1
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
2
|
Siafakas N, Anastassopoulou C, Pournaras S, Tsakris A, Alevizakis E, Kympouropoulos S, Spandidos DA, Rizos E. Viruses and psychiatric disorders: We have not crossed the borderline from hypothesis to proof yet (Review). Mol Med Rep 2025; 31:61. [PMID: 39749697 PMCID: PMC11711936 DOI: 10.3892/mmr.2024.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Most psychiatric disorders are heterogeneous and are attributed to the synergistic action of a multitude of factors. It is generally accepted that psychiatric disorders are the outcome of interactions between genetic predisposition and environmental perturbations, which involve psychosocial stress, or alterations in the physiological state of the organism. A number of hypotheses have been presented on such environmental influences that may include direct insults such as injury, malnutrition and hostile living conditions, or indirect sequelae following infection from viruses such as influenza, arboviruses, enteroviruses and several herpesviruses, or the differential expression of human endogenous retroviruses. It is known that the concept of viruses is far more extensive than their perception as mere agents of acute infections, or chronic debilitating diseases, such as AIDS or some forms of cancer. Notably, an apparent causal connection between viruses and the pathophysiology of diseases has been suggested; however, it remains unclear as to how to establish this causal connection. There are inherent difficulties in answering this question with certainty, which may be due to the multitude of genetic and environmental influences that can lead to psychopathology; the latent state of chronic infection exhibited by a number of neurotropic viruses; the late onset of psychiatric disorders with respect to the acute phase of viral infection at which detection tests would be successful; the complexity of the virome; and the existence of thousands of viral species. The present review aims to provide an outline of the conclusions that have thus far been reached regarding a possible association between viral infection and psychiatric disease, and the obstacles confronted during the quest for the truth behind the role of viruses.
Collapse
Affiliation(s)
- Nikolaos Siafakas
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Cleo Anastassopoulou
- Laboratory of Microbiology, National and Kapodistrian University of Athens, Medical School, 11527 Athens, Greece
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Athanasios Tsakris
- Laboratory of Microbiology, National and Kapodistrian University of Athens, Medical School, 11527 Athens, Greece
| | - Evangelos Alevizakis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Stylianos Kympouropoulos
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
3
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
4
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Byrne JF, Healy C, Föcking M, Susai SR, Mongan D, Wynne K, Kodosaki E, Heurich M, de Haan L, Hickie IB, Smesny S, Thompson A, Markulev C, Young AR, Schäfer MR, Riecher-Rössler A, Mossaheb N, Berger G, Schlögelhofer M, Nordentoft M, Chen EYH, Verma S, Nieman DH, Woods SW, Cornblatt BA, Stone WS, Mathalon DH, Bearden CE, Cadenhead KS, Addington J, Walker EF, Cannon TD, Cannon M, McGorry P, Amminger P, Cagney G, Nelson B, Jeffries C, Perkins D, Cotter DR. Proteomic Biomarkers for the Prediction of Transition to Psychosis in Individuals at Clinical High Risk: A Multi-cohort Model Development Study. Schizophr Bull 2024; 50:579-588. [PMID: 38243809 PMCID: PMC11059811 DOI: 10.1093/schbul/sbad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Psychosis risk prediction is one of the leading challenges in psychiatry. Previous investigations have suggested that plasma proteomic data may be useful in accurately predicting transition to psychosis in individuals at clinical high risk (CHR). We hypothesized that an a priori-specified proteomic prediction model would have strong predictive accuracy for psychosis risk and aimed to replicate longitudinal associations between plasma proteins and transition to psychosis. This study used plasma samples from participants in 3 CHR cohorts: the North American Prodrome Longitudinal Studies 2 and 3, and the NEURAPRO randomized control trial (total n = 754). Plasma proteomic data were quantified using mass spectrometry. The primary outcome was transition to psychosis over the study follow-up period. Logistic regression models were internally validated, and optimism-corrected performance metrics derived with a bootstrap procedure. In the overall sample of CHR participants (age: 18.5, SD: 3.9; 51.9% male), 20.4% (n = 154) developed psychosis within 4.4 years. The a priori-specified model showed poor risk-prediction accuracy for the development of psychosis (C-statistic: 0.51 [95% CI: 0.50, 0.59], calibration slope: 0.45). At a group level, Complement C8B, C4B, C5, and leucine-rich α-2 glycoprotein 1 (LRG1) were associated with transition to psychosis but did not surpass correction for multiple comparisons. This study did not confirm the findings from a previous proteomic prediction model of transition from CHR to psychosis. Certain complement proteins may be weakly associated with transition at a group level. Previous findings, derived from small samples, should be interpreted with caution.
Collapse
Affiliation(s)
- Jonah F Byrne
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Department of Psychology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Eleftheria Kodosaki
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Jena, Germany
| | - Andrew Thompson
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Connie Markulev
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Alison Ruth Young
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Miriam R Schäfer
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | | | - Nilufar Mossaheb
- Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Monika Schlögelhofer
- BioPsyC—Biopsychosocial Corporation, Non-profit Association for Research Funding Ltd, Vienna, Austria
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Research Unit (CORE), Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric Y H Chen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Swapna Verma
- Office of Education, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Psychosis & East Region, Institute of Mental Health, Singapore, Singapore
| | - Dorien H Nieman
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - William S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Mental Health Service 116d, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, CA, USA
| | | | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Department of Psychiatry, Beaumont Hospital, Dublin 9, Ireland
| | - Pat McGorry
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Paul Amminger
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Diana Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Department of Psychiatry, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
6
|
Bransfield RC, Mao C, Greenberg R. Microbes and Mental Illness: Past, Present, and Future. Healthcare (Basel) 2023; 12:83. [PMID: 38200989 PMCID: PMC10779437 DOI: 10.3390/healthcare12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
A review of the association between microbes and mental illness is performed, including the history, relevant definitions, infectious agents associated with mental illnesses, complex interactive infections, total load theory, pathophysiology, psychoimmunology, psychoneuroimmunology, clinical presentations, early-life infections, clinical assessment, and treatment. Perspectives on the etiology of mental illness have evolved from demonic possession toward multisystem biologically based models that include gene expression, environmental triggers, immune mediators, and infectious diseases. Microbes are associated with a number of mental disorders, including autism, schizophrenia, bipolar disorder, depressive disorders, and anxiety disorders, as well as suicidality and aggressive or violent behaviors. Specific microbes that have been associated or potentially associated with at least one of these conditions include Aspergillus, Babesia, Bartonella, Borna disease virus, Borrelia burgdorferi (Lyme disease), Candida, Chlamydia, coronaviruses (e.g., SARS-CoV-2), Cryptococcus neoformans, cytomegalovirus, enteroviruses, Epstein-Barr virus, hepatitis C, herpes simplex virus, human endogenous retroviruses, human immunodeficiency virus, human herpesvirus-6 (HHV-6), human T-cell lymphotropic virus type 1, influenza viruses, measles virus, Mycoplasma, Plasmodium, rubella virus, Group A Streptococcus (PANDAS), Taenia solium, Toxoplasma gondii, Treponema pallidum (syphilis), Trypanosoma, and West Nile virus. Recognition of the microbe and mental illness association with the development of greater interdisciplinary research, education, and treatment options may prevent and reduce mental illness morbidity, disability, and mortality.
