
- BioPsyC-Biopsychosocial Corporation - Non-Profit Association for Research Funding, Vienna, Austria
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregor E Berger
- Child and Adolescent Psychiatric Service of the Canton of Zurich, Zürich, Switzerland
| | - Eric Y H Chen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - Dorien H Nieman
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Department of Clinical Medicine, Copenhagen University Hospital, Denmark
| | | | - Swapna Verma
- Institute of Mental Health, Singapore, Singapore
| | - Rebekah Street
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Andrew Thompson
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Alison Ruth Yung
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia; School of Health Sciences, University of Manchester, UK
| | - Barnaby Nelson
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Patrick D McGorry
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Melanie Föcking
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - G Paul Amminger
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - David Cotter
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
24
|
Werner MCF, Wirgenes KV, Shadrin AA, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Limited association between infections, autoimmune disease and genetic risk and immune activation in severe mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110511. [PMID: 35063598 DOI: 10.1016/j.pnpbp.2022.110511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Low-grade inflammation may be part of the underlying mechanism of schizophrenia and bipolar disorder. We investigated if genetic susceptibility, infections or autoimmunity could explain the immune activation. METHODS Seven immune markers were selected based on indicated associations to severe mental disorders (IL-1Ra, sIL-2R, IL-18, sgp130, sTNFR-1, APRIL, ICAM-1) and measured in plasma of patients with schizophrenia (SCZ, N = 732) and bipolar spectrum disorders (BD, N = 460) and healthy controls (HC, N = 938). Information on rate of infections and autoimmune diseases were obtained from Norwegian national health registries for a twelve-year period. Polygenic risk scores (PRS) of SCZ and BD were calculated from genome-wide association studies. Analysis of covariance were used to test effects of infection rate, autoimmune disease and PRS on differences in immune markers between patients and HC. RESULTS Infection rate differed between all groups (BD > HC > SCZ, all p < 0.001) whereas autoimmune disease was more frequent in BD compared to SCZ (p = 0.004) and HC (p = 0.003). sIL-2R was positively associated with autoimmune disease (p = 0.001) and negatively associated with PRS of SCZ (p = 0.006) across SCZ and HC; however, associations represented only small changes in the difference of sIL-2R levels between SCZ and HC. CONCLUSION There were few significant associations between rate of infections, autoimmune disease or PRS and altered immune markers in SCZ and BD, and the detected associations represented only small changes in the immune aberrations. The findings suggest that most of the low-grade inflammation in SCZ and BD is explained by other factors than the underlying PRS, autoimmunity and infection rates.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Sung KY, Zhang B, Wang HE, Bai YM, Tsai SJ, Su TP, Chen TJ, Hou MC, Lu CL, Wang YP, Chen MH. Schizophrenia and risk of new-onset inflammatory bowel disease: a nationwide longitudinal study. Aliment Pharmacol Ther 2022; 55:1192-1201. [PMID: 35261051 DOI: 10.1111/apt.16856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disorder with increasing global prevalence. The risk of IBD in patients with schizophrenia remains unclear. We aim to investigate the risk of new-onset IBD in patients with schizophrenia compared with matched controls. METHODS We conducted a retrospective, population-based cohort study utilising patient data from the Taiwan National Health Insurance Research Database collected between January 1, 2001, and December 31, 2011. Patients diagnosed with schizophrenia by board-certified psychiatrists without prior diagnosis of IBD were enrolled and matched to controls in 1:4 fashion by age, sex, residence, income level and medical comorbidities. Adjusted hazard ratios (HRs) for new-onset IBD and sub-analyses were determined using Cox regression analysis with adjustments. RESULTS Among 116 164 patients with schizophrenia and 464 656 matched controls, overall incidence of IBD among patients was significantly higher (1.14% vs. 0.25%). Average age of IBD diagnosis was 46.82 among patients with schizophrenia, versus 55.30 among controls. The HR of developing IBD among patients was 3.28, with a 95% confidence interval (95% CI) 2.49-4.33. IBD risk was higher among patients with psychiatric admissions more than once per year (HR 7.99, 95% CI 5.25-12.15) compared to those hospitalised less frequently (HR 2.72, 95% CI 2.03-3.66). CONCLUSIONS This population-based cohort study demonstrates a significant association between schizophrenia and subsequent IBD development. Patients with schizophrenia develop IBD at a younger age, and the risk increases with inadequately controlled schizophrenia. Physician vigilance and awareness of this correlation will improve IBD diagnosis and management among this vulnerable patient population.
