1
|
Kollarik S, Bimbiryte D, Sethi A, Dias I, Moreira CG, Noain D. Pharmacological enhancement of slow-wave activity at an early disease stage improves cognition and reduces amyloid pathology in a mouse model of Alzheimer's disease. Front Aging Neurosci 2025; 16:1519225. [PMID: 39831085 PMCID: PMC11739298 DOI: 10.3389/fnagi.2024.1519225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Improving sleep in murine Alzheimer's disease (AD) is associated with reduced brain amyloidosis. However, the window of opportunity for successful sleep-targeted interventions, regarding the reduction in pathological hallmarks and related cognitive performance, remains poorly characterized. Methods Here, we enhanced slow-wave activity (SWA) during sleep via sodium oxybate (SO) oral administration for 2 weeks at early (6 months old) or moderately late (11 months old) disease stages in Tg2576 mice and evaluated resulting neuropathology and behavioral performance. Results We observed that the cognitive performance of 6-month-old Tg2576 mice significantly improved upon SO treatment, whereas no change was observed in 11-month-old mice. Histochemical assessment of amyloid plaques demonstrated that SO-treated 11-month-old Tg2576 mice had significantly less plaque burden than placebo-treated ones, whereas ELISA of insoluble protein fractions from brains of 6-month-old Tg2576 mice indicated lower Aβ-42/Aβ-40 ratio in SO-treated group vs. placebo-treated controls. Discussion Altogether, our results suggest that SWA-dependent reduction in brain amyloidosis leads to alleviated behavioral impairment in Tg2576 mice only if administered early in the disease course, potentially highlighting the key importance of early sleep-based interventions in clinical cohorts.
Collapse
Affiliation(s)
- Sedef Kollarik
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Dorita Bimbiryte
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Aakriti Sethi
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- D-HEST, ETHZurich, Zurich, Switzerland
| | - Carlos G. Moreira
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- University Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ortiz-Vega N, Lobato AG, Canic T, Zhu Y, Lazopulo S, Syed S, Zhai RG. Regulation of proteostasis by sleep through autophagy in Drosophila models of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402681. [PMID: 39237365 PMCID: PMC11377308 DOI: 10.26508/lsa.202402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sleep and circadian rhythm dysfunctions are common clinical features of Alzheimer's disease (AD). Increasing evidence suggests that in addition to being a symptom, sleep disturbances can also drive the progression of neurodegeneration. Protein aggregation is a pathological hallmark of AD; however, the molecular pathways behind how sleep affects protein homeostasis remain elusive. Here we demonstrate that sleep modulation influences proteostasis and the progression of neurodegeneration in Drosophila models of tauopathy. We show that sleep deprivation enhanced Tau aggregational toxicity resulting in exacerbated synaptic degeneration. In contrast, sleep induction using gaboxadol led to reduced toxic Tau accumulation in neurons as a result of modulated autophagic flux and enhanced clearance of ubiquitinated Tau, suggesting altered protein processing and clearance that resulted in improved synaptic integrity and function. These findings highlight the complex relationship between sleep and regulation of protein homeostasis and the neuroprotective potential of sleep-enhancing therapeutics to slow the progression or delay the onset of neurodegeneration.
Collapse
Affiliation(s)
- Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Lacerda RAV, Desio JAF, Kammers CM, Henkes S, Freitas de Sá M, de Souza EF, da Silva DM, Teixeira Pinheiro Gusmão C, Santos JCCD. Sleep disorders and risk of alzheimer's disease: A two-way road. Ageing Res Rev 2024; 101:102514. [PMID: 39317268 DOI: 10.1016/j.arr.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Substantial sleep impairment in patients with Alzheimer's disease (AD) is one of the emerging points for continued efforts to better understand the disease. Individuals without cognitive decline, an important marker of the clinical phase of AD, may show early alterations in the sleep-wake cycle. The objective of this critical narrative review is to explore the bidirectional pathophysiological correlation between sleep disturbances and Alzheimer's Disease. Specifically, it examines how the disruption of sleep homeostasis in individuals without dementia could contribute to the pathogenesis of AD, and conversely, how neurodegeneration in individuals with Alzheimer's Disease might lead to dysregulation of the sleep-wake cycle. Recent scientific results indicate that sleep disturbances, particularly those related to impaired glymphatic clearance, may act as an important mechanism associated with the genesis of Alzheimer's Disease. Additionally, amyloid deposition and tau protein hyperphosphorylation, along with astrocytic hyperactivation, appear to trigger changes in neurotransmission dynamics in areas related to sleep, which may explain the onset of sleep disturbances in individuals with AD. Disruption of sleep homeostasis appears to be a modifiable risk factor in Alzheimer's disease. Whenever possible, the use of non-pharmacological strategies becomes important in this context. From a different perspective, additional research is needed to understand and treat the dysfunction of the sleep-wake cycle in individuals already affected by AD. Early recognition and correction of sleep disturbances in this population could potentially mitigate the progression of dementia and improve the quality of life for those with AD.
Collapse
Affiliation(s)
| | | | | | - Silvana Henkes
- Lutheran University of Brazil - ULBRA, Carazinho, RS, Brazil
| | | | | | | | | | - Júlio César Claudino Dos Santos
- Medical School of the Christus University Center - UNICHRISTUS, Fortaleza, CE, Brazil; Post-Graduate Program of Morphofunctional Sciences, Federal University of Ceara, Fortaleza, CE, Brazil; Unifacvest University Center - UNIFACVEST, Lages, SC, Brazil.
| |
Collapse
|
4
|
Li A, Jaakkola MK, Saaresranta T, Klén R, Li XG. Analysis of sleep apnea research with a special focus on the use of positron emission tomography as a study tool. Sleep Med Rev 2024; 77:101967. [PMID: 38936220 DOI: 10.1016/j.smrv.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
The quality of sleep plays a significant role in determining human well-being, and studying sleep and sleep disorders using various methods can aid in the prevention and treatment of diseases. Positron emission tomography (PET) is a noninvasive and highly sensitive medical imaging technique that has been widely adopted in the clinic. This review article provides data on research activity related to sleep and sleep apnea and discusses the use of PET in investigating sleep apnea and other sleep disorders. We conducted a statistical analysis of the number of original research articles published on sleep and sleep apnea between 1965 and 2021 and found that there has been a dramatic increase in publications since 1990. The distribution of contributing countries and regions has also undergone significant changes. Although there is an extensive body of literature on sleep research (256,399 original research articles during 1965-2021), PET has only been used in 54 of these published studies, indicating a largely untapped area of research. Nonetheless, PET is a useful tool for identifying connections between sleep disorders and pathological changes in various diseases, including neurological, metabolic, and cardiovascular disorders, as well as cancer. To facilitate the broader use of PET in sleep apnea research, further studies are needed in both clinical and preclinical settings.
Collapse
Affiliation(s)
- Anting Li
- Turku PET Centre, University of Turku, Turku, Finland; Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria K Jaakkola
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Saaresranta
- Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, Turku, Finland; Sleep Research Centre, Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Milton S, Cavaillès C, Ancoli-Israel S, Stone KL, Yaffe K, Leng Y. Five-year changes in 24-hour sleep-wake activity and dementia risk in oldest old women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.23.24310882. [PMID: 39211875 PMCID: PMC11361246 DOI: 10.1101/2024.07.23.24310882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Sleep disruptions are associated with cognitive aging in older adults. However, it is unclear whether longitudinal changes in 24-hour multidimensional sleep-wake activity are linked to cognitive impairment in the oldest old. METHODS We studied 733 cognitively unimpaired women (mean age=82.5±2.9 years) who completed two actigraphy assessments over five years. We performed hierarchical clustering on principal components in nine sleep, napping, and circadian rest-activity rhythm parameters to identify multidimensional sleep-wake change profiles and multinomial logistic regression to evaluate the associations between sleep-wake changes and risk of cognitive impairment at follow-up. RESULTS We identified three sleep-wake change profiles: Stable Sleep (43.8%), Declining Nighttime Sleep (34.9%), and Increasing Sleepiness (21.3%). After adjustment for demographics and comorbidities, women with Increasing Sleepiness had approximately doubled (odds ratio=2.21, p=0.018) risk of dementia compared to those with Stable Sleep. DISCUSSION Increasing sleepiness may be an independent marker or risk factor for dementia in oldest old women.
Collapse
|
6
|
Marino FR, Deal JA, Dougherty RJ, Bilgel M, Tian Q, An Y, Simonsick EM, Resnick SM, Ferrucci L, Spira AP, Wanigatunga AA, Schrack JA. Differences in Daily Physical Activity by Alzheimer's Risk Markers Among Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae119. [PMID: 38742659 PMCID: PMC11157965 DOI: 10.1093/gerona/glae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Daily physical activity patterns differ by Alzheimer's disease (AD) status and might signal cognitive risk. It is critical to understand whether patterns are disrupted early in the AD pathological process. Yet, whether established AD risk markers (β-amyloid [Aβ] or apolipoprotein E-ε4 [APOE-ε4]) are associated with differences in objectively measured activity patterns among cognitively unimpaired older adults is unclear. METHODS Wrist accelerometry, brain Aβ (+/-), and APOE-ε4 genotype were collected in 106 (Aβ) and 472 (APOE-ε4) participants (mean age 76 [standard deviation{SD}: 8.5) or 75 [SD: 9.2] years, 60% or 58% women) in the Baltimore Longitudinal Study of Aging. Adjusted linear and function-on-scalar regression models examined whether Aβ or APOE-ε4 status was cross-sectionally associated with activity patterns (amount, variability, or fragmentation) overall and by time of day, respectively. Differences in activity patterns by combinations of Aβ and APOE-ε4 status were descriptively examined (n = 105). RESULTS There were no differences in any activity pattern by Aβ or APOE-ε4 status overall. Aβ+ was associated with lower total amount and lower within-day variability of physical activity overnight and early evening, and APOE-ε4 carriers had higher total amount of activity in the evening and lower within-day variability of activity in the morning. Diurnal curves of activity were blunted among those with Aβ+ regardless of APOE-ε4 status, but only when including older adults with mild cognitive impairment/dementia. CONCLUSIONS Aβ+ in cognitively unimpaired older adults might manifest as lower amount and variability of daily physical activity, particularly during overnight/evening hours. Future research is needed to examine changes in activity patterns in larger samples and by other AD biomarkers.
Collapse
Affiliation(s)
- Francesca R Marino
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ryan J Dougherty
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Murat Bilgel
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Qu Tian
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Adam P Spira
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Sauers SC, Toedebusch CD, Richardson R, Spira AP, Morris JC, Holtzman DM, Lucey BP. Midpoint of sleep is associated with sleep quality in older adults with and without symptomatic Alzheimer's disease. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae023. [PMID: 38711547 PMCID: PMC11071685 DOI: 10.1093/sleepadvances/zpae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Indexed: 05/08/2024]
Abstract
Introduction Disrupted sleep is common in individuals with Alzheimer's disease (AD) and may be a marker for AD risk. The timing of sleep affects sleep-wake activity and is also associated with AD, but little is known about links between sleep architecture and the midpoint of sleep in older adults. In this study, we tested if the midpoint of sleep is associated with different measures of sleep architecture, AD biomarkers, and cognitive status among older adults with and without symptomatic AD. Methods Participants (N = 243) with a mean age of 74 underwent standardized cognitive assessments, measurement of CSF AD biomarkers, and sleep monitoring via single-channel EEG, actigraphy, a home sleep apnea test, and self-reported sleep logs. The midpoint of sleep was defined by actigraphy. Results A later midpoint of sleep was associated with African-American race and greater night-to-night variability in the sleep midpoint. After adjusting for multiple potential confounding factors, a later sleep midpoint was associated with longer rapid-eye movement (REM) onset latency, decreased REM sleep time, more actigraphic awakenings at night, and higher < 2 Hz non-REM slow-wave activity. Conclusions Noninvasive in vivo markers of brain function, such as sleep, are needed to track both future risk of cognitive impairment and response to interventions in older adults at risk for AD. Sleep timing is associated with multiple other sleep measures and may affect their utility as markers of AD. The midpoint of sleep may be changed through behavioral intervention and should be taken into account when using sleep as a marker for AD risk.