Collapse
Affiliation(s)
- Robert C. Bransfield
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Hackensack Meridian School of Medicine, Nutey, NJ 07110, USA
| | | | | |
Collapse
|
7
|
El Abdellati K, Lucas A, Perron H, Tamouza R, Nkam I, Richard JR, Fried S, Barau C, Djonouma N, Pinot A, Fourati S, Rodriguez C, Coppens V, Meyer U, Morrens M, De Picker L, Leboyer M. High unrecognized SARS-CoV-2 exposure of newly admitted and hospitalized psychiatric patients. Brain Behav Immun 2023; 114:500-510. [PMID: 37741299 DOI: 10.1016/j.bbi.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Patients with pre-existing mental disorders are at higher risk for SARS-CoV-2 infection and adverse outcomes, and severe mental illness, including mood and psychosis spectrum disorders, is associated with increased mortality risk. Despite their increased risk profile, patients with severe mental illness have been understudied during the pandemic, with limited estimates of exposure in inpatient settings. OBJECTIVE The aim of this study was to describe the SARS-CoV-2 seroprevalence and antibody titers, and pro-inflammatory cytokine concentrations of newly admitted or hospitalized psychiatric inpatients without known history of COVID-19 infection, using robust quantitative multi-antigen assessments, and compare patients' exposure to that of hospital staff. METHODS This multi-centric, cross-sectional study compared SARS-CoV-2 seroprevalence and titers of 285 patients (University Psychiatric Centre Duffel [UPCD] N = 194; Assistance-Publique-Hopitaux de Paris [AP-HP] N = 91), and 192 hospital caregivers (UPCD N = 130; AP-HP N = 62) at two large psychiatric care facilities between January 1st and the May 30th 2021. Serum levels of SARS-CoV-2 antibodies against Spike proteins (full length), spike subunit 1 (S1), spike subunit 2 (S2), spike subunit 1 receptor binding domain (S1-RBD) and Nucleocapsid proteins were quantitatively determined using an advanced capillary Western Blot technique. To assess the robustness of the between-group seroprevalence differences, we performed sensitivity analyses with stringent cut-offs for seropositivity. We also assessed peripheral concentrations of IL-6, IL-8 and TNF-a using ELLA assays. Secondary analyses included comparisons of SARS-CoV-2 seroprevalence and titers between patient diagnostic subgroups, and between newly admitted (hospitalization ≤ 7 days) and hospitalized patients (hospitalization > 7 days) and correlations between serological and cytokines. RESULTS Patients had a significantly higher SARS-CoV-2 seroprevalence (67.85 % [95% CI 62.20-73.02]) than hospital caregivers (27.08% [95% CI 21.29-33.77]), and had significantly higher global SARS-CoV-2 titers (F = 29.40, df = 2, p < 0.0001). Moreover, patients had a 2.51-fold (95% CI 1.95-3.20) higher SARS-CoV-2 exposure risk compared to hospital caregivers (Fisher's exact test, P < 0.0001). No difference was found in SARS-CoV-2 seroprevalence and titers between patient subgroups. Patients could be differentiated most accurately from hospital caregivers by their higher Spike protein titers (OR 136.54 [95% CI 43.08-481.98], P < 0.0001), lower S1 (OR 0.06 [95% CI 0.02-0.15], P < 0.0001) titers and higher IL-6 (OR 3.41 [95% CI 1.73-7.24], P < 0.0001) and TNF-α (OR 34.29 [95% CI 5.00-258.87], P < 0.0001) and lower titers of IL-8 (OR 0.13 [95% CI 0.05-0.30], P < 0.0001). Seropositive patients had significantly higher SARS-COV-2 antibody titers compared to seropositive hospital caregivers (F = 19.53, df = 2, P < 0.0001), while titers were not different in seronegative individuals. Pro-inflammatory cytokine concentrations were not associated with serological status. CONCLUSION Our work demonstrated a very high unrecognized exposure to SARS-CoV-2 among newly admitted and hospitalized psychiatric inpatients, which is cause for concern in the context of highly robust evidence of adverse outcomes following COVID-19 in psychiatric patients. Attention should be directed toward monitoring and mitigating exposure to infectious agents within psychiatric hospitals.
Collapse
Affiliation(s)
- K El Abdellati
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium.
| | - A Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), plateau We-Met, Inserm UMR1297 and Université Paul Sabatier, Toulouse, France
| | - H Perron
- GeNeuro, Plan-les-Ouates, Geneva, Switzerland; Geneuro-Innovation, Lyon, France
| | - R Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University, Fondation FondaMental, 94010 Créteil, France; ECNP Immuno-NeuroPsychiatry Network
| | - I Nkam
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University, Fondation FondaMental, 94010 Créteil, France
| | - J-R Richard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University, Fondation FondaMental, 94010 Créteil, France
| | - S Fried
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), plateau We-Met, Inserm UMR1297 and Université Paul Sabatier, Toulouse, France
| | - C Barau
- Plateforme de resources biologiques, Hôpital Universitaire Henri Mondor, Université Paris Est Créteil, Créteil, France
| | - N Djonouma
- Département Hospitalo-Universitaire de psychiatrie et d'addictologie des hopitaux Henri Mondor, Créteil, France
| | - A Pinot
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University, Fondation FondaMental, 94010 Créteil, France
| | - S Fourati
- Department of Virology, INSERM U955, Team « Viruses, Hepatology, Cancer », Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - C Rodriguez
- Department of Virology, INSERM U955, Team « Viruses, Hepatology, Cancer », Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - V Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - U Meyer
- ECNP Immuno-NeuroPsychiatry Network; Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Neuroscience Center Zürich, Zürich, Switzerland
| | - M Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - L De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; ECNP Immuno-NeuroPsychiatry Network
| | - M Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University, Fondation FondaMental, 94010 Créteil, France; ECNP Immuno-NeuroPsychiatry Network
| |
Collapse
|
8
|
Alexandros Lalousis P, Schmaal L, Wood SJ, L E P Reniers R, Cropley VL, Watson A, Pantelis C, Suckling J, Barnes NM, Pariante C, Jones PB, Joyce E, Barnes TRE, Lawrie SM, Husain N, Dazzan P, Deakin B, Shannon Weickert C, Upthegrove R. Inflammatory subgroups of schizophrenia and their association with brain structure: A semi-supervised machine learning examination of heterogeneity. Brain Behav Immun 2023; 113:166-175. [PMID: 37423513 DOI: 10.1016/j.bbi.2023.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.
