1
|
Canet G, Da Gama Monteiro F, Rocaboy E, Diego-Diaz S, Khelaifia B, Godbout K, Lachhab A, Kim J, Valencia DI, Yin A, Wu HT, Howell J, Blank E, Laliberté F, Fortin N, Boscher E, Fereydouni-Forouzandeh P, Champagne S, Guisle I, Hébert SS, Pernet V, Liu H, Lu W, Debure L, Rapoport DM, Ayappa I, Varga AW, Parekh A, Osorio RS, Lacroix S, Burns MP, Lucey BP, Blessing EM, Planel E. Sleep-wake variation in body temperature regulates tau secretion and correlates with CSF and plasma tau. J Clin Invest 2025; 135:e182931. [PMID: 39903530 PMCID: PMC11957704 DOI: 10.1172/jci182931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Sleep disturbance is bidirectionally associated with an increased risk of Alzheimer's disease and other tauopathies. While the sleep-wake cycle regulates interstitial and cerebrospinal fluid (CSF) tau levels, the underlying mechanisms remain unknown. Understanding these mechanisms is crucial, given the evidence that tau pathology spreads through neuron-to-neuron transfer, involving the secretion and internalization of pathological tau forms. Here, we combined in vitro, in vivo, and clinical methods to reveal a pathway by which changes in body temperature (BT) over the sleep-wake cycle modulate extracellular tau levels. In mice, a higher BT during wakefulness and sleep deprivation increased CSF and plasma tau levels, while also upregulating unconventional protein secretion pathway I (UPS-I) events including (a) intracellular tau dephosphorylation, (b) caspase 3-mediated cleavage of tau (TauC3), and (c) membrane translocation of tau through binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and syndecan 3. In humans, the increase in CSF and plasma tau levels observed after wakefulness correlated with BT increases during wakefulness. By demonstrating that sleep-wake variation in BT regulates extracellular tau levels, our findings highlight the importance of thermoregulation in linking sleep disturbances to tau-mediated neurodegeneration and the preventative potential of thermal interventions.
Collapse
Affiliation(s)
- Geoffrey Canet
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Felipe Da Gama Monteiro
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Québec, Québec City, Canada
| | - Emma Rocaboy
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Sofia Diego-Diaz
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Boutheyna Khelaifia
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Kelly Godbout
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Aymane Lachhab
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Jessica Kim
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Daphne I. Valencia
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Audrey Yin
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Hau-Tieng Wu
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jordan Howell
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Emily Blank
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Francis Laliberté
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
| | - Nadia Fortin
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
| | - Emmanuelle Boscher
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | | | - Stéphanie Champagne
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Isabelle Guisle
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Sébastien S. Hébert
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| | - Vincent Pernet
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Québec, Québec City, Canada
- Department of Neurology, Inselspital, and
- Center for Experimental Neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William Lu
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ludovic Debure
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - David M. Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew W. Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Steve Lacroix
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Québec, Québec City, Canada
| | - Mark P. Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Brendan P. Lucey
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Esther M. Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec – Université Laval, Axe Neurosciences, Québec, Québec City, Canada
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Québec City, Canada
| |
Collapse
|
2
|
Fan X, Okada K, Lin H, Ori-McKenney KM, McKenney RJ. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635117. [PMID: 39974960 PMCID: PMC11838361 DOI: 10.1101/2025.01.29.635117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phosphorylation plays a crucial role in both normal and disease processes involving the microtubule-associated protein tau. Physiologically, phosphorylation regulates tau's subcellular localization within neurons and is involved in fetal development and animal hibernation. However, abnormal phosphorylation of tau is linked to the formation of neurofibrillary tangles (NFTs) in various human tauopathies. Interestingly, the patterns of tau phosphorylation are similar in both normal and abnormal processes, leaving unclear whether phosphorylated tau retains its functional role in normal processes. The relationship between tau phosphorylation and NFT assembly in tauopathies is also still debated. To address these questions, we investigated the effects of tau phosphorylation on microtubule binding, cooperative protein envelope formation, and NFT filament assembly relevant to tauopathies. Consistent with previous results, our findings show that tau phosphorylation decreases tau's overall affinity for microtubules, but we reveal that phosphorylation more dramatically impacts the cooperativity between tau molecules during tau envelope formation along microtubules. Additionally, we observed that the specific pattern of phosphorylation, rather than overall phosphorylation level, strongly impacts the assembly of tau filaments in vitro . Our results reveal new insights into how tau phosphorylation impacts tau's physiological roles on microtubules and its pathoconversion into NFTs.