Collapse
Affiliation(s)
- Scott C Sauers
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Cristina D Toedebusch
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Richardson
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Adam P Spira
- Department of Mental Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
8
|
Özcan GG, Lim S, Canning T, Tirathdas L, Donnelly J, Kundu T, Rihel J. Genetic and chemical disruption of amyloid precursor protein processing impairs zebrafish sleep maintenance. iScience 2024; 27:108870. [PMID: 38318375 PMCID: PMC10839650 DOI: 10.1016/j.isci.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Amyloid precursor protein (APP) is a brain-rich, single pass transmembrane protein that is proteolytically processed into multiple products, including amyloid-beta (Aβ), a major driver of Alzheimer disease (AD). Although both overexpression of APP and exogenously delivered Aβ lead to changes in sleep, whether APP processing plays an endogenous role in regulating sleep is unknown. Here, we demonstrate that APP processing into Aβ40 and Aβ42 is conserved in zebrafish and then describe sleep/wake phenotypes in loss-of-function appa and appb mutants. Larvae with mutations in appa had reduced waking activity, whereas larvae that lacked appb had shortened sleep bout durations at night. Treatment with the γ-secretase inhibitor DAPT also shortened night sleep bouts, whereas the BACE-1 inhibitor lanabecestat lengthened sleep bouts. Intraventricular injection of P3 also shortened night sleep bouts, suggesting that the proper balance of Appb proteolytic processing is required for normal sleep maintenance in zebrafish.
Collapse
Affiliation(s)
- Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Thomas Canning
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Lavitasha Tirathdas
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Tanushree Kundu
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
9
|
Ferini-Strambi L, Liguori C, Lucey BP, Mander BA, Spira AP, Videnovic A, Baumann C, Franco O, Fernandes M, Gnarra O, Krack P, Manconi M, Noain D, Saxena S, Kallweit U, Randerath W, Trenkwalder C, Rosenzweig I, Iranzo A, Bradicich M, Bassetti C. Role of sleep in neurodegeneration: the consensus report of the 5th Think Tank World Sleep Forum. Neurol Sci 2024; 45:749-767. [PMID: 38087143 DOI: 10.1007/s10072-023-07232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-β (Aβ) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aβ. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy.
| | - Claudio Liguori
- Sleep Medicine Center, University of Rome Tor Vergata, Rome, Italy
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aleksandar Videnovic
- Department of Neurology, Division of Sleep Medicine, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Oscar Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oriella Gnarra
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Faculty of Biomedical Sciences, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniela Noain
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, University Witten/Herdecke, Witten, Germany
| | | | - C Trenkwalder
- Department of Neurosurgery, Paracelsus-Elena Klinik, University Medical Center, KasselGoettingen, Germany
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, King's College London, London, UK
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clinic de Barcelona, Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Matteo Bradicich
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
Wei J, Wang M, Guo Y, Liu Y, Dong X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med 2024; 113:397-405. [PMID: 38134714 DOI: 10.1016/j.sleep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES A meta-analysis was used to explore the characteristic changes in objective sleep structure of patients with mild cognitive impairment (MCI) compared with cognitively healthy older adults. MATERIALS AND METHODS PubMed, EMBAS, Cochrane Library, Scopus, and Web of Science were searched until November 2023. A literature quality evaluation was performed according to the Newcastle-Ottawa Scale, and a meta-analysis was performed by RevMan 5.3 software. RESULTS Fifteen studies with 771 participants were finally included. Compared with normal control groups, patients with MCI had a decreased total sleep time by 34.44 min, reduction in sleep efficiency by 7.96 %, increased waking after sleep onset by 19.61 min, and increased sleep latency by 6.97 min. Ten included studies showed that the patients with MCI had increased N1 sleep by 2.72 % and decreased N3 sleep by 0.78 %; however, there was no significant difference between the MCI and control groups in percentage of N2 sleep. Moreover, Twelve included studies reported the MCI groups had shorter REM sleep of 2.69 %. CONCLUSION Our results provide evidence of abnormal sleep architecture in patients with MCI. As a "plastic state," abnormal sleep architecture may be a promising therapeutic target for slowing cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- Jianing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanli Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaofang Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
11
|
Fang W, Le S, Han W, Peng-Jiao X, Shuai Y, Rui-Ling Z, Lin L, Ya-Hui X. Association between napping and cognitive impairment: A systematic review and meta-analysis. Sleep Med 2023; 111:146-159. [PMID: 37776585 DOI: 10.1016/j.sleep.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
STUDY OBJECTIVES Increasing evidence suggests that napping is associated with cognitive impairment and dementia, but the conclusions are inconsistent. Moreover, the extent of the risk is uncertain. We therefore conducted a systematic review and meta-analysis to quantify the connection between napping and cognitive impairment. METHODS We performed a systematic search of PubMed, EMBASE, Web of Science, and Cochrane Library for studies that were published up to June 2023, and assessed associations between napping and cognitive impairment. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated as the effect sizes for all studies. Heterogeneity and potential publication biases were assessed. RESULTS A total of 4535 papers were retrieved, with 20 reports assessing the relationships between napping and cognitive impairment. Pooled analysis indicated that napping was associated with dementia (OR = 1.14; 95% CI: 1.07-1.21). Importantly, we found that those napping longer than 30, 45, and 60 min/day were 35%, 41%, and 40%, respectively, more likely to have an increased risk of cognitive impairment (30 min: OR = 1.35; 95% CI: 1.24-1.48; 45 min: OR = 1.41; 95% CI: 1.27-1.58; 60 min: OR = 1.40; 95% CI: 1.26-1.56). North America and Europe showed that associations existed between napping and cognitive impairment (North America: OR = 1.15; 95% CI: 1.04-1.27; Europe: OR = 1.13; 95% CI: 1.08-1.18). CONCLUSIONS This meta-analysis indicated associations between long napping durations and cognitive impairment or dementia, suggesting that longer napping might be a potential risk factor of adverse cognitive outcomes.
Collapse
Affiliation(s)
- Wu Fang
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shi Le
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Wang Han
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xu Peng-Jiao
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu Shuai
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhang Rui-Ling
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lu Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - Xu Ya-Hui
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
12
|
Roh SE, Xiao M, Delgado A, Kwak C, Savonenko A, Bakker A, Kwon HB, Worley P. Sleep and circadian rhythm disruption by NPTX2 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559408. [PMID: 37808783 PMCID: PMC10557648 DOI: 10.1101/2023.09.26.559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Sleep and circadian rhythm disruption (SCRD) is commonly observed in aging, especially in individuals who experience progressive cognitive decline to mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, precise molecular mechanisms underlying the association between SCRD and aging are not fully understood. Orexin A is a well-characterized "sleep neuropeptide" that is expressed in hypothalamic neurons and evokes wake behavior. The importance of Orexin is exemplified in narcolepsy where it is profoundly down-regulated. Interestingly, the synaptic immediate early gene NPTX2 is co-expressed in Orexin neurons and is similarly reduced in narcolepsy. NPTX2 is also down-regulated in CSF of some cognitively normal older individuals and predicts the time of transition from normal cognition to MCI. The association between Orexin and NPTX2 is further evinced here where we observe that Orexin A and NPTX2 are highly correlated in CSF of cognitively normal aged individuals and raises the question of whether SCRD that are typically attributed to Orexin A loss of function may be modified by concomitant NPTX2 down-regulation. Is NPTX2 an effector of sleep or simply a reporter of orexin-dependent SCRD? To address this question, we examined NPTX2 KO mice and found they retain Orexin expression in the brain and so provide an opportunity to examine the specific contribution of NPTX2 to SCRD. Our results reveal that NPTX2 KO mice exhibit a disrupted circadian onset time, coupled with increased activity during the sleep phase, suggesting difficulties in maintaining states. Sleep EEG indicates distinct temporal allocation shifts across vigilance states, characterized by reduced wake and increased NREM time. Evident sleep fragmentation manifests through alterations of event occurrences during Wake and NREM, notably during light transition periods, in conjunction with an increased frequency of sleep transitions in NPTX2 KO mice, particularly between Wake and NREM. EEG spectral analysis indicated significant shifts in power across various frequency bands in the wake, NREM, and REM states, suggestive of disrupted neuronal synchronicity. An intriguing observation is the diminished occurrence of sleep spindles, one of the earliest measures of human sleep disruption, in NPTX2 KO mice. These findings highlight the effector role of NPTX2 loss of function as an instigator of SCRD and a potential mediator of sleep disruption in aging.
Collapse
Affiliation(s)
- Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meifang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana Delgado
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chuljung Kwak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alena Savonenko
- Department of Neuroanatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Emert SE, Taylor DJ, Gartenberg D, Schade MM, Roberts DM, Nagy SM, Russell M, Huskey A, Mueller M, Gamaldo A, Buxton OM. A non-pharmacological multi-modal therapy to improve sleep and cognition and reduce mild cognitive impairment risk: Design and methodology of a randomized clinical trial. Contemp Clin Trials 2023; 132:107275. [PMID: 37380020 PMCID: PMC11972623 DOI: 10.1016/j.cct.2023.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Aging populations are at increased risk of sleep deficiencies (e.g., insomnia) that are associated with a variety of chronic health risks, including Alzheimer's disease and related dementias (ADRD). Insomnia medications carry additional risk, including increased drowsiness and falls, as well as polypharmacy risks. The recommended first-line treatment for insomnia is cognitive behavioral therapy for insomnia (CBTi), but access is limited. Telehealth is one way to increase access, particularly for older adults, but to date telehealth has been typically limited to simple videoconferencing portals. While these portals have been shown to be non-inferior to in-person treatment, it is plausible that telehealth could be significantly improved. This work describes a protocol designed to evaluate whether a clinician-patient dashboard inclusive of several user-friendly features (e.g., patterns of sleep data from ambulatory devices, guided relaxation resources, and reminders to complete in-home CBTi practice) could improve CBTi outcomes for middle- to older-aged adults (N = 100). Participants were randomly assigned to one of three telehealth interventions delivered through 6-weekly sessions: (1) CBTi augmented with a clinician-patient dashboard, smartphone application, and integrated smart devices; (2) standard CBTi (i.e., active comparator); or (3) sleep hygiene education (i.e., active control). All participants were assessed at screening, pre-study evaluation, baseline, throughout treatment, and at 1-week post-treatment. The primary outcome is the Insomnia Severity Index. Secondary and exploratory outcomes span sleep diary, actiwatch and Apple watch assessed sleep parameters (e.g., efficiency, duration, timing, variability), psychosocial correlates (e.g., fatigue, depression, stress), cognitive performance, treatment adherence, and neurodegenerative and systemic inflammatory biomarkers.