Collapse
Affiliation(s)
- Paris Alexandros Lalousis
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Lianne Schmaal
- Orygen, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Stephen J Wood
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Orygen, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Renate L E P Reniers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Institute of Clinical Sciences, University of Birmingham, United Kingdom
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Andrew Watson
- The Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia; NorthWestern Mental Health, Western Hospital Sunshine, St. Albans, Vicroria, Australia
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, United Kingdom; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Nicholas M Barnes
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carmine Pariante
- Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Peter B Jones
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, United Kingdom; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Eileen Joyce
- The Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas R E Barnes
- Division of Psychiatry, Imperial College London, London United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nusrat Husain
- Division of Psychology and Mental Health, University of Manchester & Mersey Care NHS Foundation Trust
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Birmingham Early Interventions Service, Birmingham Women's and Children's NHS Foundation Trust, United Kingdom
| |
Collapse
|
9
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
10
|
Kotsiri I, Resta P, Spyrantis A, Panotopoulos C, Chaniotis D, Beloukas A, Magiorkinis E. Viral Infections and Schizophrenia: A Comprehensive Review. Viruses 2023; 15:1345. [PMID: 37376644 DOI: 10.3390/v15061345] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Schizophrenia is a complex mental disorder with multiple genetic and environmental factors contributing to its pathogenesis. Viral infections have been suggested to be one of the environmental factors associated with the development of this disorder. We comprehensively review all relevant published literature focusing on the relationship between schizophrenia and various viral infections, such as influenza virus, herpes virus 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV), Epstein-Barr virus (EBV), retrovirus, coronavirus, and Borna virus. These viruses may interfere with the normal maturation of the brain directly or through immune-induced mediators, such as cytokines, leading to the onset of schizophrenia. Changes in the expression of critical genes and elevated levels of inflammatory cytokines have been linked to virally-induced infections and relevant immune activities in schizophrenia. Future research is necessary to understand this relationship better and provide insight into the molecular mechanisms underlying the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ioanna Kotsiri
- Department of Internal Medicine, Asklipeion General Hospital, Voulas, 16673 Athens, Greece
| | - Panagiota Resta
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
- National AIDS Reference Centre of Southern Greece, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece
| | - Alexandros Spyrantis
- Department of Internal Medicine, Asklipeion General Hospital, Voulas, 16673 Athens, Greece
| | | | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
- National AIDS Reference Centre of Southern Greece, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece
| | - Emmanouil Magiorkinis
- Department of Laboratory Medicine, Sotiria General Hospital for Chest Diseases, 11527 Athens, Greece
| |
Collapse
|
11
|
Min S, Gandal MJ, Kopp RF, Liu C, Chen C. No Increased Detection of Nucleic Acids of CNS-related Viruses in the Brains of Patients with Schizophrenia, Bipolar Disorder, and Autism Spectrum Disorder. Schizophr Bull 2023; 49:551-558. [PMID: 36857101 PMCID: PMC10154715 DOI: 10.1093/schbul/sbad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND HYPOTHESIS Viral infections are increasingly recognized in the etiology of psychiatric disorders based on epidemiological and serological studies. Few studies have analyzed viruses directly within the brain and no comprehensive investigation of viral infection within diseased brains has been completed. This study aims to determine whether viral infection in brain tissues is a risk factor for 3 major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorder. STUDY DESIGN This study directly evaluated the presence of viral DNA or RNA in 1569 brains of patients and controls using whole-genome sequencing and RNA sequencing data with 4 independent cohorts. The PathSeq tool was used to identify known human viruses in the genome and transcriptome of patients and controls. STUDY RESULTS A variety of DNA and RNA viruses related to the central nervous system were detected in the brains of patients with major psychiatric disorders, including viruses belonging to Herpesviridae, Polyomaviridae, Retroviridae, Flaviviridae, Parvoviridae, and Adenoviridae. However, no consistent significant differences were found between patients and controls in terms of types and amount of virus detected at both DNA and RNA levels. CONCLUSIONS The findings of this study do not suggest an association between viral infection in postmortem brains and major psychiatric disorders.
Collapse
Affiliation(s)
- Shishi Min
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Michael J Gandal
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard F Kopp
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- School of Psychology, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Multiple countries have reported increased COVID-19 mortality in patients with schizophrenia. The purpose of this review was to synthetize the consequences of the pandemic on patients with schizophrenia including vaccination data. RECENT FINDINGS We have synthetized data on the increased risk of infection and increased mortality, the impact of the pandemic and lockdowns on psychiatric care, vaccination policies, unwillingness to vaccine in patients and the rates of vaccination. SUMMARY Schizophrenia has been confirmed at increased risk of both COVID-19 infection and developing a severe/lethal form of the infection. Patients with schizophrenia should, therefore, be prioritized for vaccination whenever possible and should be prioritized for psychiatric and somatic care access. Psychotic symptomatology may be a barrier to vaccination in some patients, and heterogenous vaccination rates were identified in national databases. The COVID-19 pandemic has been also a unique opportunity to develop telehealth. A mixed face-to-face and distance model should be encouraged, whenever possible, to improve the experience of patients, relatives and healthcare professionals. No major change of long-acting antipsychotics has been reported in most countries, and there was no consistent evidence for clozapine prescription to increase the risk of COVID-19 infection or severe outcomes.
Collapse
Affiliation(s)
- Guillaume Fond
- Aix-Marseille University, CEReSS-Health Service Research and Quality of Life Center, Marseille
- FondaMental Academic Advanced Center of Expertise for Depressive disorders and Schizophrenia (FACE-DR, FACE-SZ), Marseille, France
| | - Laurent Boyer
- Aix-Marseille University, CEReSS-Health Service Research and Quality of Life Center, Marseille
- FondaMental Academic Advanced Center of Expertise for Depressive disorders and Schizophrenia (FACE-DR, FACE-SZ), Marseille, France
| |
Collapse
|
13
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
14
|
Dickerson F, Katsafanas E, Origoni A, Newman T, Rowe K, Ziemann RS, Bhatia K, Severance E, Ford G, Yolken R. Cigarette smoking is associated with Herpesviruses in persons with and without serious mental illness. PLoS One 2023; 18:e0280443. [PMID: 36652488 PMCID: PMC9847975 DOI: 10.1371/journal.pone.0280443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Herpesviruses are recognized as major causes of human diseases. Following initial infection, Herpesviruses can undergo cycles of reactivation controlled largely by the immune system. Cigarette smoking is an important modulator of the immune system particularly in individuals with serious mental illness where smoking is associated with increased rates of cardiopulmonary diseases and mortality. However, the effect of smoking on Herpesviruses has not been extensively studied. METHODS In this nested cohort study, cigarette smoking was assessed in 1323 persons with serious mental illness or without a psychiatric disorder ascertained in a psychiatric health care system and the adjacent community. Participants provided a blood sample from which were measured IgG class antibodies to five human Herpesviruses: Cytomegalovirus (CMV), Epstein Barr Virus (EBV), Herpes Simplex Virus-Type 1 (HSV-1); Varicella Zoster Virus (VZV); and Human Herpes Virus-Type 6 (HHV-6). The associations between smoking variables and antibody levels to the Herpesviruses were analyzed among diagnostic groups in multiple regression models adjusted for age, sex, and race. RESULTS Current smoking was significantly associated with higher levels of antibodies to CMV (coefficient .183, 95% CI .049, .317, p<.001, q<.007) and the three EBV proteins (EBV NA -(coefficient .088, 95% CI .032, .143, p = .002, q<.014; EBV Virion - coefficient .100, 95% CI .037, .163, p = .002, q<.014; and EBV VCA - coefficient .119, 95% CI .061, .177, p = .00004, q<.0016). The amount of cigarettes smoked was also correlated with higher levels of antibodies to the three EBV proteins. Interaction analyses indicated that the association between cigarette smoking and levels of antibodies to CMV and EBV was independent of diagnostic group. Cigarette smoking was not significantly associated with the level of antibodies to HSV-1, VZV, or HHV-6. CONCLUSIONS Individuals who smoke cigarettes have increased levels of IgG antibodies to CMV and EBV. Cigarette smoking may be a contributory factor in the relationship between CMV, EBV and chronic somatic disorders associated with these viruses.