Collapse
Affiliation(s)
- Kuan-Yi Sung
- Endoscopy Center for Diagnosis and Treatment, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bing Zhang
- Department of Medicine, Division of Gastrointestinal and Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hohui E Wang
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Departments of Psychiatry and Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Liang Lu
- Endoscopy Center for Diagnosis and Treatment, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Po Wang
- Endoscopy Center for Diagnosis and Treatment, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
26
|
Werner MCF, Wirgenes KV, Shadrin A, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Immune marker levels in severe mental disorders: associations with polygenic risk scores of related mental phenotypes and psoriasis. Transl Psychiatry 2022; 12:38. [PMID: 35082268 PMCID: PMC8792001 DOI: 10.1038/s41398-022-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence implicate immune abnormalities in the pathophysiology of severe mental disorders (SMD) and comorbid mental disorders. Here, we use the data from genome-wide association studies (GWAS) of autoimmune diseases and mental phenotypes associated with SMD to disentangle genetic susceptibilities of immune abnormalities in SMD. We included 1004 patients with SMD and 947 healthy controls (HC) and measured plasma levels of IL-1Ra, sIL-2R, gp130, sTNFR-1, IL-18, APRIL, and ICAM-1. Polygenic risk scores (PRS) of six autoimmune disorders, CRP, and 10 SMD-related mental phenotypes were calculated from GWAS. General linear models were applied to assess the association of PRS with immune marker abnormalities. We found negative associations between PRS of educational attainment and IL-1Ra (P = 0.01) and IL-18 (P = 0.01). There were nominal positive associations between PRS of psoriasis and sgp130 (P = 0.02) and PRS of anxiety and IL-18 (P = 0.03), and nominal negative associations between PRS of anxiety and sIL-2R (P = 0.02) and PRS of educational attainment and sIL-2R (P = 0.03). Associations explained minor amounts of the immune marker plasma-level difference between SMD and HC. Different PRS and immune marker associations in the SMD group compared to HC were shown for PRS of extraversion and IL-1Ra ([interaction effect (IE), P = 0.002), and nominally for PRS of openness and IL-1Ra (IE, P = 0.02) and sTNFR-1 (IE, P = 0.04). Our findings indicate polygenic susceptibilities to immune abnormalities in SMD involving genetic overlap with SMD-related mental phenotypes and psoriasis. Associations might suggest immune genetic factors of SMD subgroups characterized by autoimmune or specific mental features.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Inflammation Subtypes and Translating Inflammation-Related Genetic Findings in Schizophrenia and Related Psychoses: A Perspective on Pathways for Treatment Stratification and Novel Therapies. Harv Rev Psychiatry 2022; 30:59-70. [PMID: 34995036 PMCID: PMC8746916 DOI: 10.1097/hrp.0000000000000321] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulation of immunological and inflammatory processes is frequently observed in psychotic disorders. Numerous studies have examined the complex components of innate and adaptive immune processes in schizophrenia and related psychoses. Elevated inflammation in these conditions is related to neurobiological phenotypes and associated with both genetics and environmental exposures. Recent studies have utilized multivariate cytokine approaches to identify what appears to be a subset of individuals with elevated inflammation. The degree to which these findings represent a general process of dysregulated inflammation or whether there are more refined subtypes remains unclear. Brain-imaging studies have attempted to establish the link between peripheral inflammation and gray matter disruption, white matter abnormalities, and neuropsychological phenotypes. However, the interplay between peripheral inflammation and neuroinflammation, as well as the consequences of this interplay, in the context of psychosis remains unclear and requires further investigation. This Perspectives article reviews the following elements of immune dysregulation and its clinical and therapeutic implications: (1) evidence supporting inflammation and immune dysregulation in schizophrenia and related psychoses; (2) recent advances in approaches to characterizing subgroups of patients with elevated inflammation; (3) relationships between peripheral inflammation and brain-imaging indicators of neuroinflammation; (4) convergence of large-scale genetic findings and peripheral inflammation findings; and (5) therapeutic implications: anti-inflammation interventions leveraging genetic findings for drug discovery and repurposing. We offer perspectives and examples of how multiomics technologies may be useful for constructing and studying immunogenetic signatures. Advancing research in this area will facilitate biomarker discovery, disease subtyping, and the development of etiological treatments for immune dysregulation in psychosis.
Collapse
|
28
|
Bekhbat M, Treadway MT, Felger JC. Inflammation as a Pathophysiologic Pathway to Anhedonia: Mechanisms and Therapeutic Implications. Curr Top Behav Neurosci 2022; 58:397-419. [PMID: 34971449 DOI: 10.1007/7854_2021_294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Anhedonia, characterized by a lack of motivation, interest, or ability to experience pleasure, is a prominent symptom of depression and other psychiatric disorders and has been associated with poor response to standard therapies. One pathophysiologic pathway receiving increased attention for its potential role in anhedonia is inflammation and its effects on the brain. Exogenous administration of inflammatory stimuli to humans and laboratory animals has reliably been found to affect neurotransmitters and neurocircuits involved in reward processing, including the ventral striatum and ventromedial prefrontal cortex, in association with reduced motivation. Moreover, a rich literature including meta-analyses describes increased inflammation in a significant proportion of patients with depression and other psychiatric illnesses involving anhedonia, as evident by elevated inflammatory cytokines, acute phase proteins, chemokines, and adhesion molecules in both the periphery and central nervous system. This endogenous inflammation may arise from numerous sources including stress, obesity or metabolic dysfunction, genetics, and lifestyle factors, many of which are also risk factors for psychiatric illness. Consistent with laboratory studies involving exogenous administration of peripheral inflammatory stimuli, neuroimaging studies have further confirmed that increased endogenous inflammation in depression is associated with decreased activation of and reduced functional connectivity within reward circuits involving ventral striatum and ventromedial prefrontal cortex in association with anhedonia. Here, we review recent evidence of relationships between inflammation and anhedonia, while highlighting translational and mechanistic work describing the impact of inflammation on synthesis, release, and reuptake of neurotransmitters like dopamine and glutamate that affects circuits to drive motivational deficits. We will then present insight into novel pharmacological strategies that target either inflammation or its downstream effects on the brain and behavior. The meaningful translation of these concepts through appropriately designed trials targeting therapies for psychiatric patients with high inflammation and transdiagnostic symptoms of anhedonia is also discussed.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
29
|