Collapse
Affiliation(s)
- Sarah E Emert
- The University of Arizona, Department of Psychology, Tucson, AZ, United States
| | - Daniel J Taylor
- The University of Arizona, Department of Psychology, Tucson, AZ, United States.
| | | | - Margeaux M Schade
- The Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, United States
| | - Daniel M Roberts
- Proactive Life, Inc. (DBA SleepSpace), New York, NY, United States; The Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, United States
| | - Samantha M Nagy
- The University of Arizona, Department of Psychology, Tucson, AZ, United States
| | - Michael Russell
- The Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, United States
| | - Alisa Huskey
- The University of Arizona, Department of Psychology, Tucson, AZ, United States
| | - Melissa Mueller
- Proactive Life, Inc. (DBA SleepSpace), New York, NY, United States
| | - Alyssa Gamaldo
- The Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, United States
| | - Orfeu M Buxton
- The Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, United States
| |
Collapse
|
14
|
Hayden KM, Anderson A, Spira AP, St-Onge MP, Ding J, Culkin M, Molina-Henry D, Sanderlin AH, Reboussin D, Bahnson J, Espeland MA. Daytime Sleepiness Is Associated with Lower Cognitive Scores: The Look AHEAD Study. JAR LIFE 2023; 12:46-55. [PMID: 37457508 PMCID: PMC10345450 DOI: 10.14283/jarlife.2023.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023]
Abstract
Background Daytime sleepiness is common in older adults and may result from poor nighttime sleep due to sleep disordered breathing, fragmented sleep, or other sleep disorders. Daytime sleepiness may be associated with cognition in older adults. Objectives We investigated the association between self-reported daytime sleepiness and cognitive function in the Look AHEAD clinical trial. Design Observational follow-up of a randomized clinical trial of an intensive lifestyle intervention. Setting Clinic. Participants Participants (n=1,778) aged 45-76 years at baseline with type 2 diabetes and overweight or obesity. Interventions Participants were randomized to an intensive lifestyle intervention for weight loss or a control condition of diabetes support and education. Measurements Participants provided self-reported levels of daytime sleepiness at baseline and years 12-13. Cognitive function was assessed with a neurocognitive battery at years 12-13 and 18-20. Results Participants who reported having frequent daytime sleepiness (often or always) performed significantly worse than others on the cognitive composite (-0.35; p-value=0.014) after controlling for covariates. When stratified by intervention arm, participants assigned to the intensive lifestyle intervention who reported often/always having daytime sleepiness performed worse on Digit Symbol Coding (-0.63; p-value=0.05) and Trail Making Part-B (-0.56; p-value=0.02) after controlling for covariates. Statistical interactions revealed associations between daytime sleepiness and the following covariates: race and ethnicity, APOE ε4 carrier status, baseline history of cardiovascular disease, and depression. Conclusions Daytime sleepiness over ~13 years predicted poorer cognitive performance in older individuals who, by virtue of having diabetes and overweight/obesity, are at high risk for sleep disorders and cognitive impairment.
Collapse
Affiliation(s)
- K M Hayden
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - A Anderson
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - A P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| | - M-P St-Onge
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - J Ding
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M Culkin
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - D Molina-Henry
- Winston-Salem State University, Winston-Salem, NC, USA
- University of Southern California, Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - A H Sanderlin
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - D Reboussin
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Bahnson
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M A Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Wu W, Pu L, Hu X, Chen Q, Wang G, Wang Y. Moderate-to-high risk of obstructive sleep apnea with excessive daytime sleepiness is associated with postoperative neurocognitive disorders: a prospective one-year follow-up cohort study. Front Neurosci 2023; 17:1161279. [PMID: 37325036 PMCID: PMC10266218 DOI: 10.3389/fnins.2023.1161279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Background Few studies found that obstructive sleep apnea (OSA) may be related to postoperative neurocognitive disorders (PND) including postoperative delirium (POD) and cognitive decline (POCD) in the early postoperative period. However, the results are controversial and need further verification, and no research has explored the effect of OSA on the incidence of PND during the 1-year follow-up periods. Furthermore, OSA patients with excessive daytime sleepiness (EDS) as a severe phenotype have more significant neurocognitive impairments, but the relationship between OSA with EDS and PND within 1 year after surgery has not been studied. Objectives To explore the effect of moderate-to-high risk of OSA and the moderate-to-high risk of OSA with EDS on PND within 1 year after surgery. Methods In this prospective cohort study, including 227 older patients, moderate-to-high risk of OSA (using STOP-BANG), subjective EDS (using Epworth Sleepiness Scale), and objective EDS (using Actigraphy) were selected as exposures. Key outcomes included POD during hospitalization (using Confusion Assessment Method-Severity), POCD at discharge, 1-month and 1-year after surgery (using Mini-Mental State Examination and Telephone Interview for Cognitive Status-40). We applied multiple logistic regression models to estimate the effect of moderate-to-high risk of OSA and moderate-to-high risk of OSA with EDS on PND. Results In the multivariate analysis, moderate-to-high risk of OSA was not associated with POD during hospitalization and POCD at discharge, 1-month, and 1-year after surgery (p > 0.05). However, the moderate-to-high risk of OSA with subjective EDS was related to POCD at discharge compared to the moderate-to-high risk of OSA or normal group (no moderate-to-high risk of OSA and no EDS) (p < 0.05). In addition, moderate-to-high risk of OSA with objective EDS was associated with POCD at discharge, 1-month, and 1-year postoperatively compared to the moderate-to-high risk of OSA or normal group (p < 0.05). Conclusion Moderate-to-high risk of OSA with EDS, not moderate-to-high risk of OSA alone, was a clinically helpful predictor for POCD within 1-year after surgery and should be routinely assessed before surgery.
Collapse
Affiliation(s)
- Wenwen Wu
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lihui Pu
- Menzies Health Institute Queensland & School of Nursing and Midwifery, Griffith University, Brisbane, QL, Australia
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Chen
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Wang
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
17
|
Satpati A, Neylan T, Grinberg LT. Histaminergic neurotransmission in aging and Alzheimer's disease: A review of therapeutic opportunities and gaps. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12379. [PMID: 37123051 PMCID: PMC10130560 DOI: 10.1002/trc2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023]
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disorderfeaturing a brain accumulation of extracellular β-amyloidplaques (Aβ) and intracellular neurofibrillary tautangles (NFTs). Although cognitive decline is a disease-defining symptom of AD, sleep dysfunction, a common symptom often preceding cognitive decline, hasrecently gained more attention as a core AD symptom. Polysomnography and othersleep measures show sleep fragmentation with shortening of N3 sleep togetherwith excessive daytime sleepiness (EDS) and sundowning as the main findings in AD patients. The latter reflects dysfunction of the wake-promoting neurons (WPNs), including histaminergic neurons (HAN) located in thetuberomammillary nucleus (TMN) of the posterior hypothalamus, which projectunmyelinated axons to various parts of the brain. Histamine's role in cognitionand arousal is broadly recognized. Selective targeting of histaminergic subtype-3 and 4 receptors show therapeutic potential in rodent models of AD andaging. Method Based on PubMed, Scopus, and google scholar databases search, this review summarizes the current knowledge on the histaminergic system in AD and aging, its therapeutic potential in AD, and highlight areas where moreresearch is needed. Results Animal studies have demonstrated that pharmacological manipulation of histaminergic receptors or histamine supplementation improves cognition in AD models. However, measurements of HA or HA metabolite levels in the human brainand CSF present contradictory reports due to either lack of power or controls for known confounders. Discussion Systemic studies including broad age, sex, neuropathological diagnosis, and disease stage are warranted to fill the gap in our current understanding of the histaminergic neurotransmitter/neuromodulator system in humans, especially age-related changes, and therapeuticpotential of histamine in AD-related dysfunction.
Collapse
Affiliation(s)
- Abhijit Satpati
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas Neylan
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Weill Institute of NeuroscienceUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
18
|
Zhang L, Chen C, Zhang H, Peng B. Longitudinal associations between daytime napping and cognitive function in Chinese older adults. Arch Gerontol Geriatr 2023; 107:104909. [PMID: 36577195 DOI: 10.1016/j.archger.2022.104909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Little was known about the longitudinal associations between daytime napping and cognitive function in China. Thus, the study aimed to explore the cross-sectional and the longitudinal relationship between daytime napping and cognitive performance in the elderly Chinese population. METHODS The data was from the China Health and Retirement Longitudinal Study (CHARLS). Daytime napping was self-reported. Cognitive function was assessed via a structured questionnaire in two dimensions: episodic memory and mental status. Linear regression and mixed-effect model were applied to explore the association between daytime napping and cognitive function. RESULTS A total of 2,875 and 2,440 participants aged over 65 years were included in the cross-sectional and the longitudinal studies, respectively. In the cross-sectional study, non-nappers and extended nappers had significantly lower global cognition scores (P<0.01), as well as significantly lower scores for episodic memory (P<0.05) and mental status (P<0.01), compared with moderate nappers. In the longitudinal analysis, no napping and extended napping were significantly associated with global cognitive decline (P<0.05) and only extended napping showed the significant association for the decline in episodic memory as well as mental status (P<0.01). LIMITATIONS Daytime napping duration was self-reported by participants. CONCLUSION The study found a longitudinal association between extended napping duration and worse cognitive function.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Chen Chen
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hong Zhang
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Bin Peng
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Russell J, Ingram SM, Teal LB, Lindsley CW, Jones CK. M 1/M 4-Preferring Muscarinic Cholinergic Receptor Agonist Xanomeline Reverses Wake and Arousal Deficits in Nonpathologically Aged Mice. ACS Chem Neurosci 2023; 14:435-457. [PMID: 36655909 PMCID: PMC9897218 DOI: 10.1021/acschemneuro.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Degeneration of the cholinergic basal forebrain is implicated in the development of cognitive deficits and sleep/wake architecture disturbances in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Indirect-acting muscarinic cholinergic receptor agonists, such as acetylcholinesterase inhibitors (AChEIs), remain the only FDA-approved treatments for the cognitive impairments observed in AD that target the cholinergic system. Novel direct-acting muscarinic cholinergic receptor agonists also improve cognitive performance in young and aged preclinical species and are currently under clinical development for AD. However, little is known about the effects of direct-acting muscarinic cholinergic receptor agonists on disruptions of sleep/wake architecture and arousal observed in nonpathologically aged rodents, nonhuman primates, and clinical populations. The purpose of the present study was to provide the first assessment of the effects of the direct-acting M1/M4-preferring muscarinic cholinergic receptor agonist xanomeline on sleep/wake architecture and arousal in young and nonpathologically aged mice, in comparison with the AChEI donepezil, when dosed in either the active or inactive phase of the circadian cycle. Xanomeline produced a robust reversal of both wake fragmentation and disruptions in arousal when dosed in the active phase of nonpathologically aged mice. In contrast, donepezil had no effect on either age-related wake fragmentation or arousal deficits when dosed during the active phase. When dosed in the inactive phase, both xanomeline and donepezil produced increases in wake and arousal and decreases in nonrapid eye movement sleep quality and quantity in nonpathologically aged mice. Collectively, these novel findings suggest that direct-acting muscarinic cholinergic agonists such as xanomeline may provide enhanced wakefulness and arousal in nonpathological aging, MCI, and AD patient populations.