Collapse
|
3
|
Trinh DQ, Mai NH, Pham TD. Insufficient Sleep and Alzheimer's Disease: Potential Approach for Therapeutic Treatment Methods. Brain Sci 2024; 15:21. [PMID: 39851389 PMCID: PMC11763454 DOI: 10.3390/brainsci15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The interaction between Alzheimer's disease (AD) and sleep deprivation has recently gained attention in the scientific literature, and recent advances suggest that AD epidemiology management should coincide with the management of sleeping disorders. This review focuses on the aspects of the mechanisms underlying the link between AD and insufficient sleep with progressing age. We also provide information which could serve as evidence for future treatments of AD from the early stages in connection with sleep disorder medication.
Collapse
Affiliation(s)
- Dieu Quynh Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Huynh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Toan Duc Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
4
|
Merino-Serrais P, Soria JM, Arrabal CA, Ortigado-López A, Esparza MÁG, Muñoz A, Hernández F, Ávila J, DeFelipe J, León-Espinosa G. Protein tau phosphorylation in the proline rich region and its implication in the progression of Alzheimer's disease. Exp Neurol 2024; 383:115049. [PMID: 39522802 DOI: 10.1016/j.expneurol.2024.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Tau has a wide variety of essential functions in the brain, but this protein also plays a determining role in the development of Alzheimer's disease (AD) and other neurodegenerative diseases called tauopathies. This is due to its abnormal aggregation and the subsequent formation of neurofibrillary tangles. Tau hyperphosphorylation appears to be a critical step in its transformation into an aggregated protein. However, the exact process, including the cellular events that trigger it, remains unclear. In this study, we employed immunocytochemistry assays on hippocampal sections from AD cases and from tauopathy cases (Braak stage III) with no evidence of cognitive decline, and the P301S mouse model to investigate the colocalization patterns of Tau phosphorylated (p) at specific residues (S202-T205, S214, and T231) within the proline-rich region. Our results show pyramidal neurons in the hippocampus of P301S mice in which Tau is intensely phosphorylated at residues S202 and T205 (recognized by the AT8 antibody), but with no detectable phosphorylation at S214 or T231. These non-colocalizing neurons displayed intensely labeled aggregated pTau deposits distributed through the soma and dendritic processes. However, most of the hippocampal pyramidal neurons are labeled with pTauS214 or pTauT231 antibodies and typically showed a homogeneous and diffuse pTau distribution (not aggregated). This different labeling likely reflects a Tau conformational step, potentially related to the transition from a diffuse tau phosphorylation phenotype (Type 2) into an NFT-like or Type 1 phenotype. We further observed that dendrites of CA3 pyramidal cells are intensely labeled with pTau214 in the stratum lucidum, but not with AT8 or pTauT231. By contrast, analysis of tissue from AD patients or other human tauopathy cases (Braak stage III) with no evidence of cognitive decline revealed extensive colocalization with both antibody combinations in CA1. The complete or mature tangle development may follow a different mechanism in the P301S mouse model or may require more time to achieve the maturity state found in AD cases. Further studies would be necessary to address this question.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Soria
- Department of Biomedical Sciences, Cardenal Herrera University-CEU Universities, 46001, Valencia, Spain
| | - Cristina Aguirre Arrabal
- Departamento de Matemática Aplicada y Estadística, Universidad San Pablo-CEU, CEU Universities, Julian Romea 22, 28003 Madrid, Spain
| | - Alfonso Ortigado-López
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | | | - Alberto Muñoz
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jesús Ávila
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
5
|
Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem 2024; 168:1475-1489. [PMID: 37358003 DOI: 10.1111/jnc.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Helena Iturvides Cimarosti
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
6
|
Yagishita S, Shibata M, Furuno A, Wakatsuki S, Araki T. Neuronal Excitation Induces Tau Protein Dephosphorylation via Protein Phosphatase 1 Activation to Promote Its Binding with Stable Microtubules. Neurol Int 2024; 16:653-662. [PMID: 38921953 PMCID: PMC11206689 DOI: 10.3390/neurolint16030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
The tau protein is a microtubule-associated protein that promotes microtubule stabilization. The phosphorylation of the tau protein has been linked to its dissociation from microtubules. Here, we examined the relationship between neuronal depolarization activity and tau protein phosphorylation by employing model systems in culture as well as in vivo. The KCl-evoked depolarization of cultured neurons has often been used to investigate the effects of neuronal activity. We found dephosphorylation at AT8 sites (S202, T205), T212, AT180 sites (T231, S235), and S396 in KCl-simulated cultured neurons. We also found that the KCl-induced tau protein dephosphorylation increases the level of the tau protein fractionated with stable microtubules. In an in vivo experiment, we demonstrated that the exposure of mice to a new environment activates protein phosphatase 1 in the mouse hippocampus and induces tau protein dephosphorylation. We also found an increased amount of the tau protein in a stable microtubule fraction, suggesting that the dephosphorylation of the tau protein may lead to its increased microtubule association in vivo. These results suggest that the association of microtubules with tau proteins may be regulated by the tau protein phosphorylation status affected by neuronal electrical activity.