Kim E, Zhao Z, Rzasa JR, Glassman M, Bentley WE, Chen S, Kelly DL, Payne GF. Association of acute psychosocial stress with oxidative stress: Evidence from serum analysis. Redox Biol 2021; 47:102138. [PMID: 34555595 PMCID: PMC8458980 DOI: 10.1016/j.redox.2021.102138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence implicates an association between psychosocial stress and oxidative stress (OxSt) although there are not yet reliable biomarkers to study this association. We used a Trier Social Stress Test (TSST) and compared the response of a healthy control group (HC; N=10) against the response of a schizophrenia group (SCZ; N=10) that is expected to have higher levels of OxSt. Because our previous study showed inconsistent changes in conventional molecular markers for stress responses in the neuroendocrine and immune systems, we analyzed the same serum samples using a separate reducing capacity assay that provides a more global measurement of OxSt. This assay uses the moderately strong oxidizing agent iridium (Ir) to probe a sample's reducing capacity. Specifically, we characterized OxSt by this Ir-reducing capacity assay (Ir-RCA) using two measurement modalities (optical and electrochemical) and we tuned this assay by imposing an input voltage sequence that generates multiple output metrics for data-driven analysis. We defined five OxSt metrics (one optical and four electrochemical metrics) and showed: (i) internal consistency among each metric in the measurements of all 40 samples (baseline and post TSST for N=20); (ii) all five metrics were consistent with expectations of higher levels of OxSt for the SCZ group (three individual metrics showed statistically significant differences); and (iii) all five metrics showed higher levels of OxSt Post-TSST (one metric showed statistically significant difference). Using multivariant analysis, we showed that combinations of OxSt metrics could discern statistically significant increases in OxSt for both the SCZ and HC groups 90 min after the imposed acute psychosocial stress. Ir-reducing capacity assay (Ir-RCA) provides a robust global measure of oxidative stress in serum. The multiple oxidative stress (OxSt) output metrics of this Ir-RCA are useful for data-driven analysis. The combination of OxSt metrics can discern significant increases in OxStwithin 90 mins of an imposed psychosocial stress.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Zhiling Zhao
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - John Robertson Rzasa
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Matthew Glassman
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD, 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
30
|
Togay A, Togay B, Ozbay Gediz D, Akbaş SH, Köksoy S. Levels of lymphocyte-associated regulators of complement system CD55 and CD59 are changed in schizophrenia patients. Int J Psychiatry Clin Pract 2021; 25:277-282. [PMID: 34154502 DOI: 10.1080/13651501.2021.1927105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Although pathological mechanisms of schizophrenia are unknown, evidence in the literature suggests that the immune system might be involved in the pathogenesis. Complement is an important part of the immune system and it has been suggested to play role in the pathogenesis of schizophrenia. We aimed to investigate the potential involvement of the complement system in schizophrenia by the determination of peripheral concentrations of certain complement proteins and their regulators in patients. METHODS Plasma concentrations of complement C3, C4, and C1 inhibitory protein were measured by chemiluminescence in 41 schizophrenia patients and 39 healthy controls. Expression of CD55, CD59, and CD46 proteins on peripheral blood mononuclear cells were determined by flow cytometry in the same groups. RESULTS Frequencies of peripheral immune cells expressing CD55 were determined to be significantly higher in schizophrenia patients than in healthy people (p = 0.020). Frequencies of peripheral immune cells expressing CD59 was determined to be significantly higher in healthy people than in schizophrenia patients (p = 0.012). The expression level of CD55 per cell was measured to be significantly elevated in patients compared to healthy controls (p = 0.026). CONCLUSIONS Our data clearly demonstrate an elevated complement activity in schizophrenia and points to a possible complement association in the pathogenesis.Key pointsIncreased the expression level, and frequency of CD55 in schizophrenia patients.Decreased frequency of CD59 in schizophrenia patients.No difference in the expression level of CD59; the expression level, and frequency of CD46; frequency of complement C3, C4, and C1 inhibitory protein.
Collapse
Affiliation(s)
- Alper Togay
- Department of Medical Microbiology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Bilge Togay
- Clinic of Psychiatry, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Deniz Ozbay Gediz
- Clinic of Psychiatry, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Sadıka Halide Akbaş
- Department of Biochemistry, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Sadi Köksoy
- Department of Medical Microbiology, School of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
31
|
Dawidowski B, Górniak A, Podwalski P, Lebiecka Z, Misiak B, Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J Clin Med 2021; 10:jcm10173849. [PMID: 34501305 PMCID: PMC8432006 DOI: 10.3390/jcm10173849] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a chronic mental illness of unknown etiology. A growing and compelling body of evidence implicates immunologic dysfunction as the key element in its pathomechanism. Cytokines, whose altered levels have been increasingly reported in various patient populations, are the major mediators involved in the coordination of the immune system. The available literature reports both elevated levels of proinflammatory as well as reduced levels of anti-inflammatory cytokines, and their effects on clinical status and neuroimaging changes. There is evidence of at least a partial genetic basis for the association between cytokine alterations and schizophrenia. Two other factors implicated in its development include early childhood trauma and disturbances in the gut microbiome. Moreover, its various subtypes, characterized by individual symptom severity and course, such as deficit schizophrenia, seem to differ in terms of changes in peripheral cytokine levels. While the use of a systematic review methodology could be difficult due to the breadth and diversity of the issues covered in this review, the applied narrative approach allows for a more holistic presentation. The aim of this narrative review was to present up-to-date evidence on cytokine dysregulation in schizophrenia, its effect on the psychopathological presentation, and links with antipsychotic medication. We also attempted to summarize its postulated underpinnings, including early childhood trauma and gut microbiome disturbances, and propose trait and state markers of schizophrenia.
Collapse
Affiliation(s)
- Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Adrianna Górniak
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-510-091-466
| | - Zofia Lebiecka
- Department of Health Psychology, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Medical University, 50-367 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| |
Collapse
|
32
|
Diaz-Castro B, Bernstein AM, Coppola G, Sofroniew MV, Khakh BS. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep 2021; 36:109508. [PMID: 34380036 PMCID: PMC8418871 DOI: 10.1016/j.celrep.2021.109508] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/14/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
Astrocytic contributions to neuroinflammation are widely implicated in disease, but they remain incompletely explored. We assess medial prefrontal cortex (PFC) and visual cortex (VCX) astrocyte and whole-tissue gene expression changes in mice following peripherally induced neuroinflammation triggered by a systemic bacterial endotoxin, lipopolysaccharide, which produces sickness-related behaviors, including anhedonia. Neuroinflammation-mediated behavioral changes and astrocyte-specific gene expression alterations peak when anhedonia is greatest and then reverse to normal. Notably, region-specific molecular identities of PFC and VCX astrocytes are largely maintained during reactivity changes. Gene pathway analyses reveal alterations of diverse cell signaling pathways, including changes in cell-cell interactions of multiple cell types that may underlie the central effects of neuroinflammation. Certain astrocyte molecular signatures accompanying neuroinflammation are shared with changes reported in Alzheimer's disease and mouse models. However, we find no evidence of altered neuronal survival or function in the PFC even when neuroinflammation-induced astrocyte reactivity and behavioral changes are significant.
Collapse
Affiliation(s)
- Blanca Diaz-Castro
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, Scotland EH16 4SB, UK.