Collapse
Affiliation(s)
- Jason
K. Russell
- Department of Pharmacology,
Warren
Center for Neuroscience Drug Discovery, and Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shalonda M. Ingram
- Department of Pharmacology,
Warren
Center for Neuroscience Drug Discovery, and Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Laura B. Teal
- Department of Pharmacology,
Warren
Center for Neuroscience Drug Discovery, and Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology,
Warren
Center for Neuroscience Drug Discovery, and Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Department of Pharmacology,
Warren
Center for Neuroscience Drug Discovery, and Vanderbilt Institute of
Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
20
|
André C, Champetier P, Rehel S, Kuhn E, Touron E, Ourry V, Landeau B, Le Du G, Mézenge F, Segobin S, de la Sayette V, Vivien D, Chételat G, Rauchs G, Allais F, Asselineau J, Lugo SB, Batchelor M, Beaugonin A, Bejanin A, Chocat A, Collette F, Dautricourt S, Ferrand‐Devouge E, De Flores R, Delamillieure P, Delarue M, Deza‐Araujo YI, Esperou H, Felisatti F, Frison E, Gheysen F, Gonneaud J, Heidmann M, Tran (Dolma) T(TH, Klimecki O, Lefranc V, Lutz A, Marchant N, Molinuevo J, Moulinet I, Palix C, Paly L, Poisnel G, Requier F, Salmon E, Schimmer C, Sherif S, Vanhoutte M, Vuilleumier P, Ware C, Wirth M. Rapid Eye Movement Sleep, Neurodegeneration, and Amyloid Deposition in Aging. Ann Neurol 2023; 93:979-990. [PMID: 36641644 DOI: 10.1002/ana.26604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Rapid eye movement (REM) sleep is markedly altered in Alzheimer's disease (AD), and its reduction in older populations is associated with AD risk. However, little is known about the underlying brain mechanisms. Our objective was to investigate the relationships between REM sleep integrity and amyloid deposition, gray matter volume, and perfusion in aging. METHODS We included 121 cognitively unimpaired older adults (76 women, mean age 68.96 ± 3.82 years), who underwent a polysomnography, T1-weighted magnetic resonance imaging, early and late Florbetapir positron emission tomography scans to evaluate gray matter volume, perfusion, and amyloid deposition. We computed indices reflecting REM sleep macro- and microstructural integrity (ie, normalized electroencephalographic spectral power values). Voxel-wise multiple regression analyses were conducted between REM sleep indices and neuroimaging data, controlling for age, sex, education, the apnea-hypopnea index, and the apolipoprotein E ε4 status. RESULTS Lower perfusion in frontal, anterior and posterior cingulate, and precuneus areas was associated with decreased delta power and electroencephalographic slowing (slow/fast frequencies ratio), and increased alpha and beta power. To a lower extent, similar results were obtained between gray matter volume and delta, alpha, and beta power. In addition, lower REM sleep theta power was more marginally associated with greater diffuse amyloid deposition and lower gray matter volume in fronto-temporal and parieto-occipital areas. INTERPRETATION These results suggest that alterations of REM sleep microstructure are associated with greater neurodegeneration and neocortical amyloid deposition in older adults. Further studies are warranted to replicate these findings, and determine whether older adults exhibiting REM sleep alterations are more at risk of cognitive decline and belonging to the Alzheimer's continuum. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Claire André
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Pierre Champetier
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Stéphane Rehel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Elizabeth Kuhn
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Edelweiss Touron
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Valentin Ourry
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Gwendoline Le Du
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Vincent de la Sayette
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France.,Neurology Department, Caen University Hospital, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Clinical Research Department, Caen University Hospital, Caen, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sangalli L, Boggero IA. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: A systematic review. Sleep Med 2023; 101:322-349. [PMID: 36481512 DOI: 10.1016/j.sleep.2022.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The glymphatic system is thought to be responsible for waste clearance in the brain. As it is primarily active during sleep, different components of sleep, subjective sleep quality, and sleep patterns may contribute to glymphatic functioning. This systematic review aimed at exploring the effect of sleep components, sleep quality, and sleep patterns on outcomes associated with the glymphatic system in healthy adults. METHODS PubMed®, Scopus, and Web of Science were searched for studies published in English until December 2021. Articles subjectively or objectively investigating sleep components (total sleep time, time in bed, sleep efficiency, sleep onset latency, wake-up after sleep onset, sleep stage, awakenings), sleep quality, or sleep pattern in healthy individuals, on outcomes associated with glymphatic system (levels of amyloid-β, tau, α-synuclein; cerebrospinal fluid, perivascular spaces; apolipoprotein E) were selected. RESULTS Out of 8359 records screened, 51 studies were included. Overall, contradictory findings were observed according to different sleep assessment method. The most frequently assessed sleep parameters were total sleep time, sleep quality, and sleep efficiency. No association was found between sleep efficiency and amyloid-β, and between slow-wave activity and tau. Most of the studies did not find any correlation between total sleep time and amyloid-β nor tau level. Opposing results correlated sleep quality with amyloid-β and tau. CONCLUSIONS This review highlighted inconsistent results across the studies; as such, the specific association between the glymphatic system and sleep parameters in healthy adults remains poorly understood. Due to the heterogeneity of sleep assessment methods and the self-reported data representing the majority of the observations, future studies with universal study design and sleep methodology in healthy individuals are advocated.
Collapse
Affiliation(s)
- L Sangalli
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; College of Dental Medicine - Illinois, Downers Grove, Illinois, USA.
| | - I A Boggero
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Souabni M, Souabni MJ, Hammouda O, Romdhani M, Trabelsi K, Ammar A, Driss T. Benefits and risks of napping in older adults: A systematic review. Front Aging Neurosci 2022; 14:1000707. [PMID: 36337699 PMCID: PMC9634571 DOI: 10.3389/fnagi.2022.1000707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
A growing body of evidence indicates that napping is common among older adults. However, a systematic review on the effect of napping on the elderly is lacking. The aim of this systematic review was to (i) determine how studies evaluated napping behavior in older adults (frequency, duration and timing); (ii) explore how napping impacts perceptual measures, cognitive and psychomotor performance, night-time sleep and physiological parameters in the elderly (PROSPERO CRD42022299805). A total of 738 records were screened by two researchers using the PICOS criteria. Fifteen studies met our inclusion criteria with a mean age ranging from 60.8 to 78.3 years and a cumulative sample size of n = 326. Daytime napping had an overall positive impact on subjective measures (i.e., sleepiness and fatigue), psychomotor performances (i.e., speed and accuracy) and learning abilities (i.e., declarative and motor learning). Additionally, studies showed (i) consistency between nap and control conditions regarding sleep duration, efficiency and latency, and proportion of sleep stages, and (ii) increase of 24 h sleep duration with nap compared to control condition. Based on the findings of the present review, there is minimal evidence to indicate that napping is detrimental for older adults' nighttime sleep. Future studies should consider involving repeated naps during a micro-cycle in order to investigate the chronic effect of napping on older adults. Systematic review registration identifier: CRD42022299805.
Collapse
Affiliation(s)
- Maher Souabni
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
| | - Mehdi J. Souabni
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
| | - Omar Hammouda
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mohamed Romdhani
- Physical Activity, Sport and Health, UR18JS01, National Observatory of Sports, Tunis, Tunisia
- Motricité-Interactions-Performance, MIP, UR4334, Le Mans Université, Le Mans, France
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia
| | - Achraf Ammar
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tarak Driss
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
| |
Collapse
|
23
|
Liu W, Wu Q, Wang M, Wang P, Shen N. Prospective association between sleep duration and cognitive impairment: Findings from the China Health and Retirement Longitudinal Study (CHARLS). Front Med (Lausanne) 2022; 9:971510. [PMID: 36148464 PMCID: PMC9485441 DOI: 10.3389/fmed.2022.971510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The association between sleep duration and cognition are inconclusive. Our study aimed to comprehensively investigate the effects of sleep duration on the risk of cognitive impairment in the middle-aged and older Chinese population. Methods We used the longitudinal cohort data from waves 1-4 (2011-2018) of the China Health and Retirement Longitudinal Study (CHARLS). Self-reported exposures included total sleep duration, nocturnal sleep duration, post-lunch napping, and changes in sleep duration over time according to face-to-face interviews. Cognitive function was assessed by a Chinese version of the Modified Mini-Mental State Examination (MMSE). Results A total of 7,342 eligible participants were included. The mean age was 61.5 ± 6.5 years, and 48.9% (3,588/7,342) were male. We identified a U-shaped association of total sleep duration as well as nocturnal sleep duration with the risk of cognitive impairment. People with 7-8 h of total sleep duration and 6-7 h of nocturnal sleep had the lowest risk of cognitive impairment. Further results showed that post-lunch napping within 2 h was beneficial to cognition and 60 min was optimal. Moreover, analyses of changes in sleep duration further supported that sleeping less or more was harmful to cognition. Notably, those "excessive-change" sleepers (from ≤6 to ≥9 h, or from ≥9 to ≤6 h) had more risks. Conclusions Keeping 7-8 h per day was related to the lowest risk of cognitive impairment in midlife and late life, and an optimal post-lunch napping was 60 min for these stable sleepers. Especially, excessive changes in sleep duration over time led to poorer cognition. Our work highlights the importance of optimal sleep habits to cognitive function. The self-reported sleep measures limited our findings, and further studies are needed for verification.
Collapse
Affiliation(s)
- Wenhua Liu
- Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Wu
- Department of Scientific Research Management, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Carvalho DZ, St. Louis EK, Przybelski SA, Morgenthaler TI, Machulda MM, Boeve BF, Petersen RC, Jack CR, Graff-Radford J, Vemuri P, Mielke MM. Sleepiness in Cognitively Unimpaired Older Adults Is Associated With CSF Biomarkers of Inflammation and Axonal Integrity. Front Aging Neurosci 2022; 14:930315. [PMID: 35898322 PMCID: PMC9309557 DOI: 10.3389/fnagi.2022.930315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Sleepiness has been associated with cognitive decline and dementia in the elderly. Older adults with excessive daytime sleepiness appear to be more vulnerable to longitudinal amyloid PET accumulation before the onset of the dementia. However, it remains unclear whether sleepiness is similarly associated with other biomarkers of Alzheimer's disease (AD), axonal integrity, and inflammation, which may also contribute to neurodegeneration and cognitive decline. Methods In this cross-sectional analysis, we identified 260 cognitively unimpaired adults (>60 years) from the Mayo Clinic Study of Aging, a population-based cohort from Olmsted County (MN), who underwent CSF quantification of AD biomarkers (Aβ42, p-tau, p-tau/Aβ42) in addition to at least one of the following biomarkers [neurofilament light chain (NfL) interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α)]. We fit linear regression models to assess associations between sleepiness, as measured by the Epworth Sleepiness Scale (ESS), and CSF biomarkers, controlling for age, sex, APOε4 status, body mass index, hypertension, dyslipidemia, and prior diagnosis of obstructive sleep apnea. Results Higher ESS scores were associated with higher CSF IL-6 and NfL, but not with the other CSF biomarkers. For every ESS score point increase, there was a 0.009 ([95% CI 0.001-0.016], p = 0.033) increase in the log of IL-6 and 0.01 ([95% CI 0.002-0.018], p = 0.016) increase in the log of NfL. A sensitivity analysis showed an association between ESS scores and log of p-tau/Aβ42 only in participants with an abnormal ratio (>0.023), highly predictive of amyloid positivity. For every ESS score point increase, there was a 0.006 ([95% CI 0.001-0.012], p = 0.021) increase in the log of CSF p-tau/Aβ42. Conclusion Sleepiness was associated with greater CSF IL-6 and NfL levels, which could contribute to neurodegeneration or alternatively cause sleepiness. Higher NfL levels may result from sleep disruption and/or contribute to sleepiness via disturbed connectivity or damage to wake-promoting centers. Associations between sleepiness and p-tau/Aβ42 in participants with abnormal ratio suggest that amyloid positivity contributes to vulnerability to sleep disturbance, which may further amyloid accumulation in a feed-forward loop process. Prospective studies of these markers are needed to determine cause-effect relationships between these associations.