Collapse
Affiliation(s)
- Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
- * E-mail:
| | - Emily Katsafanas
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Theresa Newman
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Kelly Rowe
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Rita S. Ziemann
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Kamal Bhatia
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Emily Severance
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Glen Ford
- VanPelt Biosciences, Rockville, Maryland, United States of America
| | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Orlova VA, Mikhailova II, Zinserling VA. Infections and schizophrenia. JOURNAL INFECTOLOGY 2022. [DOI: 10.22625/2072-6732-2022-14-3-105-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper provides a critical review of the literature, demonstrating a certain pathogenetic role of various infections, primarily viruses from the herpes and chlamydia groups, in the development and progression of schizophrenia, including published results of the authors’ own long-term studies.
Collapse
Affiliation(s)
- V. A. Orlova
- Research Institute of Vaccines and Serums named after I.I. Mechnikov
| | - I. I. Mikhailova
- Research Institute of Vaccines and Serums named after I.I. Mechnikov
| | - V. A. Zinserling
- National Medical Research Centre named after V.A. Almazov; Clinical Infectious Hospital named after S.P. Botkin
| |
Collapse
|
16
|
Oskolkova S. Schizophrenia: a Narrative Review of Etiological and Diagnostic Issues. CONSORTIUM PSYCHIATRICUM 2022; 3:19-34. [PMID: 39044913 PMCID: PMC11262116 DOI: 10.17816/cp132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Despite the fact that schizophrenia has already been described historically and researched for a long time, this disorder remains unclear and controversial in many respects, including its etiology, pathogenesis, classification, diagnosis, and therapy. METHODS Literature from the selected sources (elibrary.ru, Russian Science Citation Index and the Russian branch of the Cochrane Library) were searched and analyzed using the diachronic method. Priority was given to reviews, guidelines, and original research on schizophrenia written during the past 10 years. RESULTS Historically, scientists have described schizophrenia as a single disorder, a group of disorders, or even as a combination of certain syndromes. The polymorphic symptoms and the most typical dynamics of various forms of schizophrenia have been systematized, but neither in Russia nor in other countries have the etiology and pathogenesis been proven. The reasons for the under- and overdiagnosis of schizophrenia cannot cover all possible objective and subjective difficulties arising in the diagnostic process. CONCLUSION The existing literature shows that the problem of schizophrenia may not be regarded as settled for a long time. This largely depends on the position of society, the development of biological sciences, and the pathomorphosis of the disorder itself. Many aspects of schizophrenia can become clearer and less controversial with systematic studies based on previous data, as well as data obtained using new research methods.
Collapse
|
17
|
Della Vecchia A, Marazziti D. Back to the Future: The Role of Infections in Psychopathology. Focus on OCD. CLINICAL NEUROPSYCHIATRY 2022; 19:248-263. [PMID: 36101642 PMCID: PMC9442856 DOI: 10.36131/cnfioritieditore20220407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Recently, there has been a resurgence of interest in the relationship between infections and psychopathology, given the increasing data on the neurotropism and neurological/psychiatric morbidity of the SARS-COV2 virus, responsible for the current worldwide pandemic. Although the majority of observations were those obtained in mood and schizophrenic disorders, a few data are also available on the presence of bacterial or viral infections in patients suffering from obsessive-compulsive disorder (OCD). Therefore, given the limited information, the present paper aimed at reviewing the most updated evidence of infections in neuropsychiatric disorders and their possible mechanisms of actions, with a narrow focus on microbes in OCD. METHOD This paper is a narrative review. The databases of PubMed, Scopus, Embase, PsycINFO and Google Scholar were accessed to research and collect English language papers published between 1 January 1980 and 31 December 2021. The data on PANDAS/PANS and those observed during severe brain infections were excluded. RESULTS Several pathogens have been associated with an increased risk to develop a broad spectrum of neuropsychiatric conditions, such as schizophrenia, mood disorders, autism, attention-deficit/hyperactivity disorder, anorexia nervosa, and post-traumatic stress disorder. Some evidence supported a possible role of infections also in the pathophysiology of OCD. Infections from Herpes simplex virus 1, Borna disease virus, Group A-Beta Hemolytic Streptococcus, Borrelia spp., and Toxoplasma gondii were actually found in patients with OCD. Although different mechanisms have been hypothesized, all would converge to trigger functional/structural alterations of specific circuits or immune processes, with cascade dysfunctions of several other systems. CONCLUSIONS Based on the current evidence, a possible contribution of different types of microbes has been proposed for different neuropsychiatric disorders including OCD. However, the currently available literature is meager and heterogeneous in terms of sample characteristics and methods used. Therefore, further studies are needed to better understand the impact of infectious agents in neuropsychiatric disorders. Our opinion is that deeper insights in this field might contribute to a better definition of biological underpinnings of specific clinical pictures, as well as to promote psychiatric precision medicine, with treatments based on altered pathological pathways of single patients. This might be particularly relevant in OCD, a disorder with a high proportion of patients who are resistant or do not respond to conventional therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, and
| | - Donatella Marazziti
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, and, Saint Camillus International University of Health and Medical Sciences – UniCamillus, Rome, Italy
| |
Collapse
|
18
|
Ahangari M, Everest E, Nguyen TH, Verrelli BC, Webb BT, Bacanu SA, Tahir Turanli E, Riley BP. Genome-wide analysis of schizophrenia and multiple sclerosis identifies shared genomic loci with mixed direction of effects. Brain Behav Immun 2022; 104:183-190. [PMID: 35714915 DOI: 10.1016/j.bbi.2022.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Common genetic variants identified in genome-wide association studies (GWAS) show varying degrees of genetic pleiotropy across complex human disorders. Clinical studies of schizophrenia (SCZ) suggest that in addition to neuropsychiatric symptoms, patients with SCZ also show variable immune dysregulation. Epidemiological studies of multiple sclerosis (MS), an autoimmune, neurodegenerative disorder of the central nervous system, suggest that in addition to the manifestation of neuroinflammatory complications, patients with MS may also show co-occurring neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest available GWAS datasets for SCZ (N = 161,405) and MS (N = 41,505) using Gaussian causal mixture modeling (MiXeR) and conditional/conjunctional false discovery rate (condFDR) frameworks to explore and quantify the shared genetic architecture of these two complex disorders at common variant level. Despite detecting only a negligible genetic correlation (rG = 0.057), we observe polygenic overlap between SCZ and MS, and a substantial genetic enrichment in SCZ conditional on associations with MS, and vice versa. By leveraging this cross-disorder enrichment, we identified 36 loci jointly associated with SCZ and MS at conjunctional FDR < 0.05 with mixed direction of effects. Follow-up functional analysis of the shared loci implicates candidate genes and biological processes involved in immune response and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of polygenic overlap between SCZ and MS in the absence of a genetic correlation and provides new insights into the shared genetic architecture of these two disorders at the common variant level.