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
33
|
Severance EG, Leister F, Lea A, Yang S, Dickerson F, Yolken RH. Complement C4 associations with altered microbial biomarkers exemplify gene-by-environment interactions in schizophrenia. Schizophr Res 2021; 234:87-93. [PMID: 33632634 PMCID: PMC8373622 DOI: 10.1016/j.schres.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Schizophrenia is a complex brain disorder with genetic and environmental factors contributing to its etiology. Complement C4 genes are schizophrenia susceptibility loci and are activated in response to infections and gut microbiome imbalances. We hypothesize that C4 genetic susceptibility predisposes individuals to neuropathological effects from pathogen exposures or a microbiome in dysbiosis. In 214 individuals with schizophrenia and 123 non-psychiatric controls, we examined C4 gene copy number and haplotype groups for associations with schizophrenia and microbial plasma biomarkers. C4A copy number and haplotypes containing HERV-K insertions (C4A-long; C4AL-C4AL) conferred elevated odds ratios for schizophrenia diagnoses (OR 1.58-2.56, p < 0.0001), while C4B-short (C4BS) haplogroups conferred decreased odds (OR 0.43, p < 0.0001). Haplogroup-microbe combinations showed extensive associations with schizophrenia including C4AL with Candida albicans IgG (OR 2.16, p < 0.0005), C4AL-C4BL with cytomegalovirus (CMV) IgG (OR 1.79, p < 0.008), C4BS with lipopolysaccharide-binding protein (LBP) (OR 1.18, p < 0.0001), and C4AL-C4AL with Toxoplasma gondii IgG (OR = 17.67, p < 0.0001). In controls, only one haplogroup-microbe combination was significant: C4BS with CMV IgG (OR 0.52, p < 0.02). In schizophrenia only, LBP and CMV IgG levels were inversely correlated with C4A and C4S copy numbers, respectively (R2 = 0.13-0.16, p < 0.0001). C4 haplogroups were associated with altered scores of cognitive functioning in both cases and controls and with psychiatric symptom scores in schizophrenia. Our findings link complement C4 genes with a susceptibility to infections and a dysbiotic microbiome in schizophrenia. These results support immune system mechanisms by which gene-environmental interactions may be operative in schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Robinson N, Bergen SE. Environmental Risk Factors for Schizophrenia and Bipolar Disorder and Their Relationship to Genetic Risk: Current Knowledge and Future Directions. Front Genet 2021; 12:686666. [PMID: 34262598 PMCID: PMC8273311 DOI: 10.3389/fgene.2021.686666] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric disorders which result from complex interplay between genetic and environmental factors. It is well-established that they are highly heritable disorders, and considerable progress has been made identifying their shared and distinct genetic risk factors. However, the 15-40% of risk that is derived from environmental sources is less definitively known. Environmental factors that have been repeatedly investigated and often associated with SZ include: obstetric complications, infections, winter or spring birth, migration, urban living, childhood adversity, and cannabis use. There is evidence that childhood adversity and some types of infections are also associated with BD. Evidence for other risk factors in BD is weaker due to fewer studies and often smaller sample sizes. Relatively few environmental exposures have ever been examined for SZ or BD, and additional ones likely remain to be discovered. A complete picture of how genetic and environmental risk factors confer risk for these disorders requires an understanding of how they interact. Early gene-by-environment interaction studies for both SZ and BD often involved candidate genes and were underpowered. Larger samples with genome-wide data and polygenic risk scores now offer enhanced prospects to reveal genetic interactions with environmental exposures that contribute to risk for these disorders. Overall, although some environmental risk factors have been identified for SZ, few have been for BD, and the extent to which these account for the total risk from environmental sources remains unknown. For both disorders, interactions between genetic and environmental risk factors are also not well understood and merit further investigation. Questions remain regarding the mechanisms by which risk factors exert their effects, and the ways in which environmental factors differ by sex. Concurrent investigations of environmental and genetic risk factors in SZ and BD are needed as we work toward a more comprehensive understanding of the ways in which these disorders arise.
Collapse
Affiliation(s)
| | - Sarah E. Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Linnaranta O, Trontti KT, Honkanen J, Hovatta I, Keinänen J, Suvisaari J. Peripheral metabolic state and immune system in first-episode psychosis - A gene expression study with a prospective one-year follow-up. J Psychiatr Res 2021; 137:383-392. [PMID: 33765450 DOI: 10.1016/j.jpsychires.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
he excess availability of glucose and lipids can also have an impact on the dynamics of activation and regulation of peripheral immune cellsWe aimed at understanding the correlations between peripheral metabolic state and immune system during the first year in first-episode psychosis (FEP). Patients with FEP (n = 67) and matched controls (n = 38), aged 18-40 years, were met at baseline, 2 and 12 months. Fasting peripheral blood samples were collected. We applied the NanoString nCounter in-solution hybridization technology to determine gene expression levels of 178 candidate genes reflecting activation of the immune system. Serum triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol and insulin and plasma glucose (fP-Gluc) were measured. We applied Ingenuity Pathway Analysis (IPA) to visualize enrichment of genes to functional classes. Strength of positive or negative regulation of the disease and functional pathways was deduced from IPA activation Z-score at the three evaluation points. We correlated gene expression with plasma glucose, triglycerids and HDL and LDL, and used hierarchical clustering of the pairwise correlations to identify groups of genes with similar correlation patterns with metabolic markers. In patients, initially, genes associated with the innate immune system response pathways were upregulated, which decreased by 12 months. Furthermore, genes associated with apoptosis and T cell death were downregulated, and genes associated with lipid metabolism were increasingly downregulated by 12 months. The immune activation was thus an acute phase during illness onset. At baseline, after controlling for multiple testing, 31/178 genes correlated positively with fasting glucose levels, and 54/178 genes negatively with triglycerides in patients only. The gene clusters showed patterns of correlations with metabolic markers over time. The results suggest a functional link between peripheral immune system and metabolic state in FEP. Metabolic factors may have had an influence on the initial activation of the innate immune system. Future work is necessary to understand the role of metabolic state in the regulation of immune response in the early phases of psychosis.