Collapse
Affiliation(s)
- Diego Z. Carvalho
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Erik K. St. Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Timothy I. Morgenthaler
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mary M. Machulda
- Department of Psychology, Mayo Clinic, Rochester, MN, United States
| | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Sleep Medicine, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
25
|
Oh JY, Walsh CM, Ranasinghe K, Mladinov M, Pereira FL, Petersen C, Falgàs N, Yack L, Lamore T, Nasar R, Lew C, Li S, Metzler T, Coppola Q, Pandher N, Le M, Heuer HW, Heinsen H, Spina S, Seeley WW, Kramer J, Rabinovici GD, Boxer AL, Miller BL, Vossel K, Neylan TC, Grinberg LT. Subcortical Neuronal Correlates of Sleep in Neurodegenerative Diseases. JAMA Neurol 2022; 79:498-508. [PMID: 35377391 PMCID: PMC8981071 DOI: 10.1001/jamaneurol.2022.0429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Importance Sleep disturbance is common among patients with neurodegenerative diseases. Examining the subcortical neuronal correlates of sleep disturbances is important to understanding the early-stage sleep neurodegenerative phenomena. Objectives To examine the correlation between the number of important subcortical wake-promoting neurons and clinical sleep phenotypes in patients with Alzheimer disease (AD) or progressive supranuclear palsy (PSP). Design, Setting, and Participants This longitudinal cohort study enrolled 33 patients with AD, 20 patients with PSP, and 32 healthy individuals from the Memory and Aging Center of the University of California, San Francisco, between August 22, 2008, and December 31, 2020. Participants received electroencephalographic and polysomnographic sleep assessments. Postmortem neuronal analyses of brainstem hypothalamic wake-promoting neurons were performed and were included in the clinicopathological correlation analysis. No eligible participants were excluded from the study. Exposures Electroencephalographic and polysomnographic assessment of sleep and postmortem immunohistological stereological analysis of 3 wake-promoting nuclei (noradrenergic locus coeruleus [LC], orexinergic lateral hypothalamic area [LHA], and histaminergic tuberomammillary nucleus [TMN]). Main Outcomes and Measures Nocturnal sleep variables, including total sleep time, sleep maintenance, rapid eye movement (REM) latency, and time spent in REM sleep and stages 1, 2, and 3 of non-REM (NREM1, NREM2, and NREM3, respectively) sleep, and wake after sleep onset. Neurotransmitter, tau, and total neuronal counts of LC, LHA, and TMN. Results Among 19 patients included in the clinicopathological correlation analysis, the mean (SD) age at death was 70.53 (7.75) years; 10 patients (52.6%) were female; and all patients were White. After adjusting for primary diagnosis, age, sex, and time between sleep analyses and death, greater numbers of LHA and TMN neurons were correlated with decreased homeostatic sleep drive, as observed by less total sleep time (LHA: r = -0.63; P = .009; TMN: r = -0.62; P = .008), lower sleep maintenance (LHA: r = -0.85; P < .001; TMN: r = -0.78; P < .001), and greater percentage of wake after sleep onset (LHA: r = 0.85; P < .001; TMN: r = 0.78; P < .001). In addition, greater numbers of LHA and TMN neurons were correlated with less NREM2 sleep (LHA: r = -0.76; P < .001; TMN: r = -0.73; P < .001). A greater number of TMN neurons was also correlated with less REM sleep (r = -0.61; P = .01). A greater number of LC neurons was mainly correlated with less total sleep time (r = -0.68; P = .008) and greater REM latency (r = 0.71; P = .006). The AD-predominant group had significantly greater sleep drive, including higher total sleep time (mean [SD], 0.49 [1.18] vs -1.09 [1.37]; P = .03), higher sleep maintenance (mean [SD], 0.18 [1.22] vs -1.53 [1.78]; P = .02), and lower percentage of wake after sleep onset during sleep period time (mean [SD], -0.18 [1.20] vs 1.49 [1.72]; P = .02) than the PSP-predominant group based on unbiased k-means clustering and principal component analyses. Conclusions and Relevance In this cohort study, subcortical wake-promoting neurons were significantly correlated with sleep phenotypes in patients with AD and PSP, suggesting that the loss of wake-promoting neurons among patients with neurodegenerative conditions may disturb the control of sleep-wake homeostasis. These findings suggest that the subcortical system is a primary mechanism associated with sleep disturbances in the early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Y. Oh
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- School of Medicine, University of California, San Francisco, San Francisco
| | - Christine M. Walsh
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Mihovil Mladinov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Felipe L. Pereira
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Neus Falgàs
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Global Brain Health Institute, University of California, San Francisco, San Francisco
| | - Leslie Yack
- Stress and Health Research Program, Department of Mental Health, San Francisco VA Medical Center, San Francisco, California
| | - Tia Lamore
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Rakin Nasar
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Caroline Lew
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Song Li
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Thomas Metzler
- Stress and Health Research Program, Department of Mental Health, San Francisco VA Medical Center, San Francisco, California
| | - Quentin Coppola
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Natalie Pandher
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Michael Le
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Hilary W. Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Helmut Heinsen
- Department of Psychiatry, University of Wurzburg, Wurzburg, Germany
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Joel Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Global Brain Health Institute, University of California, San Francisco, San Francisco
| | - Keith Vossel
- Department of Neurology, University of California, Los Angeles, Los Angeles
| | - Thomas C. Neylan
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Stress and Health Research Program, Department of Mental Health, San Francisco VA Medical Center, San Francisco, California
- Department of Psychiatry, University of California, San Francisco, San Francisco
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Global Brain Health Institute, University of California, San Francisco, San Francisco
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Department of Pathology, University of California, San Francisco, San Francisco
| |
Collapse
|
26
|
Kim H, Levine A, Cohen D, Gehrman P, Zhu X, Devanand DP, Lee S, Goldberg TE. The Role of Amyloid, Tau, and APOE Genotype on the Relationship Between Informant-Reported Sleep Disturbance and Alzheimer's Disease Risks. J Alzheimers Dis 2022; 87:1567-1580. [PMID: 35491776 PMCID: PMC9644449 DOI: 10.3233/jad-215417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The association between sleep and Alzheimer's disease (AD) biomarkers are well-established, but little is known about how they interact to change the course of AD. OBJECTIVE To determine the potential interaction between sleep disturbance and Aβ, tau, and APOE4 on brain atrophy and cognitive decline. METHODS Sample included 351 participants (mean age 72.01 ± 6.67, 50.4%female) who were followed for approximately 5 years as part of the Alzheimer's Disease Neuroimaging Initiative. Informant-reported sleep disturbance (IRSD) was measured using the Neuropsychiatric Inventory (NPI). Changes in magnetic resonance imaging (MRI)-measured AD signature brain regions and cognitive performance and IRSD's interaction with cerebrospinal fluid amyloid-β (Aβ42) and p-Tau depositions and APOE4 status were examined using the linear mixed models. RESULTS Baseline IRSD was not significantly associated with the rate of atrophy after adjusting for covariates (age, sex, education, total NPI severity score, and sleep medications). However, there was a significant interaction between IRSD and AD biomarkers on faster atrophy rates in multiple brain regions, including the cortical and middle temporal volumes. Post-hoc analyses indicated that Aβ and p-Tau/Aβ predicted a faster decline in these regions/domains in IRSD, compared with biomarker-negative individuals with IRSD (ps≤0.001). There was a significant IRSD*APOE4 interaction for brain atrophy rate (ps≤0.02) but not for cognition. CONCLUSION IRSD may increase the future risk of AD by contributing to faster brain atrophy and cognitive decline when combined with the presence of AD biomarkers and APOE4. Early intervention for sleep disturbance could help reduce the risk of developing AD.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Alina Levine
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Daniel Cohen
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Philip Gehrman
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Anxiety, Mood, Eating, and Related Disorder, New York State Psychiatric Institute, New York, NY, USA
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Wanigatunga AA, Liu F, Wang H, Urbanek JK, An Y, Spira AP, Dougherty RJ, Tian Q, Moghekar A, Ferrucci L, Simonsick EM, Resnick SM, Schrack JA. Daily Physical Activity Patterns as a Window on Cognitive Diagnosis in the Baltimore Longitudinal Study of Aging (BLSA). J Alzheimers Dis 2022; 88:459-469. [PMID: 35599480 DOI: 10.3233/jad-215544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gradual disengagement from daily physical activity (PA) could signal present or emerging mild cognitive impairment (MCI) or Alzheimer's disease (AD). OBJECTIVE This study examined whether accelerometry-derived patterns of everyday movement differ by cognitive diagnosis in participants of the Baltimore Longitudinal Study of Aging (BLSA). METHODS Activity patterns, overall and by time-of-day, were cross-sectionally compared between participants with adjudicated normal cognition (n = 549) and MCI/AD diagnoses (n = 36; 5 participants [14%] living with AD) using covariate-adjusted regression models. RESULTS Compared to those with normal cognition, those with MCI/AD had 2.1% higher activity fragmentation (SE = 1.0%, p = 0.036) but similar mean total activity counts/day (p = 0.075) and minutes/day spent active (p = 0.174). Time-of-day analyses show MCI/AD participants had lower activity counts and minutes spent active during waking hours (6:00 am-5:59 pm; p < 0.01 for all). Also, they had lower activity fragmentation from 12:00-5:59 am (p < 0.001), but higher fragmentation from 12:00-5:59 pm (p = 0.026). CONCLUSION Differences in the timing and patterns of physical activity throughout the day linked to MCI/AD diagnoses warrant further investigation into potential clinical utility.
Collapse
Affiliation(s)
- Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| | - Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hang Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jacek K Urbanek
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
- Division of Geriatric Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Adam P Spira
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ryan J Dougherty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qu Tian
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Li P, Gao L, Gao C, Parker RA, Katz IT, Montano MA, Hu K. Daytime Sleep Behaviors and Cognitive Performance in Middle- to Older-Aged Adults Living with and without HIV Infection. Nat Sci Sleep 2022; 14:181-191. [PMID: 35173500 PMCID: PMC8843344 DOI: 10.2147/nss.s339230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We investigated whether daytime sleep behaviors (DSBs) such as frequent daytime sleepiness or napping are associated with worse cognitive performance, and whether HIV infection moderates this relationship. METHODS Among 502,507 participants in the UK Biobank study, we identified 562 people living with HIV infection (PLWH; M age= 50.51±7.81; 25.09% female; 78.83% white) and extracted 562 uninfected controls who matched on age, sex, ethnic background, social-economic status, and comorbidities. DSB burden was assessed based on answers to two questions on DSBs. Participants who answered "sometimes" or "often/usually" to one of them were considered to have poor DSB burden, or otherwise were considered not having any. A composite cognition score was computed by averaging the available standardized individual test results from four neurocognitive tests: ie, a reaction time test for information processing speed, a pairs matching test for visual episodic memory, a fluid intelligence test for reasoning, and a prospective memory test. Mixed-effects models with adjustment for the variables used in extracting matched uninfected controls were performed to test the hypotheses. RESULTS Having poor DSB burden was associated with a 0.15 - standard deviation (SD) decrease in cognitive performance (p = 0.006). People living with HIV infection (PLWH) also performed worse on the cognitive tasks than uninfected controls, with an effect size similar to that of having poor DSB burden (p = 0.003). HIV infection significantly modified the negative association between DSB burden and cognition (p for interaction: 0.008). Specifically, the association between DSB burden and cognition was not statistically significant in uninfected controls, whereas PLWH who reported having poor DSB burden had a 0.28 - SD decrease in cognitive performance compared to PLWH who did not. CONCLUSION HIV infection significantly increased the adverse association between DSBs and cognitive performance. Further studies are needed to investigate the potential mechanisms that underlie this interaction effect and whether poor DSBs and worse cognitive performance are causally linked.