Collapse
Affiliation(s)
| | | | | | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Tokyo 187-8502, Japan
| |
Collapse
|
7
|
Hitrec T, Squarcio F, Piscitiello E, Cerri M, Martelli D, Occhinegro A, Taddei L, Tupone D, Amici R, Luppi M. Sleep deprivation soon after recovery from synthetic torpor enhances tau protein dephosphorylation in the rat brain. J Comp Physiol B 2024; 194:347-368. [PMID: 37812305 DOI: 10.1007/s00360-023-01516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neuronal Tau protein hyperphosphorylation (PPtau) is a hallmark of tauopathic neurodegeneration. However, a reversible brain PPtau occurs in mammals during either natural or "synthetic" torpor (ST), a transient deep hypothermic state that can be pharmacologically induced in rats. Since in both conditions a high sleep pressure builds up during the regaining of euthermia, the aim of this work was to assess the possible role of post-ST sleep in PPtau dephosphorylation. Male rats were studied at the hypothermic nadir of ST, and 3-6 h after the recovery of euthermia, after either normal sleep (NS) or total sleep deprivation (SD). The effects of SD were studied by assessing: (i) deep brain temperature (Tb); (ii) immunofluorescent staining for AT8 (phosphorylated Tau) and Tau-1 (non-phosphorylated Tau), assessed in 19 brain structures; (iii) different phosphorylated forms of Tau and the main cellular factors involved in Tau phospho-regulation, including pro- and anti-apoptotic markers, assessed through western blot in the parietal cortex and hippocampus; (iv) systemic factors which are involved in natural torpor; (v) microglia activation state, by considering morphometric variations. Unexpectedly, the reversibility of PPtau was more efficient in SD than in NS animals, and was concomitant with a higher Tb, higher melatonin plasma levels, and a higher frequency of the microglia resting phenotype. Since the reversibility of ST-induced PPtau was previously shown to be driven by a latent physiological molecular mechanism triggered by deep hypothermia, short-term SD soon after the regaining of euthermia seems to boost the possible neuroprotective effects of this mechanism.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Fabio Squarcio
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Emiliana Piscitiello
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy.
| |
Collapse
|
8
|
Guo H, Li LH, Lv XH, Su FZ, Chen J, Xiao F, Shi M, Xie YB. Association Between Preoperative Sleep Disturbance and Postoperative Delirium in Elderly: A Retrospective Cohort Study. Nat Sci Sleep 2024; 16:389-400. [PMID: 38646462 PMCID: PMC11032121 DOI: 10.2147/nss.s452517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Postoperative sleep disturbance, characterized by diminished postoperative sleep quality, is a risk factor for postoperative delirium (POD); however, the association between pre-existing sleep disturbance and POD remains unclear. This study aimed to evaluate the association between preoperative sleep disturbance and POD in elderly patients after non-cardiac surgery. Patients and methods This retrospective cohort study was conducted at a single center and enrolled 489 elderly patients who underwent surgery between May 1, 2020, and March 31, 2021. Patients were divided into the sleep disorder (SD) and non-sleep disorder (NSD) groups according to the occurrence of one or more symptoms of insomnia within one month or sleep- Numerical Rating Scale (NRS)≥6 before surgery. The primary outcome was the incidence of POD. Propensity score matching analysis was performed between the two groups. Multiple logistic regression analysis was performed to identify the risk factors for POD. Results In both the unmatched cohort (16.0% vs 6.7%, P=0.003) and the matched cohort (17.0% vs 6.2%, P=0.023), the incidence of POD was higher in the SD group than in the NSD group. In addition, the postoperative sleep quality and the VAS score at postoperative 24 h were significantly lower in the SD group than in the NSD group. Multivariate logistic regression analysis indicated that age (Odds Ratio, 1.13 [95% CI: 1.04-1.23], P=0.003) and preoperative sleep disturbance (Odds Ratio, 3.03 [95% CI: 1.09-9.52], P=0.034) were independent risk factors for the development of POD. Conclusion The incidence of POD was higher in patients with pre-existing sleep disturbance than those without it. Whether improving sleep quality for preoperative sleep disturbance may help prevent POD remains to be determined.