Collapse
Affiliation(s)
- Mohammad Ahangari
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Integrative Life Sciences PhD Program, Virginia Commonwealth University, Richmond, VA, USA.
| | - Elif Everest
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Tan-Hoang Nguyen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bradley T Webb
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Eda Tahir Turanli
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem University, Istanbul, Turkey
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Runge K, Balla A, Fiebich BL, Maier SJ, Pankratz B, Schlump A, Nickel K, Dersch R, Domschke K, Tebartz van Elst L, Endres D. Antibody indices of infectious pathogens from serum and cerebrospinal fluid in patients with schizophrenia spectrum disorders. Fluids Barriers CNS 2022; 19:61. [PMID: 35906648 PMCID: PMC9338642 DOI: 10.1186/s12987-022-00355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Infectious and immunological theories of schizophrenia have been discussed for over a century. Contradictory results for infectious agents in association with schizophrenia spectrum disorders (SSDs) were reported. The rationale of this study was to investigate intrathecal antibody synthesis of the most frequently discussed neurotropic pathogens using a pathogen-specific antibody index (AI) in patients with SSD in comparison to controls. Methods In 100 patients with SSD and 39 mentally healthy controls with idiopathic intracranial hypertension (IIH), antibodies against the herpesviruses EBV, CMV, and HSV 1/2 as well as the protozoan Toxoplasma gondii, were measured in paired cerebrospinal fluid (CSF) and serum samples with ELISA-kits. From these antibody concentrations the pathogen-specific AIs were determined with the assumption of intrathecal antibody synthesis at values > 1.5. Results No significant difference was detected in the number of SSD patients with elevated pathogen-specific AI compared to the control group. In a subgroup analysis, a significantly higher EBV AI was observed in the group of patients with chronic SSD compared to patients with first-time SSD diagnosis (p = 0.003). In addition, two identified outlier EBV patients showed evidence for polyspecific immune reactions (with more than one increased AI). Conclusions Evidence for the role of intrathecal EBV antibody synthesis was found in patients with chronic SSD compared to those first diagnosed. Apart from a possible infectious factor in SSD pathophysiology, the evidence for polyspecific immune response in outlier patients may also suggest the involvement of further immunological processes in a small subgroup of SSD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00355-7.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Agnes Balla
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Pankratz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Schlump
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Lu Y, Liu BP, Tan CT, Pan F, Larbi A, Ng TP. Lifetime pathogen burden, inflammatory markers, and depression in community-dwelling older adults. Brain Behav Immun 2022; 102:124-134. [PMID: 35202734 DOI: 10.1016/j.bbi.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
The link between pathogen exposure and mental health has long been hypothesized, but evidence remains limited. We investigated the association of seropositivity to common pathogens and total pathogen burden with depression and mental health and explored the role of mediating inflammatory cytokines. We profiled in 884 participants in the Singapore Longitudinal Ageing Studies, mean (SD) age: 67.9 (8.1) years, their seropositivities for 11 pathogens (CMV, HSV 1, HSV 2, HHV-6, EBV, VZV, RSV, Dengue, Chikungunya, H. Pylori and Plasmodium) and pathogen burden, Geriatric Depression Scale (GDS) score at baseline and 3-4 and 6-8 years follow-up, and baseline Mental Component Score (MCS) of 12-Item Short Form Survey (SF-12). Inflammatory markers included CRP, TNF-α, IL-6, MIP-1α, sgp130, sTNF-RI, sTNF-RII, C3a, and MCP-2. Controlling for age, sex, ethnicity, education, marital status, living alone, and smoking status, high pathogen burden (7 + cumulative infections) compared to low pathogen burden (1-5 cumulative infections) was significantly associated with period prevalence (the highest GDS score from baseline and follow-up measurements) of depressive symptoms (OR = 2.36, 95% CI = 1.05-5.33) and impaired mental health (OR = 2.25, 95% CI = 1.18-4.30). CMV seropositivity and HSV1 seropositivity, which are highly prevalent and most widely studied, were associated with estimated 2-fold increased odds of depression, but only HSV1 seropositivity was significantly associated with depression after adjusting for confounders. Notably, adjusted for confounders, RSV, H. pylori and Plasmodium seropositivity were significantly associated with increased odds, and Dengue seropositivity was associated with unexpectedly deceased odds of depressive symptoms and impaired mental health. The association of pathogen exposure with depression and mental health were at least in parts explained by inflammatory markers. Adding certain inflammatory markers to the models attenuated or weakened the association. Bootstrap method showed that MIP-1α significantly mediated the association between pathogen burden and mental health. In conclusion, lifelong pathogen burden and specific infections are associated with depression and impaired mental health in older adults.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China.
| | - Bao-Peng Liu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Crystal Ty Tan
- Biology of Aging Laboratory, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Anis Larbi
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canaa
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Geriatric Education and Research Institute, Ministry of Health, Singapore.
| |
Collapse
|
21
|
Buonsenso D, Gennaro LD, Rose CD, Morello R, D'Ilario F, Zampino G, Piazza M, Boner AL, Iraci C, O'Connell S, Cohen VB, Esposito S, Munblit D, Reena J, Sigfrid L, Valentini P. Long-term outcomes of pediatric infections: from traditional infectious diseases to long Covid. Future Microbiol 2022; 17:551-571. [PMID: 35264003 PMCID: PMC8910780 DOI: 10.2217/fmb-2022-0031] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
There is limited evidence available on the long-term impact of SARS-CoV-2 infection in children. In this article, the authors analyze the recent evidence on pediatric long Covid and lessons learnt from a pediatric post-Covid unit in Rome, Italy. To gain a better understanding of the concerns raised by parents and physicians in relation to the potential long-term consequences of this novel infection, it is important to recognize that long-term effect of a post-infectious disease is not a new phenomenon.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Center for Global Health Research & Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Leonardo Di Gennaro
- Department of Diagnostic Imaging, Hemorrhagic & Thrombotic Diseases Center, Oncological Radiotherapy, & Hematology, Foundation ‘A Gemelli’ IRCCS University Hospital, Rome, Italy
| | - Cristina De Rose
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Rosa Morello
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Federico D'Ilario
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Michele Piazza
- Pediatric Section, Department of Surgery, Dentistry, pediatrics, & Gynaecology, University of Verona, Verona, Italy
| | - Attilio L Boner
- Pediatric Section, Department of Surgery, Dentistry, pediatrics, & Gynaecology, University of Verona, Verona, Italy
| | | | | | - Valentina B Cohen
- Patient author, member of the CAC Community Advisory Council of Solve ME/CFS Initiative, Pietro Barilla Children's Hospital, Department of Medicine & Surgery, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine & Surgery, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Daniel Munblit
- Department of pediatrics & pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Joseph Reena
- MSc Immunology, Imperial College London, London, UK
| | - Louise Sigfrid
- ISARIC Global Support Centre, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Piero Valentini
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| |
Collapse
|
22
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
23
|
Jeong SH, Kim YS. Challenges in Prescribing Clozapine in the Era of COVID-19: A Review Focused on Immunological Implications. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:411-422. [PMID: 34294611 PMCID: PMC8316651 DOI: 10.9758/cpn.2021.19.3.411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
The global COVID-19 pandemic has disrupted every aspect of the healthcare system. Apart from the issues surrounding COVID-19 itself, care for existing patients has met many challenges. One such challenge is caring for patients who are on clozapine treatment and have been confirmed positive for COVID-19. Schizophrenia has been considered to have a deep connection with the immune system, and clozapine can induce further changes in this system. COVID-19 can ravage the compromised immune system and aggravate tissue damage. The intricate relations between schizophrenia, clozapine, and COVID-19 make it difficult to predict the clinical course of COVID-19 in clozapine-treated patients. However, the rigid prohibition on using clozapine if COVID-19 is confirmed may harm patients. Patients who have to use clozapine are often refractory cases with no alternatives. Therefore, the decision to maintain or stop clozapine must be made after a comprehensive review of the patient’s unique situation. To do this, theoretical and practical issues surrounding the use of clozapine in COVID-19 should be reviewed and discussed. In this review, we gather useful information surrounding this issue and present an overview. Focusing on the immune system, various theoretical possibilities that could arise from schizophrenia, clozapine, and COVID-19 were carefully examined, and practical checklists for the care of these patients were explored. It is hoped that this review will convince many clinicians to pay attention to this momentous issue and facilitate more active sharing of clinical experiences.