Collapse
Grants
- P30 AI060354 NIAID NIH HHS
- he Harvard University Center for AIDS Research (CFAR), an NIH funded program
- NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, NIDDK, NIMHD, NIDCR, NINR, OAR, and FIC, by a Pilot Grant (to P.L.) sponsored by the AIDS and Aging Research Platform
- Foundation Alzheimer’s Disease Research Program
- the National Institute on Aging (NIA) grant
Collapse
Affiliation(s)
- Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Correspondence: Peng Li, Email
| | - Lei Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chenlu Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert A Parker
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for AIDS Research, Harvard University, Boston, MA, USA
| | - Ingrid T Katz
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Global Health Institute, Cambridge, MA, USA
| | - Monty A Montano
- Harvard Medical School, Boston, MA, USA
- Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Kuang H, Zhu YG, Zhou ZF, Yang MW, Hong FF, Yang SL. Sleep disorders in Alzheimer's disease: the predictive roles and potential mechanisms. Neural Regen Res 2021; 16:1965-1972. [PMID: 33642368 PMCID: PMC8343328 DOI: 10.4103/1673-5374.308071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are common in patients with Alzheimer's disease, and can even occur in patients with amnestic mild cognitive impairment, which appears before Alzheimer's disease. Sleep disorders further impair cognitive function and accelerate the accumulation of amyloid-β and tau in patients with Alzheimer's disease. At present, sleep disorders are considered as a risk factor for, and may be a predictor of, Alzheimer's disease development. Given that sleep disorders are encountered in other types of dementia and psychiatric conditions, sleep-related biomarkers to predict Alzheimer's disease need to have high specificity and sensitivity. Here, we summarize the major Alzheimer's disease-specific sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, and sleep-disordered breathing, and describe their ability to predict the onset of Alzheimer's disease at its earliest stages. Understanding the mechanisms underlying these sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer's disease. This paper therefore explores some potential mechanisms that may contribute to sleep disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric acid systems and the circadian rhythm, together with amyloid-β accumulation. This review could provide a theoretical basis for the development of drugs to treat Alzheimer's disease based on sleep disorders in future work.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, Jiangxi Province, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
30
|
Insel PS, Mohlenhoff BS, Neylan TC, Krystal AD, Mackin RS. Association of Sleep and β-Amyloid Pathology Among Older Cognitively Unimpaired Adults. JAMA Netw Open 2021; 4:e2117573. [PMID: 34297074 PMCID: PMC8303100 DOI: 10.1001/jamanetworkopen.2021.17573] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Disrupted sleep commonly occurs with progressing neurodegenerative disease. Large, well-characterized neuroimaging studies of cognitively unimpaired adults are warranted to clarify the magnitude and onset of the association between sleep and emerging β-amyloid (Aβ) pathology. OBJECTIVE To evaluate the associations between daytime and nighttime sleep duration with regional Aβ pathology in older cognitively unimpaired adults. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, screening data were collected between April 1, 2014, and December 31, 2017, from healthy, cognitively unimpaired adults 65 to 85 years of age who underwent florbetapir F 18 positron emission tomography (PET), had APOE genotype information, scored between 25 and 30 on the Mini-Mental State Examination, and had a Clinical Dementia Rating of 0 for the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease (A4) Study. Data analysis was performed from December 1, 2019, to May 10, 2021. EXPOSURES Self-reported daytime and nighttime sleep duration. MAIN OUTCOMES AND MEASURES Regional Aβ pathology, measured by florbetapir PET standardized uptake value ratio. RESULTS Amyloid PET and sleep duration information was acquired on 4425 cognitively unimpaired participants (mean [SD] age, 71.3 [4.7] years; 2628 [59.4%] female; 1509 [34.1%] tested Aβ positive). Each additional hour of nighttime sleep was associated with a 0.005 reduction of global Aβ standardized uptake value ratio (F1, 4419 = 5.0; P = .03), a 0.009 reduction of medial orbitofrontal Aβ (F1, 4419 = 17.4; P < .001), and a 0.011 reduction of anterior cingulate Aβ (F1, 4419 = 15.9; P < .001). When restricting analyses to participants who tested Aβ negative, nighttime sleep was associated with a 0.006 reduction of medial orbitofrontal Aβ (F1,2910 = 16.9; P < .001) and a 0.005 reduction of anterior cingulate Aβ (F1,2910 = 7.6; P = .03). Daytime sleep was associated with a 0.013 increase of precuneus Aβ (F1,2910 = 7.3; P = .03) and a 0.024 increase of posterior cingulate Aβ (F1,2910 = 14.2; P = .001) in participants who tested Aβ negative. CONCLUSIONS AND RELEVANCE In this cross-sectional study, the increased risk of Aβ deposition with reduced nighttime sleep duration occurred early, before cognitive impairment or significant Aβ deposition. Daytime sleep may be associated with an increase in risk for early Aβ accumulation and did not appear to be corrective for loss of nighttime sleep, demonstrating a circadian rhythm dependence of sleep in preventing Aβ accumulation. Treatments that improve sleep may reduce early Aβ accumulation and aid in delaying the onset of cognitive dysfunction associated with early Alzheimer disease.
Collapse
Affiliation(s)
- Philip S. Insel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Brian S. Mohlenhoff
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, California
| | - Thomas C. Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, California
| | - Andrew D. Krystal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - R. Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
31
|
André C, Laniepce A, Chételat G, Rauchs G. Brain changes associated with sleep disruption in cognitively unimpaired older adults: A short review of neuroimaging studies. Ageing Res Rev 2021; 66:101252. [PMID: 33418092 DOI: 10.1016/j.arr.2020.101252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Ageing is characterized by a progressive decline of sleep quality. Sleep difficulties are increasingly recognized as a risk factor for Alzheimer's disease (AD), and have been associated with cognitive decline. However, the brain substrates underlying this association remain unclear. In this review, our objective was to provide a comprehensive overview of the relationships between sleep changes and brain structural, functional and molecular integrity, including amyloid and tau pathologies in cognitively unimpaired older adults. We especially discuss the topography and causality of these associations, as well as the potential underlying mechanisms. Taken together, current findings converge to a link between several sleep parameters, amyloid and tau levels in the CSF, and neurodegeneration in diffuse frontal, temporal and parietal areas. However, the existing literature remains heterogeneous, and the specific sleep changes associated with early AD pathological changes, in terms of topography and neuroimaging modality, is not clearly established yet. Notably, if slow wave sleep disruption seems to be related to frontal amyloid deposition, the brain correlates of sleep-disordered breathing and REM sleep disruption remain unclear. Moreover, sleep parameters associated with tau- and FDG-PET imaging are largely unexplored. Lastly, whether sleep disruption is a cause or a consequence of brain alterations remains an open question.
Collapse
|
32
|
Cai H, Su N, Li W, Li X, Xiao S, Sun L. Relationship between afternoon napping and cognitive function in the ageing Chinese population. Gen Psychiatr 2021; 34:e100361. [PMID: 33585792 PMCID: PMC7839842 DOI: 10.1136/gpsych-2020-100361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have shown that afternoon napping promotes cognitive function in the elderly; on the other hand, some studies have shown opposite results. This current study further examined the relationship between afternoon napping and cognitive function in the ageing Chinese population. METHODS A total of 2214 elderly were included (napping group: n=1534; non-napping group: n=680). They all received cognitive evaluations by the Beijing version of the Montreal Cognitive Assessment, the Mini-Mental State Examination, and the Chinese version of the Neuropsychological Test Battery. Among all the subjects, 739 elderly volunteered to take blood lipid tests. RESULTS Significant differences in cognitive function and blood lipids were observed between the napping and the non-napping groups. Afternoon napping was associated with better cognitive function including orientation, language, and memory in the present study. Subjects with the habit of afternoon napping also showed a higher level of triglyceride than the non-napping subjects. CONCLUSION The results demonstrated that afternoon napping was related to better cognitive function in the Chinese ageing population.
Collapse
Affiliation(s)
- Han Cai
- Geriatrics, The Fourth People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Ning Su
- Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai, China
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China
| | - Wei Li
- Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai, China
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai, China
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai, China
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai, China
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Sleep disorders and late-onset epilepsy of unknown origin: Understanding new trajectories to brain amyloidopathy. Mech Ageing Dev 2021; 194:111434. [PMID: 33444630 DOI: 10.1016/j.mad.2021.111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
The intertwining between epilepsy, sleep disorders and beta amyloid pathology has been progressively highlighted, as early identification and stratification of patients at high risk of cognitive decline is the need of the hour. Modification of the sleep-wake activity, such as sleep impairment or excessive daytime sleepiness, can critically affect cerebral beta amyloid levels. Both mice models and human studies have demonstrated a substantial increase in the burden of beta amyloid pathology after sleep-deprivation, with potential negative effects partially restored by sleep recovery. The accumulation of beta amyloid has been shown to be an early event in the course of Alzheimer's disease dementia. Beta amyloid accumulation has been linked to epileptic seizures epileptic seizures, with beta amyloid being itself pro-epileptogenic in mice models already at oligomeric stage, well before plaque deposition. Further supporting a potential relationship between beta amyloid and epilepsy: i) seizures happen in 1 out of oofut 10 patients with Alzheimer's disease in the prodromal stage, ii) epileptic activity accelerates cognitive decline in Alzheimer's disease, iii) people with late-onset epilepsy present a critically high risk of developing dementia. In this Review we highlight the role of beta amyloid as a potential shared mechanisms between sleep disorders, late-onset epilepsy, and cognitive decline.