Collapse
Affiliation(s)
- Outi Linnaranta
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Centre for Sleep and Biological Rhythms, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, H4H 1R3, Montreal, QC, Canada; Department of Public Health Solutions, Mental Health Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland.
| | - Kalevi T Trontti
- Sleep Well Research Program, Faculty of Medicine, P.O. Box 21, FI-00014, University of Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science HiLIFE, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, P.O. Box 63, FI-00014, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- Sleep Well Research Program, Faculty of Medicine, P.O. Box 21, FI-00014, University of Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science HiLIFE, P.O. Box 21, FI-00014, University of Helsinki, Finland; Department of Psychology and Logopedics, Medicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Jaakko Keinänen
- Department of Public Health Solutions, Mental Health Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland; Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 590, FI-00029, Helsinki, Finland
| | - Jaana Suvisaari
- Department of Public Health Solutions, Mental Health Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
36
|
Levchenko A, Kanapin A, Samsonova A, Fedorenko OY, Kornetova EG, Nurgaliev T, Mazo GE, Semke AV, Kibitov AO, Bokhan NA, Gainetdinov RR, Ivanova SA. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110134. [PMID: 33065217 DOI: 10.1016/j.pnpbp.2020.110134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
In the present study we conducted a genome-wide association study (GWAS) in a cohort of 505 patients with paranoid schizophrenia (SCZ), of which 95 had tardive dyskinesia (TD), and 503 healthy controls. Using data generated by the PsychENCODE Consortium (PEC) and other bioinformatic databases, we revealed a gene network, implicated in neurodevelopment and brain function, associated with both these disorders. Almost all these genes are in gene or isoform co-expression PEC network modules important for the functioning of the brain; the activity of these networks is also altered in SCZ, bipolar disorder and autism spectrum disorders. The associated PEC network modules are enriched for gene ontology terms relevant to the brain development and function (CNS development, neuron development, axon ensheathment, synapse, synaptic vesicle cycle, and signaling receptor activity) and to the immune system (inflammatory response). Results of the present study suggest that orofacial and limbtruncal types of TD seem to share the molecular network with SCZ. Paranoid SCZ and abnormal involuntary movements that indicate the orofacial type of TD are associated with the same genomic loci on chromosomes 3p22.2, 8q21.13, and 13q14.2. The limbtruncal type of TD is associated with a locus on chromosome 3p13 where the best functional candidate is FOXP1, a high-confidence SCZ gene. The results of this study shed light on common pathogenic mechanisms for SCZ and TD, and indicate that the pathogenesis of the orofacial and limbtruncal types of TD might be driven by interacting genes implicated in neurodevelopment.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | | | - Galina E Mazo
- Department of Endocrine Psychiatry, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexander O Kibitov
- Department of Endocrine Psychiatry, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russia; Laboratory of Molecular Genetics, Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
37
|
Schizophrenia: Complement Cleaning or Killing. Genes (Basel) 2021; 12:genes12020259. [PMID: 33670154 PMCID: PMC7916832 DOI: 10.3390/genes12020259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with a typical onset occurring during adolescence or young adulthood. The heterogeneity of the disorder complicates our understanding of the pathophysiology. Reduced cortical synaptic densities are commonly observed in schizophrenia and suggest a role for excessive synaptic elimination. A major pathway hypothesised to eliminate synapses during postnatal development is the complement system. This review provides an overview of genetic and functional evidence found for the individual players of the classical complement pathway. In addition, the consequences of the absence of complement proteins, in the form of complement protein deficiencies in humans, are taken into consideration. The collective data provide strong evidence for excessive pruning by the classical complement pathway, contributing to cognitive impairment in schizophrenia. In future studies, it will be important to assess the magnitude of the contribution of complement overactivity to the occurrence and prevalence of phenotypic features in schizophrenia. In addition, more insight is required for the exact mechanisms by which the complement system causes excessive pruning, such as the suggested involvement of microglial engulfment and degradation of synapses. Ultimately, this knowledge is a prerequisite for the development of therapeutic interventions for selective groups of schizophrenia patients.
Collapse
|
38
|
Gibbons AS, Hoyer D, Dean B. SMAD4 protein is decreased in the dorsolateral prefrontal and anterior cingulate cortices in schizophrenia. World J Biol Psychiatry 2021; 22:70-77. [PMID: 32081064 DOI: 10.1080/15622975.2020.1733081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Signal transduction through the mothers against decapentaplegic (SMAD) is a family of signal transduction factors that mediate signalling of the transforming growth factor B (TGFB)-superfamily of cell regulatory proteins. A recent transcriptomic analysis of post-mortem, cortical tissue from subjects with schizophrenia found decreased mRNA expression of SMAD2 and SMAD4 in the dorsolateral prefrontal cortex (DLPFC) associated with the disorder. To expand this initial finding, we sought to determine whether SMAD2 and SMAD4 protein were also altered in the cortex from subjects with schizophrenia. METHODS Western blotting was used to measure SMAD2 and SMAD4 protein levels in DLPFC and anterior cingulate cortex (ACC) taken post-mortem from subjects with schizophrenia (n = 20) and matched control (n = 20) subjects. RESULTS Compared to controls, levels of SMAD4 were 25% lower in the DLPFC and 38% lower in the ACC from subjects with schizophrenia. By contrast, SMAD2 levels were not altered in either DLPFC or ACC. CONCLUSIONS Our finding of lower SMAD4 protein in the cortex suggests there are likely to be abnormalities in cortical TGFB-superfamily signalling in schizophrenia.