Collapse
Affiliation(s)
- Hao Guo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Li-Heng Li
- Department of Anesthesiology, The Guilin Municipal Hospital of Traditional Chinese Medicine, Guangxi, People’s Republic of China
| | - Xiao-Hong Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Feng-Zhi Su
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jie Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Min Shi
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yu-Bo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
9
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Kou L, Chi X, Sun Y, Yin S, Wu J, Zou W, Wang Y, Jin Z, Huang J, Xiong N, Xia Y, Wang T. Circadian regulation of microglia function: Potential targets for treatment of Parkinson's Disease. Ageing Res Rev 2024; 95:102232. [PMID: 38364915 DOI: 10.1016/j.arr.2024.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Circadian rhythms are involved in the regulation of many aspects of the body, including cell function, physical activity and disease. Circadian disturbance often predates the typical symptoms of neurodegenerative diseases and is not only a non-motor symptom, but also one of the causes of their occurrence and progression. Glial cells possess circadian clocks that regulate their function to maintain brain development and homeostasis. Emerging evidence suggests that the microglial circadian clock is involved in the regulation of many physiological processes, such as cytokine release, phagocytosis, and nutritional and metabolic support, and that disruption of the microglia clock may affect multiple aspects of Parkinson's disease, especially neuroinflammation and α-synuclein processes. Herein, we review recent advances in the circadian control of microglia function in health and disease, and discuss novel pharmacological interventions for microglial clocks in neurodegenerative disorders.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Canet G, Rocaboy E, Laliberté F, Boscher E, Guisle I, Diego-Diaz S, Fereydouni-Forouzandeh P, Whittington RA, Hébert SS, Pernet V, Planel E. Temperature-induced Artifacts in Tau Phosphorylation: Implications for Reliable Alzheimer's Disease Research. Exp Neurobiol 2023; 32:423-440. [PMID: 38196137 PMCID: PMC10789175 DOI: 10.5607/en23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
In preclinical research on Alzheimer's disease and related tauopathies, tau phosphorylation analysis is routinely employed in both cellular and animal models. However, recognizing the sensitivity of tau phosphorylation to various extrinsic factors, notably temperature, is vital for experimental accuracy. Hypothermia can trigger tau hyperphosphorylation, while hyperthermia leads to its dephosphorylation. Nevertheless, the rapidity of tau phosphorylation in response to unintentional temperature variations remains unknown. In cell cultures, the most significant temperature change occurs when the cells are removed from the incubator before harvesting, and in animal models, during anesthesia prior to euthanasia. In this study, we investigate the kinetics of tau phosphorylation in N2a and SH-SY5Y neuronal cell lines, as well as in mice exposed to anesthesia. We observed changes in tau phosphorylation within the few seconds upon transferring cell cultures from their 37°C incubator to room temperature conditions. However, cells placed directly on ice post-incubation exhibited negligible phosphorylation changes. In vivo, isoflurane anesthesia rapidly resulted in tau hyperphosphorylation within the few seconds needed to lose the pedal withdrawal reflex in mice. These findings emphasize the critical importance of preventing temperature variation in researches focused on tau. To ensure accurate results, we recommend avoiding anesthesia before euthanasia and promptly placing cells on ice after removal from the incubator. By controlling temperature fluctuations, the reliability and validity of tau phosphorylation studies can be significantly enhanced.