Collapse
|
34
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
35
|
Winer JR, Mander BA, Kumar S, Reed M, Baker SL, Jagust WJ, Walker MP. Sleep Disturbance Forecasts β-Amyloid Accumulation across Subsequent Years. Curr Biol 2020; 30:4291-4298.e3. [PMID: 32888482 PMCID: PMC7642104 DOI: 10.1016/j.cub.2020.08.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Experimental sleep-wake disruption in rodents and humans causally modulates β-amyloid (Aβ) dynamics (e.g., [1-3]). This leads to the hypothesis that, beyond cross-sectional associations, impaired sleep structure and physiology could represent prospective biomarkers of the speed with which Aβ accumulates over time. Here, we test the hypothesis that initial baseline measures of non-rapid eye movement (NREM) sleep slow-wave activity (SWA) and sleep quality (efficiency) provide future forecasting sensitivity to the rate of Aβ accumulation over subsequent years. A cohort of clinically normal older adults was assessed using objective sleep polysomnography in combination with longitudinal tracking of Aβ accumulation with [11C]PiB positron emission tomography (PET) imaging. Both the proportion of NREM SWA below 1 Hz and the measure of sleep efficiency predicted the speed (slope) of subsequent Aβ deposition over time, and these associations remained robust when taking into account additional cofactors of interest (e.g., age, sex, sleep apnea). Moreover, these measures were specific, such that no other macro- and microphysiological architecture metrics of sleep demonstrated such sensitivity. Our data support the proposal that objective sleep markers could be part of a set of biomarkers that statistically forecast the longitudinal trajectory of cortical Aβ deposition in the human brain. Sleep may therefore represent a potentially affordable, scalable, repeatable, and non-invasive tool for quantifying of Aβ pathological progression, prior to cognitive symptoms of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Joseph R Winer
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley Way West, Berkeley, CA 94720, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, 101 The City Drive, Orange, CA 92697, USA
| | - Samika Kumar
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley Way West, Berkeley, CA 94720, USA
| | - Mark Reed
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley Way West, Berkeley, CA 94720, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley Way West, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Liguori C, Maestri M, Spanetta M, Placidi F, Bonanni E, Mercuri NB, Guarnieri B. Sleep-disordered breathing and the risk of Alzheimer's disease. Sleep Med Rev 2020; 55:101375. [PMID: 33022476 DOI: 10.1016/j.smrv.2020.101375] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Sleep-disordered breathing is highly prevalent in the elderly population. Obstructive sleep apnea (OSA) represents the most common sleep disorder among the adult and elderly population. Recently, OSA diagnosis has been associated with an increased risk of developing cognitive decline and dementia, including vascular dementia and Alzheimer's disease (AD). Subsequently, there have been studies on AD biomarkers investigating cerebrospinal fluid, blood, neuroimaging, and nuclear medicine biomarkers in patients with OSA. Furthermore, studies have attempted to assess the possible effects of continuous positive airway pressure (CPAP) treatment on the cognitive trajectory and AD biomarkers in patients with OSA. This review summarizes the findings of studies on each AD biomarker (cognitive, biofluid, neuroimaging, and nuclear medicine imaging) in patients with OSA, also accounting for the related effects of CPAP treatment. In addition, the hypothetical model connecting OSA to AD in a bi-directional interplay is analyzed. Finally, the sex-based differences in prevalence and clinical symptoms of OSA between men and women have been investigated in relation to AD risk. Further studies investigating AD biomarkers changes in patients with OSA and the effect of CPAP treatment should be auspicated in future for identifying strategies to prevent the development of AD.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Nicola B Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Santa Lucia Foundation, Rome, Italy
| | - Biancamaria Guarnieri
- Center of Sleep Medicine, Department of Neurology, Villa Serena Hospital, Città S. Angelo, Pescara, Italy; Villa Serena Foundation for the Research, Città S. Angelo, Pescara, Italy
| |
Collapse
|
37
|
McDade E, Bednar MM, Brashear HR, Miller DS, Maruff P, Randolph C, Ismail Z, Carrillo MC, Weber CJ, Bain LJ, Hake AM. The pathway to secondary prevention of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12069. [PMID: 32885024 PMCID: PMC7453146 DOI: 10.1002/trc2.12069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a continuum consisting of a preclinical stage that occurs decades before symptoms appear. As researchers make advances in investigating the continuum, the importance of developing drugs for secondary prevention is garnering increased discussion. For efficacious drug development for secondary prevention it is important to define what are the earliest biological stages of AD. The Alzheimer's Association Research Roundtable convened November 27 to 28, 2018 to focus on pre-clinical AD. This review will address the biological approach to defining pre-clinical AD, detection, identification of at-risk individuals, and lessons learned from trials such as A4 and TOMMORROW.
Collapse
Affiliation(s)
- Eric McDade
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Martin M. Bednar
- Takeda Pharmaceuticals International Co.Americas, Inc.CambridgeMassachusettsUSA
| | | | | | | | - Christopher Randolph
- MedAvante‐ProPhaseHamiltonNew JerseyUSA
- Department of NeurologyLoyola University Medical CenterMaywoodIllinoisUSA
| | - Zahinoor Ismail
- Cumming School of MedicineThe University of CalgaryCalgaryCanada
| | | | | | - Lisa J. Bain
- Independent Science WriterElversonPennsylvaniaUSA
| | - Ann Marie Hake
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
38
|
Mohajer B, Abbasi N, Mohammadi E, Khazaie H, Osorio RS, Rosenzweig I, Eickhoff CR, Zarei M, Tahmasian M, Eickhoff SB. Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Hum Brain Mapp 2020; 41:3034-3044. [PMID: 32239749 PMCID: PMC7336142 DOI: 10.1002/hbm.24995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) and sleep-disordered breathing (SDB) are prevalent conditions with a rising burden. It is suggested that SDB may contribute to cognitive decline and advanced aging. Here, we assessed the link between self-reported SDB and gray matter volume in patients with AD, mild cognitive impairment (MCI) and healthy controls (HCs). We further investigated whether SDB was associated with advanced brain aging. We included a total of 330 participants, divided based on self-reported history of SDB, and matched across diagnoses for age, sex and presence of the Apolipoprotein E4 allele, from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Gray-matter volume was measured using voxel-wise morphometry and group differences in terms of SDB, cognitive status, and their interaction were assessed. Further, using an age-prediction model fitted on gray-matter data of external datasets, we predicted study participants' age from their structural images. Cognitive decline and advanced age were associated with lower gray matter volume in various regions, particularly in the bilateral temporal lobes. Brains age was well predicted from the morphological data in HCs and, as expected, elevated in MCI and particularly in AD subjects. However, there was neither a significant difference between regional gray matter volume in any diagnostic group related to the SDB status, nor in SDB-by-cognitive status interaction. Moreover, we found no difference in estimated chronological age gap related to SDB, or by-cognitive status interaction. Contrary to our hypothesis, we were not able to find a general or a diagnostic-dependent association of SDB with either gray-matter volumetric or brain aging.
Collapse
Affiliation(s)
- Bahram Mohajer
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Nooshin Abbasi
- McConnell Brain Imaging CentreMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Esmaeil Mohammadi
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Ricardo S. Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical CenterNew YorkNew YorkUSA
- Nathan S. Kline Institute for Psychiatric ResearchNew YorkNew YorkUSA
| | - Ivana Rosenzweig
- Sleep Disorders CentreGuy's and St Thomas' Hospital, GSTT NHSLondonUK
- Sleep and Brain Plasticity Centre, Department of NeuroimagingIOPPN, King's College LondonLondonUK
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1; INM‐7), Research Center JülichJülichGermany
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorfGermany
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1; INM‐7), Research Center JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich‐Heine UniversityDüsseldorfGermany
| | | |
Collapse
|
39
|
Zhang Z, Xiao X, Ma W, Li J. Napping in Older Adults: A Review of Current Literature. CURRENT SLEEP MEDICINE REPORTS 2020; 6:129-135. [PMID: 33777656 DOI: 10.1007/s40675-020-00183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Purpose of Review Daytime napping-frequently reported among older populations-has attracted increasing attention in geriatric research due to its association with multiple health conditions. This review aims to integrate the latest knowledge about napping in older adults to provide implications for future research. Recent Findings The prevalence of napping in older adults ranges from 20% to 60% in different studies, but has been consistently reported to be higher than in other age groups. Age-related changes in circadian rhythm and sleep patterns, cultural beliefs, chronic conditions, medications, and lifestyle changes contribute to the high prevalence of napping in older adults. Daytime napping has been associated with multiple health conditions in older adults. Naps of short duration (e.g., 30 minutes) are reported in adults with better health; naps with longer durations (e.g., >90 minutes) have been linked to adverse cardiovascular and diabetes outcomes, declining cognitive function, and increased mortality. Current evidence in the literature, however, is not enough for us to determine the exact role of napping in the health of older adults. Summary Longitudinal and interventional studies are needed to investigate the influence of napping and the critical parameters such as duration, timing, and frequency on health in older adults and the underlying mechanisms. A combination of objective and self-reported measurements of napping are recommended instead of self-reported data only.
Collapse
Affiliation(s)
- Zeyu Zhang
- Johns Hopkins University School of Nursing.,Huazhong University of Science and Technology, Tongji Medical College, School of Nursing
| | - Xueling Xiao
- Johns Hopkins University School of Nursing.,Central South University, Xiangya School of Nursing
| | - Weixia Ma
- Johns Hopkins University School of Nursing.,Shandong Provincial Hospital affiliated with Shandong University
| | - Junxin Li
- Johns Hopkins University School of Nursing
| |
Collapse
|
40
|
Xu W, Tan L, Su BJ, Yu H, Bi YL, Yue XF, Dong Q, Yu JT. Sleep characteristics and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: The CABLE study. Alzheimers Dement 2020; 16:1146-1152. [PMID: 32657026 DOI: 10.1002/alz.12117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/05/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study tested the self-reported sleep characteristics associated with cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers in cognitively intact older adults. METHODS The linear and non-linear regression analyses were conducted in 736 cognitively normal participants (mean [standard deviation; SD] age, 62.3 [10.5] years, range 40 to 88 years, 59% female) who had measurements of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tTau proteins and sleep characteristics, after adjusting for age, gender, education, apolipoprotein E gene (APOE) ε4 status, and general cognition. RESULTS Greater daytime sleepiness was associated with higher CSF indicators of amyloid deposition in female patients. No significant associations were revealed for CSF tTau proteins after Bonferroni correction. A U-shaped relationship was revealed for nocturnal sleep habits, such that those with insufficient or excessive nocturnal sleep duration had greater CSF biomarkers of amyloid deposition (the reflection range: bedtime: around 10:00 p.m. and sleep duration: 6.0 to 6.5 hours). DISCUSSION These findings consolidated the close relationship between sleep and AD.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bing-Jie Su
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Huan Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Fang Yue
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Wang Y, Mao Z, Chen G, Tu R, Abdulai T, Qiao D, Liu X, Dong X, Luo Z, Wang Y, Li R, Huo W, Yu S, Guo Y, Li S, Wang C. Association between long-term exposure to ambient air pollutants and excessive daytime sleepiness in Chinese rural population: The Henan Rural Cohort Study. CHEMOSPHERE 2020; 248:126103. [PMID: 32041074 DOI: 10.1016/j.chemosphere.2020.126103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/19/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Excessive daytime sleepiness is associated with many adverse consequences, including cardiovascular diseases and mortality. Although exposure to air pollution has been suggested in connection with excessive daytime sleepiness, evidence in China is scarce. The study aimed to explore the association between long-term exposure to air pollution and excessive daytime sleepiness in rural China. METHODS A lot of 27935 participants (60% females) from the Henan Rural Cohort Study were included in this analysis. A satellite-based spatiotemporal model estimated a 3-year average air pollution exposure to NO2 (nitrogen dioxide), PM1 (particulate matter with aerodynamic diameters not more than 1 μm) and PM2.5 (particulate matter with aerodynamic diameters not more than 2.5 μm) at the home address of participants before the baseline survey. Logistic regression was used to evaluate the odds ratio and 95% confidence interval between long-term air pollution and excessive daytime sleepiness. RESULTS The average concentrations of NO2, PM1 and PM2.5 during three years preceding baseline survey were 38.22 μg/m³, 56.29 μg/m³ and 72.30 μg/m³. Exposure to NO2, PM1 and PM2.5 were all associated with excessive daytime sleepiness. Each 1 μg/m³ increment of NO2, PM1 and PM2.5 were related to a 20% (OR: 1.20, 95% CI: 1.13-1.27), 10% (OR: 1.10, 95% CI: 1.05-1.16) and 17% (OR: 1.17, 95% CI: 1.10-1.23) increase of the prevalence of excessive daytime sleepiness. CONCLUSION The study demonstrated that long-term exposure to NO2, PM1 and PM2.5 were all associated with excessive daytime sleepiness. The impact of air pollution should be considered when treating individuals with excessive daytime sleepiness.