Collapse
Affiliation(s)
- Andrew S Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.,The Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.,Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
39
|
Ochoa-Repáraz J, Ramelow CC, Kasper LH. A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Front Immunol 2020; 11:510113. [PMID: 33193297 PMCID: PMC7604426 DOI: 10.3389/fimmu.2020.510113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal microbiota constitutes a complex ecosystem in constant reciprocal interactions with the immune, neuroendocrine, and neural systems of the host. Recent molecular technological advances allow for the exploration of this living organ and better facilitates our understanding of the biological importance of intestinal microbes in health and disease. Clinical and experimental studies demonstrate that intestinal microbes may be intimately involved in the progression of diseases of the central nervous system (CNS), including those of affective and psychiatric nature. Gut microbes regulate neuroinflammatory processes, play a role in balancing the concentrations of neurotransmitters and could provide beneficial effects against neurodegeneration. In this review, we explore some of these reciprocal interactions between gut microbes and the CNS during experimental disease and suggest that therapeutic approaches impacting the gut-brain axis may represent the next avenue for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| |
Collapse
|
40
|
Fahey L, Donohoe G, Broin PÓ, Morris DW. Genes regulated by BCL11B during T-cell development are enriched for de novo mutations found in schizophrenia patients. Am J Med Genet B Neuropsychiatr Genet 2020; 183:370-379. [PMID: 32729240 DOI: 10.1002/ajmg.b.32811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 11/06/2022]
Abstract
While abnormal neurodevelopment contributes to schizophrenia (SCZ) risk, there is also evidence to support a role for immune dysfunction in SCZ. BCL11B, associated with SCZ in genome-wide association study (GWAS), is a transcription factor that regulates the differentiation and development of cells in the central nervous and immune systems. Here, we use functional genomics data from studies of BCL11B to investigate the contribution of neuronal and immune processes to SCZ pathophysiology. We identified the gene targets of BCL11B in brain striatal cells (n = 223 genes), double negative 4 (DN4) developing T cells (n = 114 genes) and double positive (DP) developing T cells (n = 518 genes) using an integrated analysis of RNA-seq and ChIP-seq data. No gene-set was enriched for genes containing common variants associated with SCZ but the DP gene-set was enriched for genes containing missense de novo mutations (DNMs; p = .001) using data from 3,447 SCZ trios. Post hoc analysis revealed the enrichment to be stronger for DP genes negatively regulated by BCL11B. Biological processes enriched for genes negatively regulated by BCL11B in DP gene-set included immune system development and cytokine signaling. These analyses, leveraging a GWAS-identified SCZ risk gene and data on gene expression and transcription factor binding, indicate that DNMs in immune pathways contribute to SCZ risk.
Collapse
Affiliation(s)
- Laura Fahey
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
41
|
Bergantin LB. A link among schizophrenia, diabetes, and asthma: Role of Ca2 +/cAMP signaling. Brain Circ 2020; 6:145-151. [PMID: 33210037 PMCID: PMC7646390 DOI: 10.4103/bc.bc_66_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/29/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023] Open
Abstract
Asthma has been associated with an increased risk for developing schizophrenia. In addition, schizophrenia has been associated with an increased risk for developing type 2 diabetes mellitus, resulting in an elevated cardiovascular risk and in a limited life expectancy. It is well discussed that dysregulations related to Ca2+ signaling could link these diseases, in addition to cAMP signaling pathways. Thus, revealing this interplay among schizophrenia, diabetes, and asthma may provide novel insights into the pathogenesis of these diseases. Publications involving Ca2+ and cAMP signaling pathways, schizophrenia, diabetes, and asthma (alone or combined) were collected by searching PubMed and EMBASE. Both Ca2+ and cAMP signaling pathways (Ca2+/cAMP signaling) control the release of neurotransmitters and hormones, in addition to airway smooth muscle contractility, then dysregulations of these cellular processes may be involved in these diseases. Taking into consideration, the experience of our group in this field, this narrative review debated the involvement of Ca2+/cAMP signaling in this link among schizophrenia, diabetes, and asthma, including its pharmacological implications.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Severance EG, Dickerson F, Yolken RH. Complex Gastrointestinal and Endocrine Sources of Inflammation in Schizophrenia. Front Psychiatry 2020; 11:549. [PMID: 32625121 PMCID: PMC7313532 DOI: 10.3389/fpsyt.2020.00549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
A low level, inflammatory phenotype is prevalent in individuals with schizophrenia, but the source of this inflammation is not known. Studies of the gut-brain axis indicate that this inflammation may be related to the translocation of intestinal microbes across a permeabilized gut-vasculature barrier. In addition, studies of the endocrine system support that this inflammation may derive from effects of stress hormones and metabolic imbalances. Gastrointestinal (GI) and endocrine conditions are not mutually exclusive, but rather may have additive effects to produce this inflammatory phenotype in schizophrenia. Here, we examined a series of plasma biomarkers used to measure general inflammation and presumably microbial, gut-derived inflammation in 409 individuals with schizophrenia: c-reactive protein (CRP), lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), and IgG antibodies to S. cerevisiae, bovine milk casein, and wheat gluten. Individuals were stratified according to whether or not they had a comorbid GI or endocrine condition, both, or neither. In multivariate regression models, the presence of GI and endocrine conditions was additive for the GI-based marker, LBP, with significant associations only when both conditions were present compared to when both conditions were absent (OR = 2.32, 95th% CI 1.05-5.13, p < 0.03). In contrast, the marker of general inflammation, CRP, was strongly associated with primarily endocrine conditions (OR = 3.64, 95th% CI 1.35-9.84, p < 0.05). Overall associations were largely driven by the GI condition, gastroesophageal reflux disease (GERD), and by the endocrine condition, obesity. In univariate comparisons, S. cerevisiae IgG levels were significantly elevated only in persons with GI conditions (p < 0.02), whereas antibodies to the food antigens were elevated in the presence of either or both conditions (p < 0.005-0.04). More severe psychiatric symptoms were associated only with GI conditions (p < 0.01-0.04). In conclusion, both GI and endocrine abnormalities may contribute to inflammation in schizophrenia, sometimes independently and sometimes as part of interactions which may represent complex integrated pathways. The accumulating evidence for multisystem inflammation in schizophrenia may lead to the development of new strategies to prevent and treat this devastating disorder.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
Kiliç F, Işik Ü, Demirdaş A, Usta A. Serum galectin-3 levels are decreased in schizophrenia. ACTA ACUST UNITED AC 2020; 42:398-402. [PMID: 32159713 PMCID: PMC7430395 DOI: 10.1590/1516-4446-2019-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Objective: To determine whether changes in serum galectin-3 (gal-3) concentrations in schizophrenia patients have etiopathogenetic importance. Since very little research has assessed the connection between galectins and schizophrenia, we wanted to examine alterations in the inflammatory marker gal-3 in schizophrenia and investigate possible correlations between clinical symptomatology and serum concentrations. Methods: Forty-eight schizophrenia patients and 44 healthy controls were included in this study. The Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS) were administered to determine symptom severity. Venous blood samples were collected, and serum gal-3 levels were measured. Results: Mean serum gal-3 levels were significantly lower in schizophrenia patients, and there were no significant differences in age or sex with the control group. There was also a significant positive correlation between serum gal-3 concentrations and negative schizophrenia symptoms according to the SANS. Conclusion: The results indicate that gal-3 is decreased in schizophrenia patients, which could contribute to inflammation in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Faruk Kiliç
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ümit Işik
- Department of Child and Adolescent Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ayşe Usta
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
44
|
Dennison CA, Legge SE, Pardiñas AF, Walters JTR. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophr Res 2020; 217:4-12. [PMID: 31780348 DOI: 10.1016/j.schres.2019.10.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWAS) have proved to be a powerful approach for gene discovery in schizophrenia; their findings have important implications not just for our understanding of the genetic architecture of the disorder, but for the potential applications of personalised medicine through improved classification and targeted interventions. In this article we review the current status of the GWAS literature in schizophrenia including functional annotation methods and polygenic risk scoring, as well as the directions and challenges of future research. We consider recent findings in East Asian populations and the advancements from trans-ancestry analysis, as well as the insights gained from research looking across psychiatric disorders.
