1
|
Saneh H, Wanczyk H, Walker J, Finck C. Stem cell-derived extracellular vesicles: a potential intervention for Bronchopulmonary Dysplasia. Pediatr Res 2025; 97:497-509. [PMID: 39251881 PMCID: PMC12014501 DOI: 10.1038/s41390-024-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among extreme preterm infants. The pathogenesis of BPD is multifactorial, with inflammation playing a central role. There is strong evidence that stem cell therapy reduces inflammatory changes and restores normal lung morphology in animal models of hyperoxia-induced lung injury. These therapeutic effects occur without significant engraftment of the stem cells in the host lung, suggesting more of a paracrine mechanism mediated by their secretome. In addition, there are multiple concerns with stem cell therapy which may be alleviated by administering only the effective vesicles instead of the cells themselves. Extracellular vesicles (EVs) are cell-derived components secreted by most eukaryotic cells. They can deliver their bioactive cargo (mRNAs, microRNAs, proteins, growth factors) to recipient cells, which makes them a potential therapeutic vehicle in many diseases, including BPD. The following review will highlight recent studies that investigate the effectiveness of EVs derived from stem cells in preventing or repairing injury in the preterm lung, and the potential mechanisms of action that have been proposed. Current limitations will also be discussed as well as suggestions for advancing the field and easing the transition towards clinical translation in evolving or established BPD. IMPACT: Extracellular vesicles (EVs) derived from stem cells are a potential intervention for neonatal lung diseases. Their use might alleviate the safety concerns associated with stem cell therapy. This review highlights recent studies that investigate the effectiveness of stem cell-derived EVs in preclinical models of bronchopulmonary dysplasia. It adds to the existing literature by elaborating on the challenges associated with EV research. It also provides suggestions to advance the field and ease the transition towards clinical applications. Optimizing EV research could ultimately improve the quality of life of extreme preterm infants born at vulnerable stages of lung development.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
2
|
Forbes LM, Bauer N, Bhadra A, Bogaard HJ, Choudhary G, Goss KN, Gräf S, Heresi GA, Hopper RK, Jose A, Kim Y, Klouda T, Lahm T, Lawrie A, Leary PJ, Leopold JA, Oliveira SD, Prisco SZ, Rafikov R, Rhodes CJ, Stewart DJ, Vanderpool RR, Yuan K, Zimmer A, Hemnes AR, de Jesus Perez VA, Wilkins MR. Precision Medicine for Pulmonary Vascular Disease: The Future Is Now (2023 Grover Conference Series). Pulm Circ 2025; 15:e70027. [PMID: 39749110 PMCID: PMC11693987 DOI: 10.1002/pul2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Pulmonary vascular disease is not a single condition; rather it can accompany a variety of pathologies that impact the pulmonary vasculature. Applying precision medicine strategies to better phenotype, diagnose, monitor, and treat pulmonary vascular disease is increasingly possible with the growing accessibility of powerful clinical and research tools. Nevertheless, challenges exist in implementing these tools to optimal effect. The 2023 Grover Conference Series reviewed the research landscape to summarize the current state of the art and provide a better understanding of the application of precision medicine to managing pulmonary vascular disease. In particular, the following aspects were discussed: (1) Clinical phenotypes, (2) genetics, (3) epigenetics, (4) biomarker discovery, (5) application of precision biology to clinical trials, (6) the right ventricle (RV), and (7) integrating precision medicine to clinical care. The present review summarizes the content of these discussions and the prospects for the future.