Collapse
Affiliation(s)
- Geoffrey Canet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emma Rocaboy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | - Francis Laliberté
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emmanuelle Boscher
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Isabelle Guisle
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Sofia Diego-Diaz
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | | | - Robert A. Whittington
- Department of Anesthesiology and Perioperative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sébastien S. Hébert
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Vincent Pernet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Department of Neurology, Bern University Hospital, Bern 3010, Switzerland
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| |
Collapse
|
12
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Sleep deprivation enhances amyloid beta peptide, p-tau and serotonin in the brain: Neuroprotective effects of nanowired delivery of cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and serotonin. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:125-162. [PMID: 37783554 DOI: 10.1016/bs.irn.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Sleep deprivation is quite frequent in military during combat, intelligence gathering or peacekeeping operations. Even one night of sleep deprivation leads to accumulation of amyloid beta peptide burden that would lead to precipitation of Alzheimer's disease over the years. Thus, efforts are needed to slow down or neutralize accumulation of amyloid beta peptide (AβP) and associated Alzheimer's disease brain pathology including phosphorylated tau (p-tau) within the brain fluid environment. Sleep deprivation also alters serotonin (5-hydroxytryptamine) metabolism in the brain microenvironment and impair upregulation of several neurotrophic factors. Thus, blockade or neutralization of AβP, p-tau and serotonin in sleep deprivation may attenuate brain pathology. In this investigation this hypothesis is examined using nanodelivery of cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies against AβP, p-tau and serotonin (5-hydroxytryptamine, 5-HT). Our observations suggest that sleep deprivation induced pathophysiology is significantly reduced following nanodelivery of cerebrolysin together with monoclonal antibodies to AβP, p-tau and 5-HT, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Alagiakrishnan K, Dhami P, Senthilselvan A. Predictors of Conversion to Dementia in Patients With Mild Cognitive Impairment: The Role of Low Body Temperature. J Clin Med Res 2023; 15:216-224. [PMID: 37187716 PMCID: PMC10181356 DOI: 10.14740/jocmr4883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Background Subjects with mild cognitive impairment (MCI) can progress to dementia. Studies have shown that neuropsychological tests, biological or radiological markers individually or in combination have helped to determine the risk of conversion from MCI to dementia. These techniques are complex and expensive, and clinical risk factors were not considered in these studies. This study examined demographic, lifestyle and clinical factors including low body temperature that may play a role in the conversion of MCI to dementia in elderly patients. Methods In this retrospective study, a chart review was conducted on patients aged 61 to 103 years who were seen at the University of Alberta Hospital. Information on onset of MCI and demographic, social, and lifestyle factors, family history of dementia and clinical factors, and current medications at baseline was collected from patient charts on an electronic database. The conversion from MCI to dementia within 5.5 years was also determined. Logistic regression analysis was conducted to identify the baseline factors associated with conversion from MCI to dementia. Results The prevalence of MCI at baseline was 25.6% (335/1,330). During the 5.5 years follow-up period, 43% (143/335) of the subjects converted to dementia from MCI. The factors that were significantly associated with conversion from MCI to dementia were family history of dementia (odds ratio (OR): 2.78, 95% confidence interval (CI): 1.56 - 4.95, P = 0.001), Montreal cognitive assessment (MoCA) score (OR: 0.91, 95% CI: 0.85 - 0.97, P = 0.01), and low body temperature (below 36 °C) (OR: 10.01, 95% CI: 3.59 - 27.88, P < 0.001). Conclusion In addition to family history of dementia and MoCA, low body temperature was shown to be associated with the conversion from MCI to dementia. This study would help clinicians to identify patients with MCI who are at highest risk of conversion to dementia.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Prabhpaul Dhami