Collapse
Affiliation(s)
- Seong Hoon Jeong
- Department of Neuropsychiatry, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Yong Sik Kim
- Department of Neuropsychiatry, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.,Institute of Clinical Psychopharmacology, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
24
|
Maiti T, Essam L, Orsolini L, Ramalho R, El Halabi S, Nguyen VS, Gürcan A, Jakhar J, Pinto da Costa M, Ojeahere MI, Shoib S, Fedotov IA. COVID-19-induced psychosis: new challenges for early career psychiatrists. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2021; 29:325-331. [DOI: 10.17816/pavlovj72035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The COVID-19 pandemic and its impact on mental health has remained immense and global in all senses. Various types of induced psychiatric disorders, both new episodes and exacerbation of the preexisiting ones has been reported - starting from adjustment disorder to full psychotic illnesses.
Various clinical symptoms, including systematized delusions, affective symptoms and self harm ideas has been mentioned needing upto prolonged admission and in patient care. Various etiopathogenetic models, incluing direct neural infection to cytokine storms or unmasking of the hidden vulnerabilities has been proposed however this needs further research. Traditional antipsychotic pharmacological agents has been proven to work well though special attention to pharmacological interactions is needed with caution for co morbid conditions and chance of side effects.
We collaborated in worldwide Task Force of early career psychiatrists and prepared the definition of our point of view.
Collapse
|
25
|
De Picker LJ, Yolken R, Benedetti F, Borsini A, Branchi I, Fusar-Poli P, Carlos Leza J, Pariante C, Pollak T, Tamouza R, Vai B, Vernon AC, Benros ME, Leboyer M, ECNP Immuno-NeuroPsychiatry TWG. Viewpoint | European COVID-19 exit strategy for people with severe mental disorders: Too little, but not yet too late. Brain Behav Immun 2021; 94:15-17. [PMID: 33493625 PMCID: PMC9761870 DOI: 10.1016/j.bbi.2021.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022] Open
Affiliation(s)
- Livia J. De Picker
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium,Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium,Corresponding author at: Wetenschappelijk Onderzoek t.a.v. Livia De Picker, UPC Duffel, Stationsstraat 22c, 2570 Duffel Belgium
| | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy.
| | - Alessandra Borsini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Juan Carlos Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense Madrid, CIBERSAM, Imas12, IUINQ, Madrid, Spain.
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Thomas Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ryad Tamouza
- Translational Neuropsychiatry Lab, Université Paris Est Creteil (UPEC), INSERM U955, IMRB, F-94010 Creteil, France; Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), AP-HP, Hopital Henri Mondor, F-94010 Creteil, France; Fondation FondaMental, Creteil, France.
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Fondazione Centro San Raffaele, Italy.
| | - Anthony C. Vernon
- MRC Centre for Neurodevelopmental Disorders, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Michael E. Benros
- Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Denmark,Department of Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marion Leboyer
- Translational Neuropsychiatry Lab, Université Paris Est Creteil (UPEC), INSERM U955, IMRB, F-94010 Creteil, France; Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), AP-HP, Hopital Henri Mondor, F-94010 Creteil, France; Fondation FondaMental, Creteil, France.
| | | |
Collapse
|
26
|
Dickerson F, Katsafanas E, Origoni A, Squire A, Khushalani S, Newman T, Rowe K, Stallings C, Savage CLG, Sweeney K, Nguyen TT, Breier A, Goff D, Ford G, Jones-Brando L, Yolken R. Exposure to Epstein Barr virus and cognitive functioning in individuals with schizophrenia. Schizophr Res 2021; 228:193-197. [PMID: 33450604 PMCID: PMC8023564 DOI: 10.1016/j.schres.2020.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
Abstract
Cognitive deficits are a central feature of schizophrenia whose etiology is not fully understood. Epstein Barr Virus (EBV) is a potentially neurotropic infectious agent that can generate persistent infections with immunomodulatory effects. Previous studies have found an association between EBV antibodies and cognitive functioning in different populations, but there has been limited investigation in schizophrenia. In this study, 84 individuals with schizophrenia were administered a comprehensive neuropsychological battery, the MATRICS Consensus Cognitive Battery (MCCB). Participants also provided a blood sample, from which antibodies to the EBV whole virion and specific proteins were measured. Multivariate models were constructed to determine the association between these antibodies and cognitive performance on the MCCB overall and domain scores. Using these models, we found a significant association between the MCCB overall percent composite score and level of antibodies to the EBV Nuclear Antigen-1 (EBNA-1) protein, the Viral Capsid Antigen (VCA) protein, and the EBV whole virion. A significant association was also found for the MCCB social cognition domain with the level of antibodies to the EBV Nuclear Antigen-1 (EBNA-1) protein, the Viral Capsid Antigen (VCA) protein, and the EBV whole virion. In all cases, a higher level of antibodies was associated with a lower level cognitive performance. These findings suggest that exposure to EBV may contribute to cognitive deficits in schizophrenia, a finding which may have implications for new methods of prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kelly Rowe
- Sheppard Pratt Health System, Baltimore, MD, USA
| | | | | | | | - Tanya T Nguyen
- University of California San Diego, CA, USA; VA San Diego Healthcare System, CA, USA
| | - Alan Breier
- University of Indiana, Indianapolis, IN, USA
| | | | - Glen Ford
- VanPelt Biosciences, Rockville, MD, USA
| | | | - Robert Yolken
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Sarmah T, Bhattacharyya DK. A study of tools for differential co-expression analysis for RNA-Seq data. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Vasilevska V, Guest PC, Schlaaff K, Incesoy EI, Prüss H, Steiner J. Potential Cross-Links of Inflammation With Schizophreniform and Affective Symptoms: A Review and Outlook on Autoimmune Encephalitis and COVID-19. Front Psychiatry 2021; 12:729868. [PMID: 34650454 PMCID: PMC8507462 DOI: 10.3389/fpsyt.2021.729868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Based on current implications of the SARS-CoV-2 pandemic with regards to mental health, we show that biological links exist between inflammation and mental illness in addition to psychoreactive effects. We describe key principles of the biological interaction of the immune system and the mind, as well as the possible routes of viral entry into the brain. In addition, we provide a stepwise scheme for the diagnosis and therapy of autoimmune-encephalitis with schizophrenia-like symptomatology as a general guide for clinical practice and in the specialized scenario of infections, such as those caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Konstantin Schlaaff
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Enise I Incesoy
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University, Magdeburg, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases, Berlin, Germany.,Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,German Center for Mental Health, Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, Magdeburg, Germany
| |
Collapse
|
29
|
DeLisi LE. A commentary revisiting the viral hypothesis of schizophrenia: Onset of a schizophreniform disorder subsequent to SARS CoV-2 infection. Psychiatry Res 2021; 295:113573. [PMID: 33223274 DOI: 10.1016/j.psychres.2020.113573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The viral hypothesis for schizophrenia has persisted for decades, initially supported by observed increases in psychoses subsequent to the influenza pandemic of the early twentieth century, and then later by evidence of elevated viral antibody titres particularly in schizophrenia patient populations. Several research studies have also focused on maternal infections during the second trimester of pregnancy and their long-term effects on fetal brain development, ultimately leading to schizophrenia. No specific virus has been implicated although a handful have received increasing attention. The current pandemic spreading the SARS CoV-2 corona virus world-wide is now showing anecdotal evidence of psychoses newly developing post viral exposure, implicating neuronal inflammation in crucial areas of the brain that could initiate psychotic symptoms. Time will tell if epidemiological data will, similar to the 1918 influenza pandemic, show that schizophrenia spectrum disorders increase after serious viral infections.