Collapse
Affiliation(s)
- Lindsay M. Forbes
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Center for Lung BiologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
| | - Harm J. Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamNetherlands
| | - Gaurav Choudhary
- Division of CardiologyWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island and Miriam HospitalsProvidenceRhode IslandUSA
- Department of CardiologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Kara N. Goss
- Department of Medicine and PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stefan Gräf
- Division of Computational Genomics and Genomic Medicine, Department of MedicineUniversity of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research InstituteCambridgeUK
| | | | - Rachel K. Hopper
- Department of PediatricsStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Arun Jose
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Yunhye Kim
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Timothy Klouda
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
- Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Pulmonary and Critical Care SectionRocky Mountain Regional VA Medical CenterDenverColoradoUSA
| | - Allan Lawrie
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Peter J. Leary
- Departments of Medicine and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Suellen D. Oliveira
- Department of Anesthesiology, Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sasha Z. Prisco
- Division of CardiovascularLillehei Heart Institute, University of MinnesotaMinneapolisMinnesotaUSA
| | - Ruslan Rafikov
- Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Duncan J. Stewart
- Ottawa Hospital Research InstituteFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Ke Yuan
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Alexsandra Zimmer
- Department of MedicineBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island HospitalProvidenceRhode IslandUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care MedicineStanford University Medical CenterStanfordCaliforniaUSA
| | | |
Collapse
|
3
|
Zhang J, Du W, Zhang Z, Li T, Li X, Xi S. Research progress of microvascular development in bronchopulmonary dysplasia. Pediatr Investig 2024; 8:299-312. [PMID: 39720284 PMCID: PMC11664543 DOI: 10.1002/ped4.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/06/2024] [Indexed: 12/26/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that arises during the neonatal period, and its underlying mechanisms are still not fully understood. The disorder of microvascular development plays a significant role in the development of BPD. This article presents a comprehensive review of the advancements made in understanding the mechanisms and treatment approaches related to microvascular development in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
| | - Weiwei Du
- Department of PediatricsThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiChina
| | - Zongli Zhang
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| | - Tao Li
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
| | - Xingchao Li
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| | - Shibing Xi
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
4
|
Cui X, Fu J. Reinitiating lung development: a novel approach in the management of bronchopulmonary dysplasia. Respir Res 2024; 25:384. [PMID: 39449014 PMCID: PMC11515458 DOI: 10.1186/s12931-024-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the predominant chronic lung disease in preterm infants, linked with various adverse long-term outcomes. Multiple prenatal and postnatal risk factors can impede lung development, leading to BPD. Current management of BPD relies heavily on pharmacotherapies and alterations in ventilatory strategies. However, these interventions only mitigate BPD symptoms without addressing underlying alveolar, vascular, structural, and functional deficiencies. Given the retarded lung development in infants with BPD and the limitations of existing modalities, new therapeutic approaches are imperative. The induced differentiation of stem/progenitor cells and the spatiotemporal expression patterns of growth factors associated with lung developmental processes are critical for lung development reactivation in BPD, which focuses on stimulating pulmonary vasculogenesis and alveolarization. This review summarizes the process of lung development and offers a comprehensive overview of advancements in therapies designed to reinitiate lung development in BPD. Furthermore, we assessed the potential of these therapies for maintaining lung homeostasis and effectively restoring pulmonary structure and function through stem/progenitor cells and growth factors, which have been widely researched.
Collapse
Affiliation(s)
- Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
5
|
Rao T, Zhou Y, Chen C, Chen J, Zhang J, Lin W, Jia D. Recent progress in neonatal hyperoxic lung injury. Pediatr Pulmonol 2024; 59:2414-2427. [PMID: 38742254 DOI: 10.1002/ppul.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
With the progress in neonatal intensive care, there has been an increase in the survival rates of premature infants. However, this has also led to an increased incidence of neonatal hyperoxia lung injury and bronchopulmonary dysplasia (BPD), whose pathogenesis is believed to be influenced by various prenatal and postnatal factors, although the exact mechanisms remain unclear. Recent studies suggest that multiple mechanisms might be involved in neonatal hyperoxic lung injury and BPD, with sex also possibly playing an important role, and numerous drugs have been proposed and shown promise for improving the treatment outcomes of hyperoxic lung injury. Therefore, this paper aims to analyze and summarize sex differences in neonatal hyperoxic lung injury, potential pathogenesis and treatment progress to provide new ideas for basic and clinical research in this field.