Collapse
Affiliation(s)
- Charlotte A Dennison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
45
|
van Mierlo HC, Schot A, Boks MPM, de Witte LD. The association between schizophrenia and the immune system: Review of the evidence from unbiased 'omic-studies'. Schizophr Res 2020; 217:114-123. [PMID: 31130400 DOI: 10.1016/j.schres.2019.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/04/2023]
Abstract
A role for immune processes in the pathogenesis of schizophrenia has been suggested by genetic and epidemiological studies, as well as cross-sectional studies on blood and brain samples. However, results are heterogeneous, which is likely caused by low samples sizes, insufficient control of confounders that influence immune processes, and potentially publication bias. Large hypothesis-free 'omic' studies partially circumvent these problems and could provide further evidence for a role of immune pathways in schizophrenia. In this review we assessed whether the largest genome, transcriptome and methylome studies in schizophrenia to date support a link with the immune system. We constructed an overview of the schizophrenia-associated genes and transcripts that were identified in these large 'omic' studies. We then performed a hypothesis-driven analysis to examine the association and enrichment of immune system-related genes and transcripts in these datasets. Additionally, we reviewed secondary analyses that were previously performed on these 'omic' studies. Except for the link between complement factor 4 (C4), we found limited evidence for a role of microglia and immune processes among genetic risk variants. Transcriptome and methylome studies point towards alterations in immune system related genes, pathways and cells. This includes changes in microglia, as well as complement, nuclear factor-κB, toll-like receptor and interferon signaling pathways. Many of these associated immune-related genes and pathways have been shown to be involved in neurodevelopment and neuronal functioning. Additional replication of these findings is needed, but once further conformation is provided, these findings could be a potentially interesting target for future therapies.
Collapse
Affiliation(s)
- Hans C van Mierlo
- Department of Psychiatry, UMC Utrecht Brain Center, 3508GA Utrecht, the Netherlands
| | - Aron Schot
- Department of Psychiatry, UMC Utrecht Brain Center, 3508GA Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, UMC Utrecht Brain Center, 3508GA Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, United States of America; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, United States of America.
| |
Collapse
|
46
|
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 2020; 11:72. [PMID: 32174851 PMCID: PMC7054463 DOI: 10.3389/fpsyt.2020.00072] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
Collapse
Affiliation(s)
- Adrianna P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Conrad O. Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, United States
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A. Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
47
|
Rahman RU, Liebhoff AM, Bansal V, Fiosins M, Rajput A, Sattar A, Magruder DS, Madan S, Sun T, Gautam A, Heins S, Liwinski T, Bethune J, Trenkwalder C, Fluck J, Mollenhauer B, Bonn S. SEAweb: the small RNA Expression Atlas web application. Nucleic Acids Res 2020; 48:D204-D219. [PMID: 31598718 PMCID: PMC6943056 DOI: 10.1093/nar/gkz869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
We present the Small RNA Expression Atlas (SEAweb), a web application that allows for the interactive querying, visualization and analysis of known and novel small RNAs across 10 organisms. It contains sRNA and pathogen expression information for over 4200 published samples with standardized search terms and ontologies. In addition, SEAweb allows for the interactive visualization and re-analysis of 879 differential expression and 514 classification comparisons. SEAweb's user model enables sRNA researchers to compare and re-analyze user-specific and published datasets, highlighting common and distinct sRNA expression patterns. We provide evidence for SEAweb's fidelity by (i) generating a set of 591 tissue specific miRNAs across 29 tissues, (ii) finding known and novel bacterial and viral infections across diseases and (iii) determining a Parkinson's disease-specific blood biomarker signature using novel data. We believe that SEAweb's simple semantic search interface, the flexible interactive reports and the user model with rich analysis capabilities will enable researchers to better understand the potential function and diagnostic value of sRNAs or pathogens across tissues, diseases and organisms.
Collapse
Affiliation(s)
- Raza-Ur Rahman
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anna-Maria Liebhoff
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vikas Bansal
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Maksims Fiosins
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
- Genevention GmbH, 37079 Göttingen, Germany
| | - Ashish Rajput
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Abdul Sattar
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Daniel S Magruder
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Genevention GmbH, 37079 Göttingen, Germany
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Abhivyakti Gautam
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sven Heins
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Timur Liwinski
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jörn Bethune
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juliane Fluck
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Institute of Geodesy and Geoinformation, University of Bonn, 53115 Bonn, Germany
- German National Library of Medicine (ZB MED) - Information Centre for Life Sciences, 53115 Bonn, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
- Institute of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Colijn MA, Ismail Z. Clinically Relevant Anti-Neuronal Cell Surface Antibodies in Schizophrenia Spectrum Disorders. Neuropsychobiology 2019; 78:70-78. [PMID: 31096226 DOI: 10.1159/000499714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/19/2019] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a phenotypically heterogeneous and poorly understood disorder. While its etiology is likely multifactorial, immune system dysfunction has increasingly been implicated in its development. As hallucinations and delusions occur frequently and prominently in autoimmune encephalitis (AE), numerous studies have sought to determine whether a small subset of individuals diagnosed with schizophrenia possess anti-neuronal antibodies implicated in AE. Exploring this possibility is of clinical relevance, as identifying individuals with AE who have been misdiagnosed as having a primary psychotic disorder may allow for the implementation of appropriate immune-related therapies as early as possible in the course of the illness, in order to optimize outcomes, reduce illness chronicity, and minimize adverse events. This qualitative review serves to provide an overview of the existing literature on this topic, as well as to update previously published reviews. Although there is some evidence to suggest that in rare cases AE may be misdiagnosed as a primary psychotic disorder, particularly early in the course of the illness, numerous methodological differences between studies likely account for the highly variable findings, and interpretation of the results is particularly limited by a paucity of cerebrospinal fluid data. Moreover, the prevalence of misdiagnosis in chronic and treatment-resistant populations remains understudied. This is particularly problematic, as treatment resistance may represent an enriched population with respect to the presence of anti-neuronal antibodies, and given that such patients have few evidence-based treatment options available to them beyond clozapine.