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Zhang F, Niu L, Zhong R, Li S, Le W. Chronic Sleep Disturbances Alters Sleep Structure and Tau Phosphorylation in AβPP/PS1 AD Mice and Their Wild-Type Littermates. J Alzheimers Dis 2023; 92:1341-1355. [PMID: 37038814 DOI: 10.3233/jad-221048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Emerging evidence indicates that sleep disorders are the common non-cognitive symptoms of Alzheimer’s disease (AD), and they may contribute to the pathogenesis of this disease. Objective: In this study, we aim to investigate the effect of chronic sleep deprivation (CSD) on AD-related pathologies with a focus on tau phosphorylation and the underlying DNA methylation regulation. Methods: AβPPswe/PS1ΔE9 AD mice and their wild-type (WT) littermates were subjected to a two-month CSD followed by electroencephalography and electromyography recording. The mice were examined for learning and memory evaluation, then pathological, biochemical, and epigenetic assessments including western blotting, immunofluorescence, dot blotting, and bisulfite sequencing. Results: The results show that CSD caused sleep disorders shown as sleep pattern change, poor sleep maintenance, and increased sleep fragmentation. CSD increased tau phosphorylation at different sites and increased the level of tau kinases in AD and WT mice. The increased expression of cyclin-dependent kinase 5 (CDK5) may result from decreased DNA methylation of CpG sites in the promoter region of CDK5 gene, which might be associated with the downregulation of DNA methyltransferase 3A and 3B. Conclusion: CSD altered AD-related tau phosphorylation through epigenetic modification of tau kinase gene. The findings in this study may give insights into the mechanisms underlying the effects of sleep disorders on AD pathology and provide new therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rujia Zhong
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
16
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin Together with Antibodies to Amyloid Beta Peptide, Phosphorylated Tau, and Tumor Necrosis Factor Alpha Induces Superior Neuroprotection in Alzheimer's Disease Brain Pathology Exacerbated by Sleep Deprivation. ADVANCES IN NEUROBIOLOGY 2023; 32:3-53. [PMID: 37480458 DOI: 10.1007/978-3-031-32997-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Sleep deprivation induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism. Thus, it is likely that sleep deprivation is one of the predisposing factors in precipitating Alzheimer's disease (AD) brain pathology. Our previous studies indicate significant brain pathology following sleep deprivation or AD. Keeping these views in consideration in this review, nanodelivery of monoclonal antibodies to amyloid beta peptide (AβP), phosphorylated tau (p-tau), and tumor necrosis factor alpha (TNF-α) in sleep deprivation-induced AD is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AβP with p-tau and TNF-α induces superior neuroprotection in AD caused by sleep deprivation, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Ebner JN, Ritz D, von Fumetti S. Thermal acclimation results in persistent phosphoproteome changes in the freshwater planarian Crenobia alpina (Tricladida: Planariidae). J Therm Biol 2022; 110:103367. [DOI: 10.1016/j.jtherbio.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
|
18
|
Villa V, Montalto G, Caudano F, Fedele E, Ricciarelli R. Selective inhibition of phosphodiesterase 4D increases tau phosphorylation at Ser214 residue. Biofactors 2022; 48:1111-1117. [PMID: 35561079 PMCID: PMC9790528 DOI: 10.1002/biof.1847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022]
Abstract
Tau is a protein that normally participates in the assembly and stability of microtubules. However, it can form intraneuronal hyperphosphorylated aggregates that are hallmarks of Alzheimer's disease and other neurodegenerative disorders known as tauopathies. Tau can be phosphorylated by multiple kinases at several sites. Among such kinases, the cAMP-dependent protein kinase A (PKA) phosphorylates tau at Ser214 (pTAU-S214), an event that was shown to reduce the pathological assembly of the protein. Given that the neuronal cAMP/PKA-activated cascade is involved in synaptic plasticity and memory, and that cAMP-enhancing strategies demonstrated promising therapeutic potential for the treatment of cognitive deficits, we investigated the impact of cAMP on pTAU-S214 in N2a cells and rat hippocampal slices. Our results confirm that the activation of adenylyl cyclase increases pTAU-S214 in both model systems and, more interestingly, this effect is mimicked by GEBR-7b, a phosphodiesterase 4D inhibitor with proven pro-cognitive efficacy in rodents.