Collapse
Affiliation(s)
- Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tanko Abdulai
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yikang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
42
|
Pak VM, Onen SH, Bliwise DL, Kutner NG, Russell KL, Onen F. Sleep Disturbances in MCI and AD: Neuroinflammation as a Possible Mediating Pathway. Front Aging Neurosci 2020; 12:69. [PMID: 32457592 PMCID: PMC7227443 DOI: 10.3389/fnagi.2020.00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mild cognitive impairment (MCI) and Alzheimer's disease (AD) affect a high proportion of the elderly population with an increasing prevalence. Sleep disturbances are frequent in those with MCI and AD. This review summarizes existing research on sleep disturbances and neuroinflammation in MCI and AD. Although strong evidence supports various pathways linking sleep and AD pathology, the temporal direction of this central relationship is not yet known. Improved understanding of sleep disturbance and neuroinflammation in MCI and AD may aid in the identification of targets for their prevention.
Collapse
Affiliation(s)
- Victoria M. Pak
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - S.-Hakki Onen
- Centre de Sommeil, Hôpital de la Croix-Rousse, Lyon, France
- INSERM U128, Université de Lyon, Lyon, France
| | - Donald L. Bliwise
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Nancy G. Kutner
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Katherine L. Russell
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Fannie Onen
- CHU Bichat–Claude-Bernard, AP-HP, Service de Gériatrie, Paris, France
- CESP & INSERM 1178 Université Paris Sud, Paris, France
| |
Collapse
|
43
|
Van Egroo M, Narbutas J, Chylinski D, Villar González P, Maquet P, Salmon E, Bastin C, Collette F, Vandewalle G. Sleep-wake regulation and the hallmarks of the pathogenesis of Alzheimer's disease. Sleep 2020; 42:5289316. [PMID: 30649520 DOI: 10.1093/sleep/zsz017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
While efficient treatments for Alzheimer's disease (AD) remain elusive, a growing body of research has highlighted sleep-wake regulation as a potential modifiable factor to delay disease progression. Evidence accumulated in recent years is pointing toward a tight link between sleep-wake disruption and the three main hallmarks of the pathogenesis of AD, i.e. abnormal amyloid-beta (Aβ) and tau proteins accumulation, and neurodegeneration. However, all three hallmarks are rarely considered together in the same study. In this review, we gather and discuss findings in favor of an association between sleep-wake disruption and each AD hallmark in animal models and in humans, with a focus on the preclinical stages of the disease. We emphasize that these relationships are likely bidirectional for each of these hallmarks. Altogether, current findings provide strong support for considering sleep-wake disruption as a true risk factor in the early unfolding of AD, but more research integrating recent technical advances is needed, particularly with respect to tau protein and neurodegeneration. Interventional longitudinal studies among cognitively healthy older individuals should assess the practical use of improving sleep-wake regulation to slow down the progression of AD pathogenesis.
Collapse
Affiliation(s)
- Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
44
|
Gordon HW. Sleep Researchers are Studying Addiction but Don't Know It. ACTA ACUST UNITED AC 2019; 5. [PMID: 31886464 DOI: 10.33552/ann.2019.05.000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harold W Gordon
- Epidemiology Research Branch, Division of Epidemiology, Services and Prevention Research (DESPR), National Institute on Drug Abuse, The Neuroscience Center, Room 5151, 6001 Executive Boulevard, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Ward SA, Pase MP. Advances in pathophysiology and neuroimaging: Implications for sleep and dementia. Respirology 2019; 25:580-592. [DOI: 10.1111/resp.13728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/02/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Stephanie A. Ward
- School of Public Health and Preventive MedicineMonash University Melbourne VIC Australia
- Department of Geriatric MedicinePrince of Wales Hospital Sydney NSW Australia
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South Wales Sydney NSW Australia
| | - Matthew P. Pase
- Melbourne Dementia Research CentreThe Florey Institute of Neuroscience and Mental Health Melbourne VIC Australia
- Faculty of Medicine, Dentistry and Health ScienceThe University of Melbourne Melbourne VIC Australia
- Centre for Human PsychopharmacologySwinburne University of Technology Melbourne VIC Australia
| |
Collapse
|
46
|
Sleep Quality and Cognitive Function in Type 1 Diabetes: Findings From the Study of Longevity in Diabetes (SOLID). Alzheimer Dis Assoc Disord 2019; 34:18-24. [PMID: 31567303 DOI: 10.1097/wad.0000000000000351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
STUDY OBJECTIVE The objective was to examine the association between sleep quality and global and domain-specific cognitive function among older individuals with type 1 diabetes (T1D). METHODS We evaluated 695 individuals with T1D aged 60 years or above who participated in the baseline assessment of the Study of Longevity in Diabetes (SOLID), which captured subjective sleep quality (Pittsburgh Sleep Quality Index) and global and domain-specific (language, executive function, episodic memory, and simple attention) cognitive function. Multivariable linear regressions estimated the associations between sleep quality quartiles and overall and domain-specific cognitive function adjusting for age, sex, race/ethnicity, education, depressive symptoms, and severe hypoglycemic episodes. Sensitivity analyses examined the associations between aspects of sleep quality and global cognitive function. RESULTS The worst sleep quality quartile was associated with lower global cognition (β=-0.08; 95% confidence interval: -0.17, -0.01) and lower executive function (β=-0.17, 95% confidence interval: -0.30, -0.03) compared with the best quartile of sleep quality adjusting for demographics and comorbidities. Sleep quality was not associated with language, episodic memory, or simple attention. Sleep medications and daytime dysfunction were most strongly associated with global cognition. CONCLUSION Our results suggest that sleep quality may be a modifiable risk factor for global cognitive function and executive function among elderly individuals with T1D.
Collapse
|
47
|
Carroll CM, Macauley SL. The Interaction Between Sleep and Metabolism in Alzheimer's Disease: Cause or Consequence of Disease? Front Aging Neurosci 2019; 11:258. [PMID: 31616284 PMCID: PMC6764218 DOI: 10.3389/fnagi.2019.00258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and affects over 45 million people worldwide. Both type-2-diabetes (T2D), a metabolic condition associated with aging, and disrupted sleep are implicated in the pathogenesis of AD, but how sleep and metabolism interact to affect AD progression remains unclear. In the healthy brain, sleep/wake cycles are a well-coordinated interaction between metabolic and neuronal activity, but when disrupted, are associated with a myriad of health-related issues, including metabolic syndrome, cardiovascular disease, T2D, and AD. Therefore, this review will explore our current understanding of the relationship between metabolism, sleep, and AD-related pathology to identify the causes and consequences of disease progression in AD. Moreover, sleep disturbances and metabolic dysfunction could serve as potential therapeutic targets to mitigate the increased risk of AD in individuals with T2D or offer a novel approach for treating AD.
Collapse
Affiliation(s)
| | - Shannon L. Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
48
|
Winer JR, Mander BA, Helfrich RF, Maass A, Harrison TM, Baker SL, Knight RT, Jagust WJ, Walker MP. Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain. J Neurosci 2019; 39:6315-6324. [PMID: 31209175 PMCID: PMC6687908 DOI: 10.1523/jneurosci.0503-19.2019] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Recent proposals suggest that sleep may be a factor associated with accumulation of two core pathological features of Alzheimer's disease (AD): tau and β-amyloid (Aβ). Here we combined PET measures of Aβ and tau, electroencephalogram sleep recordings, and retrospective sleep evaluations to investigate the potential utility of sleep measures in predicting in vivo AD pathology in male and female older adults. Regression analyses revealed that the severity of impaired slow oscillation-sleep spindle coupling predicted greater medial temporal lobe tau burden. Aβ burden was not associated with coupling impairment but instead predicted the diminished amplitude of <1 Hz slow-wave-activity, results that were statistically dissociable from each other. Additionally, comparisons of AD pathology and retrospective, self-reported changes in sleep duration demonstrated that changes in sleep across the lifespan can predict late-life Aβ and tau burden. Thus, quantitative and qualitative features of human sleep represent potential noninvasive, cost-effective, and scalable biomarkers (current and future forecasting) of AD pathology, and carry both therapeutic and public health implications.SIGNIFICANCE STATEMENT Several studies have linked sleep disruption to the progression of Alzheimer's disease (AD). Tau and β-amyloid (Aβ), the primary pathological features of AD, are associated with both objective and subjective changes in sleep. However, it remains unknown whether late life tau and Aβ burden are associated with distinct impairments in sleep physiology or changes in sleep across the lifespan. Using polysomnography, retrospective questionnaires, and tau- and Aβ-specific PET, the present study reveals human sleep signatures that dissociably predict levels of brain tau and Aβ in older adults. These results suggest that a night of polysomnography may aid in evaluating tau and Aβ burden, and that treating sleep deficiencies within decade-specific time windows may serve in delaying AD progression.
Collapse
Affiliation(s)
- Joseph R Winer
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720,
| | - Bryce A Mander
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720
- Department of Psychiatry and Human Behavior, University of California Irvine, Orange, California 92697
| | - Randolph F Helfrich
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Anne Maass
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany, and
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, California 94720,
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
49
|
Leng Y, Redline S, Stone KL, Ancoli-Israel S, Yaffe K. Objective napping, cognitive decline, and risk of cognitive impairment in older men. Alzheimers Dement 2019; 15:1039-1047. [PMID: 31227429 PMCID: PMC6699896 DOI: 10.1016/j.jalz.2019.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Little is known about the longitudinal association between napping and cognitive impairment in older adults. METHODS We used wrist actigraphy to measure naps in 2751 community-dwelling older men. Cognition was assessed repeatedly over 12 years, and clinically significant cognitive impairment was determined by physician diagnosis, Alzheimer's medication use or a significant cognitive decline. RESULTS After adjustment for all covariates, men with longer napping duration had greater cognitive decline and higher risk of cognitive impairment. Men who napped for ≥120 min/day (vs. <30 min/day) were 66% more likely to develop cognitive impairment (odds ratio = 1.66, 95% CI: 1.09-2.54) in 12 years. Further adjustment for nighttime sleep quality did not appreciably alter the results. The association between napping and cognitive impairment was more pronounced among those with higher sleep efficiency and average sleep duration. DISCUSSION Napping might be useful as an early marker of cognitive impairment in the elderly, and its cognitive effects may differ by nighttime sleep.
Collapse
Affiliation(s)
- Yue Leng
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Susan Redline
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katie L Stone
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | | | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California, San Francisco, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
50
|
Kawada T. Obstructive sleep apnea treatment and amyloid-β in cerebrospinal fluid. Ann Neurol 2019; 85:460. [DOI: 10.1002/ana.25425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health; Nippon Medical School; Tokyo Japan
| |
Collapse
|