Collapse
Affiliation(s)
- Lynn E DeLisi
- Cambridge Health Alliance, Professor of Psychiatry, Harvard Medical School, Cambridge, Massachusetts.
| |
Collapse
|
30
|
Lee SW, Yang JM, Moon SY, Yoo IK, Ha EK, Kim SY, Park UM, Choi S, Lee SH, Ahn YM, Kim JM, Koh HY, Yon DK. Association between mental illness and COVID-19 susceptibility and clinical outcomes in South Korea: a nationwide cohort study. Lancet Psychiatry 2020; 7:1025-1031. [PMID: 32950066 PMCID: PMC7498216 DOI: 10.1016/s2215-0366(20)30421-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Evidence for the associations between mental illness and the likelihood of a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test result and the clinical outcomes of COVID-19 is scarce. We aimed to investigate these associations with data from a national register in South Korea. METHODS A nationwide cohort study with propensity score matching was done in South Korea using data collected from the Health Insurance Review and Assessment Service of Korea. We defined mental illness as present if one of the relevant ICD-10 codes was recorded at least twice within 1 year for an outpatient or inpatient. Severe mental illness was considered as non-affective or affective disorders with psychotic features. We included all patients aged older than 20 years who were tested for SARS-CoV-2 through services facilitated by the Korea Centers for Disease Control and Prevention, the Health Insurance Review and Assessment Service of Korea, and the Ministry of Health and Welfare, South Korea. We investigated the primary outcome (SARS-CoV-2 test positivity) in the entire cohort and the secondary outcomes (severe clinical outcomes of COVID-19: death, admission to the intensive care unit, or invasive ventilation) among those who tested positive. FINDINGS Between Jan 1 and May 15, 2020, 216 418 people were tested for SARS-CoV-2, of whom 7160 (3·3%) tested positive. In the entire cohort with propensity score matching, 1391 (3·0%) of 47 058 patients without a mental illness tested positive for SARS-CoV-2, compared with 1383 (2·9%) of 48 058 with a mental illness (adjusted odds ratio [OR] 1·00, 95% CI 0·93-1·08). Among the patients who tested positive for SARS-CoV-2, after propensity score matching, 109 (8·3%) of 1320 patients without a mental illness had severe clinical outcomes of COVID-19 compared with 128 (9·7%) of 1320 with a mental illness (adjusted OR 1·27, 95% CI 1·01-1·66). INTERPRETATION Diagnosis of a mental illness was not associated with increased likelihood of testing positive for SARS-CoV-2. Patients with a severe mental illness had a slightly higher risk for severe clinical outcomes of COVID-19 than patients without a history of mental illness. Clinicians treating patients with COVID-19 should be aware of the risk associated with pre-existing mental illness. FUNDING National Research Foundation of Korea.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
| | - Jee Myung Yang
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Yong Moon
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
| | - In Kyung Yoo
- Department of Gastroenterology, CHA University School of Medicine, Seongnam, South Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - So Young Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, CHA University School of Medicine, Seongnam, South Korea
| | - Un Min Park
- School of Stomatology, Capital Medical University, Beijing, China
| | - Sejin Choi
- Seoul Detention Center, Ministry of Justice, South Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Yong Min Ahn
- Department of Psychiatry and Behavioral Science, Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyun Yong Koh
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Keon Yon
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea; Armed Force Medical Command, Republic of Korea Armed Forces, Seongnam, South Korea.
| |
Collapse
|
31
|
Kachuri L, Francis SS, Morrison ML, Wendt GA, Bossé Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. Genome Med 2020; 12:93. [PMID: 33109261 PMCID: PMC7590248 DOI: 10.1186/s13073-020-00790-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight into disease etiology and therapeutic opportunities. METHODS We conducted a comprehensive study including genome-wide and transcriptome-wide association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank cohort. RESULTS Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the strongest associations presented in a range of AA positions within DRβ1 at positions 11, 13, 71, and 74 for Epstein-Barr virus (EBV), Varicella zoster virus (VZV), human herpesvirus 7, (HHV7), and Merkel cell polyomavirus (MCV). Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody response (P < 5.0 × 10-8), including FUT2 (19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, and CXCR5 (11q23.3) and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P = 5.0 × 10-15 (MCV), NTN5: P = 1.1 × 10-9 (BKV), and P2RY13: P = 1.1 × 10-8 EBV nuclear antigen. We also demonstrated pleiotropy between viral response genes and complex diseases, from autoimmune disorders to cancer to neurodegenerative and psychiatric conditions. CONCLUSIONS Our study confirms the importance of the HLA region in host response to viral infection and elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Maike L Morrison
- Department of Biology, Stanford University, Stanford, CA, USA
- Summer Research Training Program, Graduate Division, University of California San Francisco, San Francisco, CA, USA
- Department of Mathematics, The University of Texas, Austin, TX, USA
| | - George A Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Université Laval, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Kachuri L, Francis SS, Morrison M, Wendt GA, Bossé Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.01.20088054. [PMID: 32511533 PMCID: PMC7273301 DOI: 10.1101/2020.05.01.20088054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight into disease etiology and therapeutic opportunities. METHODS We conducted a comprehensive study including genome-wide and transcriptome-wide association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank cohort. RESULTS Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the strongest associations presented in a range of AA positions within DRβ1 at positions 11, 13, 71, and 74 for Epstein-Barr Virus (EBV), Varicella Zoster Virus (VZV), Human Herpes virus 7, (HHV7) and Merkel cell polyomavirus (MCV). Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody response (P<5.×10-8), including FUT2 (19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, as well as CXCR5 (11q23.3) and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P=5.0×10-15 (MCV), NTN5: P=1.1×10-9 (BKV), and P2RY13: P=1.1×10-8 EBV nuclear antigen. We also demonstrated pleiotropy between viral response genes and complex diseases; from autoimmune disorders to cancer to neurodegenerative and psychiatric conditions. CONCLUSIONS Our study confirms the importance of the HLA region in host response to viral infection and elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
| | - Stephen S. Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA
| | - Maike Morrison
- Summer Research Training Program, Graduate Division, University of California San Francisco, San Francisco, USA
- Department of Mathematics, The University of Texas at Austin, Austin, USA
| | - George A. Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Université Laval, Quebec City, Canada
| | - Taylor B. Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, USA
| | - Sara R. Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