Collapse
Affiliation(s)
- Viviana Villa
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical SciencesUniversity of GenoaGenoaItaly
| | - Giulia Montalto
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical SciencesUniversity of GenoaGenoaItaly
| | - Francesca Caudano
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical SciencesUniversity of GenoaGenoaItaly
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical SciencesUniversity of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Roberta Ricciarelli
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical SciencesUniversity of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
19
|
Blessing EM, Parekh A, Betensky RA, Babb J, Saba N, Debure L, Varga AW, Ayappa I, Rapoport DM, Butler TA, de Leon MJ, Wisniewski T, Lopresti BJ, Osorio RS. Association between lower body temperature and increased tau pathology in cognitively normal older adults. Neurobiol Dis 2022; 171:105748. [PMID: 35550158 PMCID: PMC9751849 DOI: 10.1016/j.nbd.2022.105748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Preclinical studies suggest body temperature (Tb) and consequently brain temperature has the potential to bidirectionally interact with tau pathology in Alzheimer's Disease (AD). Tau phosphorylation is substantially increased by a small (<1 °C) decrease in temperature within the human physiological range, and thermoregulatory nuclei are affected by tau pathology early in the AD continuum. In this study we evaluated whether Tb (as a proxy for brain temperature) is cross-sectionally associated with clinically utilized markers of tau pathology in cognitively normal older adults. METHODS Tb was continuously measured with ingestible telemetry sensors for 48 h. This period included two nights of nocturnal polysomnography to delineate whether Tb during waking vs sleep is differentially associated with tau pathology. Tau phosphorylation was assessed with plasma and cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (P-tau), sampled the day following Tb measurement. In addition, neurofibrillary tangle (NFT) burden in early Braak stage regions was imaged with PET-MR using the [18F]MK-6240 radiotracer on average one month later. RESULTS Lower Tb was associated with increased NFT burden, as well as increased plasma and CSF P-tau levels (p < 0.05). NFT burden was associated with lower Tb during waking (p < 0.05) but not during sleep intervals. Plasma and CSF P-tau levels were highly correlated with each other (p < 0.05), and both variables were correlated with tau tangle radiotracer uptake (p < 0.05). CONCLUSIONS These results, the first available for human, suggest that lower Tb in older adults may be associated with increased tau pathology. Our findings add to the substantial preclinical literature associating lower body and brain temperature with tau hyperphosphorylation. CLINICAL TRIAL NUMBER NCT03053908.
Collapse
Affiliation(s)
- Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Rebecca A Betensky
- Department of NYU School of Global Public Health, New York, NY 10016, United States of America.
| | - James Babb
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Natalie Saba
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ludovic Debure
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - David M Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Tracy A Butler
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Mony J de Leon
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Thomas Wisniewski
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Ricardo S Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America; Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| |
Collapse
|
20
|
Tau as a Biomarker of Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137307. [PMID: 35806324 PMCID: PMC9266883 DOI: 10.3390/ijms23137307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Less than 50 years since tau was first isolated from a porcine brain, its detection in femtolitre concentrations in biological fluids is revolutionizing the diagnosis of neurodegenerative diseases. This review highlights the molecular and technological advances that have catapulted tau from obscurity to the forefront of biomarker diagnostics. Comprehensive updates are provided describing the burgeoning clinical applications of tau as a biomarker of neurodegeneration. For the clinician, tau not only enhances diagnostic accuracy, but holds promise as a predictor of clinical progression, phenotype, and response to drug therapy. For patients living with neurodegenerative disorders, characterization of tau dysregulation could provide much-needed clarity to a notoriously murky diagnostic landscape.
Collapse
|
21
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
22
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
23
|
Niu L, Zhang F, Xu X, Yang Y, Li S, Liu H, Le W. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer's disease neuropathology. Brain Pathol 2021; 32:e13028. [PMID: 34668266 PMCID: PMC9048513 DOI: 10.1111/bpa.13028] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian disruption is prevalent in Alzheimer's disease (AD) and may contribute to cognitive impairment, psychological symptoms, and neurodegeneration. This study aimed to evaluate the effects of environmental and genetic factors on the molecular clock and to establish a link between circadian rhythm disturbance and AD. We investigated the pathological effects of chronic sleep deprivation (CSD) in the APPswe/PS1ΔE9 transgenic mice and their wild‐type (WT) littermates for 2 months and evaluated the expression levels of clock genes in the circadian rhythm‐related nuclei. Our results showed that CSD impaired learning and memory, and further exaggerated disease progression in the AD mice. Furthermore, CSD caused abnormal expression of Bmal1, Clock, and Cry1 in the circadian rhythm‐related nuclei of experimental mice, and these changes are more significant in AD mice. Abnormal expression of clock genes in AD mice suggested that the expression of clock genes is affected by APP/PS1 mutations. In addition, abnormal tau phosphorylation was found in the retrosplenial cortex, which was co‐located with the alteration of BMAL1 protein level. Moreover, the level of tyrosine hydroxylase in the locus coeruleus of AD and WT mice was significantly increased after CSD. There may be a potential link between the molecular clock, Aβ pathology, tauopathy, and the noradrenergic system. The results of this study provided new insights into the potential link between the disruption of circadian rhythm and the development of AD.