Collapse
Affiliation(s)
| | - Zahinoor Ismail
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental HealthResearch and Education, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University ofCalgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M. The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: the IRS-CIRS Theory of Schizophrenia. Mol Neurobiol 2019; 57:778-797. [PMID: 31473906 DOI: 10.1007/s12035-019-01737-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Several lines of evidence indicate that aberrations in immune-inflammatory pathways may contribute to the pathophysiology of schizophrenia spectrum disorders. Here, we propose a novel theoretical framework that was previously developed for major depression and bipolar disorder, namely, the compensatory immune-regulatory reflex system (CIRS), as applied to the neuro-immune pathophysiology of schizophrenia and its phenotypes, including first-episode psychosis (FEP), acute relapses, chronic and treatment-resistant schizophrenia (TRS), comorbid depression, and deficit schizophrenia. These schizophrenia phenotypes and manifestations are accompanied by increased production of positive acute-phase proteins, including haptoglobin and α2-macroglobulin, complement factors, and macrophagic M1 (IL-1β, IL-6, and TNF-α), T helper (Th)-1 (interferon-γ and IL-2R), Th-2 (IL-4, IL-5), Th-17 (IL-17), and T regulatory (Treg; IL-10 and transforming growth factor (TGF)-β1) cytokines, cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway, and chemokines, including CCL-11 (eotaxin), CCL-2, CCL-3, and CXCL-8. While the immune profiles in the different schizophrenia phenotypes indicate the activation of the immune-inflammatory response system (IRS), there are simultaneous signs of CIRS activation, including increased levels of the IL-1 receptor antagonist (sIL-1RA), sIL-2R and tumor necrosis factor-α receptors, Th-2 and Treg phenotypes with increased IL-4 and IL-10 production, and increased levels of TRYCATs and haptoglobin, α2-macroglobulin, and other acute-phase reactants, which have immune-regulatory and anti-inflammatory effects. Signs of activated IRS and CIRS pathways are also detected in TRS, chronic, and deficit schizophrenia, indicating that these conditions are accompanied by a new homeostatic setpoint between upregulated IRS and CIRS components. In FEP, increased baseline CIRS activity is a protective factor that may predict favorable clinical outcomes. Moreover, impairments in the CIRS are associated with deficit schizophrenia and greater impairments in semantic and episodic memory. It is concluded that CIRS plays a key role in the pathophysiology of schizophrenia by negatively regulating the primary IRS and contributing to recovery from the acute phase of illness. Therefore, components of the CIRS may offer promising therapeutic targets for schizophrenia.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cristiano Noto
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andre F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, M6J 1H4, Canada
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic, Australia.
| |
Collapse
|
50
|
Mäki-Marttunen T, Kaufmann T, Elvsåshagen T, Devor A, Djurovic S, Westlye LT, Linne ML, Rietschel M, Schubert D, Borgwardt S, Efrim-Budisteanu M, Bettella F, Halnes G, Hagen E, Næss S, Ness TV, Moberget T, Metzner C, Edwards AG, Fyhn M, Dale AM, Einevoll GT, Andreassen OA. Biophysical Psychiatry-How Computational Neuroscience Can Help to Understand the Complex Mechanisms of Mental Disorders. Front Psychiatry 2019; 10:534. [PMID: 31440172 PMCID: PMC6691488 DOI: 10.3389/fpsyt.2019.00534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The brain is the most complex of human organs, and the pathophysiology underlying abnormal brain function in psychiatric disorders is largely unknown. Despite the rapid development of diagnostic tools and treatments in most areas of medicine, our understanding of mental disorders and their treatment has made limited progress during the last decades. While recent advances in genetics and neuroscience have a large potential, the complexity and multidimensionality of the brain processes hinder the discovery of disease mechanisms that would link genetic findings to clinical symptoms and behavior. This applies also to schizophrenia, for which genome-wide association studies have identified a large number of genetic risk loci, spanning hundreds of genes with diverse functionalities. Importantly, the multitude of the associated variants and their prevalence in the healthy population limit the potential of a reductionist functional genetics approach as a stand-alone solution to discover the disease pathology. In this review, we outline the key concepts of a "biophysical psychiatry," an approach that employs large-scale mechanistic, biophysics-founded computational modelling to increase transdisciplinary understanding of the pathophysiology and strive toward robust predictions. We discuss recent scientific advances that allow a synthesis of previously disparate fields of psychiatry, neurophysiology, functional genomics, and computational modelling to tackle open questions regarding the pathophysiology of heritable mental disorders. We argue that the complexity of the increasing amount of genetic data exceeds the capabilities of classical experimental assays and requires computational approaches. Biophysical psychiatry, based on modelling diseased brain networks using existing and future knowledge of basic genetic, biochemical, and functional properties on a single neuron to a microcircuit level, may allow a leap forward in deriving interpretable biomarkers and move the field toward novel treatment options.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anna Devor
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dirk Schubert
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Magdalena Efrim-Budisteanu
- Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Francesco Bettella
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Halnes
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Hagen
- Department of Physics, University of Oslo, Oslo, Norway
| | - Solveig Næss
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn V. Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christoph Metzner
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, United Kingdom
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität zu Berlin, Berlin, Germany
| | - Andrew G. Edwards
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders M. Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Gaute T. Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|