- Department of Medicine, University of California, San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, USA
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, USA
- Department of Urology, University of California San Francisco, San Francisco, USA
| |
Collapse
|
33
|
Lindgren M, Holm M, Markkula N, Dickerson F, Yolken RH, Suvisaari J. Serological evidence of infections does not predict subsequent late-onset psychosis in the general population. Schizophr Res 2020; 218:306-308. [PMID: 32151465 DOI: 10.1016/j.schres.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Maija Lindgren
- Mental Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Minna Holm
- Mental Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Niina Markkula
- Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaana Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
34
|
Jones-Brando L, Dickerson F, Ford G, Stallings C, Origoni A, Katsafanas E, Sweeney K, Squire A, Khushalani S, Yolken R. Atypical immune response to Epstein-Barr virus in major depressive disorder. J Affect Disord 2020; 264:221-226. [PMID: 32056754 PMCID: PMC7025817 DOI: 10.1016/j.jad.2019.11.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND An atypical immune response to Epstein-Barr virus (EBV) infection has been associated with several complex diseases including schizophrenia. The etiology of MDD is unclear; host immune response to EBV infection could play a role. METHODS We utilized solid phase immunoassays and western blots to measure antibodies to EBV virions, specific viral proteins, and 5 other herpesviruses in 87 individuals with MDD and 312 control individuals. RESULTS Individuals with MDD had significantly reduced levels of reactivity to EBV Nuclear Antigen-1. Quantitative levels of antibodies to EBV virions and Viral Capsid Antigen did not differ between groups. Individuals with decreased levels of anti-Nuclear Antigen-1, or elevated levels of anti-virion had increased odds of being in the MDD group. The odds of MDD were elevated in individuals who had the combination of high levels of anti-virion and low levels of anti-Nuclear Antigen-1 (OR =13.6). Western blot analysis corroborated decreased reactivity to Nuclear Antigen-1 in the MDD group and revealed altered levels of antibodies to other EBV proteins. There was a trend towards decreased levels of antibodies to varicella virus in the group of individuals with MDD. LIMITATIONS The MDD sample size was relatively small. There could be unmeasured factors that account for the association between MDD and the immune response to EBV. CONCLUSIONS Individuals with MDD have altered levels and patterns of antibodies to EBV antigens. This atypical response could contribute to the immunopathology of MDD. Therapeutic interventions available for treatment of EBV infection could potentially be of benefit in MDD.
Collapse
Affiliation(s)
- Lorraine Jones-Brando
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, United States.
| | - Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD.,Joint first-authors
| | | | | | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Kevin Sweeney
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | - Amalia Squire
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Kang WS, Kim SK, Park HJ. Association of the Promoter Haplotype of IFN-γ-Inducible Protein 16 Gene with Schizophrenia in a Korean Population. Psychiatry Investig 2020; 17:140-146. [PMID: 32046472 PMCID: PMC7047005 DOI: 10.30773/pi.2019.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Viral infections play an important role in the development of schizophrenia, inducing the faulty immunological responses and aberrant inflammation. IFN-γ-inducible protein 16 (IFI16) is an immunological DNA sensor against viral infections, triggering the inflammatory responses. In this study, we investigated an association between putative promoter single nucleotide polymorphisms (SNPs) and haplotypes of IFI16 and schizophrenia. METHODS A total of 280 schizophrenia patients and 427 control subjects were recruited in this study. We genotyped three promoter SNPs (rs1465175, rs3754464, rs1417806) using direct sequencing. Associations of SNPs and haplotypes of IFI16 with schizophrenia were analyzed. The promoter activities on the haplotypes of IFI16 were measured. RESULTS The T allele of rs1465175 and the C allele of rs1417806 were protectively associated with schizophrenia (p=0.021 on rs1465175; p=0.016 on rs1417806), whereas the G allele of rs3754464 was associated with an increased risk of schizophrenia (p=0.019). In haplotype analysis, a significant association between the GGA haplotype and schizophrenia was shown (p=0.013). Moreover, we found that the GGA haplotype elevated the promoter activity compared to the GAA haplotype, whereas the TAC haplotype reduced that. CONCLUSION The promoter SNPs and haplotypes of IFI16 may contribute to the susceptibility of schizophrenia, affecting the promoter activity of IFI16.
Collapse
Affiliation(s)
- Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Lindgren M, Holm M, Markkula N, Härkänen T, Dickerson F, Yolken RH, Suvisaari J. Exposure to common infections and risk of suicide and self-harm: a longitudinal general population study. Eur Arch Psychiatry Clin Neurosci 2020; 270:829-839. [PMID: 32219505 PMCID: PMC7474710 DOI: 10.1007/s00406-020-01120-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Common infectious agents, such as Toxoplasma gondii (T. gondii) and several human herpes viruses, have been linked to increased risk of self-harm. The aim of this study was to investigate the associations between self-harm and seropositivity to T. gondii, Epstein-Barr virus (EBV), Herpes Simplex virus Type 1 (HSV-1), and Cytomegalovirus (CMV). IgM and IgG antibodies to these infections were measured in the Health 2000 project nationally representative of the whole Finnish adult population, and 6250 participants, age 30 and over, were followed for 15 years via registers. In addition, lifetime suicidal ideation and suicide attempts based on medical records and interview were assessed within a subsample of 694 participants screened to a substudy for possible psychotic symptoms or as controls. Among the 6250 participants, 14 individuals died of suicide and an additional 4 individuals had a diagnosis of intentional self-harm during follow-up. Serological evidence of lifetime or acute infections was not found to be associated with these suicidal outcomes. However, in the subsample, those seropositive for CMV had fewer suicide attempts compared to those seronegative, adjusting for gender, age, educational level, childhood family size, regional residence, CRP, and screen status (OR for multiple attempts = 0.40, 95% confidence interval 0.20‒0.83, p = 0.014). To conclude, common infections were not associated with risk of death by suicide or with self-harm diagnoses at a 15-year follow-up in the general population sample. Our finding of an increased number of suicide attempts among persons seronegative for CMV calls for further research.
Collapse
Affiliation(s)
- Maija Lindgren
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), PO Box 30, 00271, Helsinki, Finland.
| | - Minna Holm
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), PO Box 30, 00271, Helsinki, Finland
| | - Niina Markkula
- Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Tommi Härkänen
- Health Monitoring Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Faith Dickerson
- Sheppard Pratt Health System, Stanley Research Program, Baltimore, MD, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaana Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), PO Box 30, 00271, Helsinki, Finland
| |
Collapse
|