Collapse
Affiliation(s)
- Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaojiao Xu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuting Yang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hui Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of Neurology and Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
24
|
Carroll T, Guha S, Nehrke K, Johnson GVW. Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. BIOLOGY 2021; 10:1047. [PMID: 34681146 PMCID: PMC8533264 DOI: 10.3390/biology10101047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Sporadic Alzheimer's Disease (AD) is the most common form of dementia, and its severity is characterized by the progressive formation of tau neurofibrillary tangles along a well-described path through the brain. This spatial progression provides the basis for Braak staging of the pathological progression for AD. Tau protein is a necessary component of AD pathology, and recent studies have found that soluble tau species with selectively, but not extensively, modified epitopes accumulate along the path of disease progression before AD-associated insoluble aggregates form. As such, modified tau may represent a key cellular stressing agent that potentiates selective vulnerability in susceptible neurons during AD progression. Specifically, studies have found that tau phosphorylated at sites such as T181, T231, and S396 may initiate early pathological changes in tau by disrupting proper tau localization, initiating tau oligomerization, and facilitating tau accumulation and extracellular export. Thus, this review elucidates potential mechanisms through which tau post-translational modifications (PTMs) may simultaneously serve as key modulators of the spatial progression observed in AD development and as key instigators of early pathology related to neurodegeneration-relevant cellular dysfunctions.
Collapse
Affiliation(s)
- Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Sanjib Guha
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
25
|
Wang X, Hua D, Tang X, Li S, Sun R, Xie Z, Zhou Z, Zhao Y, Wang J, Li S, Luo A. The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders. Nat Sci Sleep 2021; 13:1395-1410. [PMID: 34393534 PMCID: PMC8354730 DOI: 10.2147/nss.s320745] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Postoperative neurocognitive disorder (PND) increases the length of hospital stay, mortality, and risk of long-term cognitive impairment. Perioperative sleep disturbance is prevalent and commonly ignored and may increase the risk of PND. However, the role of perioperative sleep disturbances in PND remains unclear. Nocturnal sleep plays an indispensable role in learning, memory, and maintenance of cerebral microenvironmental homeostasis. Hospitalized sleep disturbances also increase the incidence of postoperative delirium and cognitive dysfunction. This review summarizes the role of perioperative sleep disturbances in PND and elucidates the potential mechanisms underlying sleep-deprivation-mediated PND. Activated neuroinflammation and oxidative stress; impaired function of the blood-brain barrier and glymphatic pathway; decreased hippocampal brain-derived neurotrophic factor, adult neurogenesis, and sirtuin1 expression; and accumulated amyloid-beta proteins are associated with PND in individuals with perioperative sleep disorders. These findings suggest that the improvement of perioperative sleep might reduce the incidence of postoperative delirium and postoperative cognitive dysfunction. Future studies should further investigate the role of perioperative sleep disturbance in PND.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Jintao Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| |
Collapse
|
26
|
Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer's disease. Curr Opin Neurobiol 2021; 69:131-138. [PMID: 33892381 DOI: 10.1016/j.conb.2021.03.003] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The functions of the neuronal microtubule-associated protein Tau in the central nervous system are regulated by manifold posttranslational modifications at more than 50 sites. Tau in healthy neurons carries multiple phosphate groups, mostly in its microtubule assembly domain. Elevated phosphorylation and aggregation of Tau are widely considered pathological hallmarks in Alzheimer's disease (AD) and other tauopathies, triggering the quest for Tau posttranslational modifications in the disease context. However, the phosphorylation patterns of physiological and pathological Tau are surprisingly similar and heterogenous, making it difficult to identify specific modifications as therapeutic targets and biomarkers for AD. We present a concise summary of - and view on - important previous and recent advances in Tau phosphorylation analysis in the context of AD.
Collapse
Affiliation(s)
- Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| | - Jacek Biernat
- German Center for Neurodegenerative Diseases (DZNE) & CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) & CAESAR Research Center, Bonn, Germany
| |
Collapse
|