Collapse
Affiliation(s)
- Tian Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Chinese Medicine Hospital of Pingyang, Wenzhou, Zhejiang, China
| | - Jiayi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Chen C, Jin Y, Jin H, Chen S, Wang L, Ji L, Wang S, Zhang X, Sheng A, Sun Y. Adipose mesenchymal stem cells-derived exosomes attenuated hyperoxia-induced lung injury in neonatal rats via inhibiting the NF-κB signaling pathway. Pediatr Pulmonol 2024; 59:2523-2534. [PMID: 38771197 DOI: 10.1002/ppul.27057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Bronchopulmonary dysplasia (BPD) is the most common chronic morbidity in extremely preterm infants. Mesenchymal stem cells-derived exosomes (MSC-Exos) therapies have shown prospects in animal models of BPD. Our study aimed to evaluate the effect of adipose mesenchymal stem cells-derived exosomes (AMSC-Exos) on BPD and the role of the NF-κB signaling pathway in this process. METHODS The AMSCs were extracted and AMSC-Exos were isolated by ultracentrifugation method. Newborn rats were exposed to hyperoxia (90% O2) continuously for 7 days to establish a BPD model. The rats were treated with AMSC-Exos by intratracheal administration on postnatal day 4 (P4). Pulmonary morphology, pulmonary vasculature, inflammatory factors, and NF-κB were assessed. Hyperoxia-induced primary type II alveolar epithelial cells (AECIIs) and AMSC-Exos treatment with or without a pan-NF-κB inhibitor (PDTC) were established to explore the potential mechanism. RESULTS Hyperoxia-exposed rats showed alveolar simplification with decreased radial alveolar count and increased mean linear intercept, low CD31, and vascular endothelial growth factor expression, reduced microvessel density, increased the expression of TNF-α, IL-1β, and IL-6 and decreased the expression of IL-10, and induced NF-κB phosphorylation. AMSC-Exos protected the neonatal lung from the hyperoxia-induced arrest of alveolar and vascular development, alleviated inflammation, and inhibited NF-κB phosphorylation. Hyperoxia decreased viability, increased apoptosis, enhanced inflammation, and induced NF-κB phosphorylation of AECIIs but improved by AMSC-Exos, PDTC, or AMSC-Exos+PDTC. The effect of AMSC-Exos+PDTC in AECIIs was the same as AMSC-Exos, but more notable than PDTC alone. CONCLUSION AMSC-Exos attenuated the hyperoxia-induced lung injury in neonatal rats by inhibiting the NF-κB signaling pathway partly.
Collapse
Affiliation(s)
- Cuie Chen
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Jinhua, Zhejiang, China
| | - Yuxia Jin
- Department of Prenatal Diagnostic Center, Yiwu Maternity and Children Hospital, Jinhua, Zhejiang, China
| | - Hongxing Jin
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Jinhua, Zhejiang, China
| | - Shujun Chen
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Jinhua, Zhejiang, China
| | - Lu Wang
- Department of Prenatal Diagnostic Center, Yiwu Maternity and Children Hospital, Jinhua, Zhejiang, China
| | - Liuqing Ji
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Jinhua, Zhejiang, China
| | - Shi Wang
- Department of Anesthesiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Xixi Zhang
- Department of Pediatrics, Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Anqun Sheng
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| |
Collapse
|
7
|
Kumar N, Bidkhori HR, Yawno T, Lim R, Inocencio IM. Therapeutic potential of extracellular vesicles derived from human amniotic epithelial cells for perinatal cerebral and pulmonary injury. Stem Cells Transl Med 2024; 13:711-723. [PMID: 38895873 PMCID: PMC11328935 DOI: 10.1093/stcltm/szae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Lung and brain injury that occurs during the perinatal period leads to lifelong disability and is often driven and/or exacerbated by inflammation. Human amniotic epithelial cells (hAEC), which demonstrate immunomodulatory, anti-fibrotic, and regenerative capabilities, are being explored as a therapeutic candidate for perinatal injury. However, limitations regarding scalable manufacturing, storage, transport, and dose-related toxicity have impeded clinical translation. Isolated therapeutic extracellular vesicles (EVs) from stem and stem-like cells are thought to be key paracrine mediators of therapeutic efficacy. The unique characteristics of EVs suggest that they potentially circumvent the limitations of traditional cell-based therapies. However, given the novelty of EVs as a therapeutic, recommendations around ideal methods of production, isolation, storage, and delivery have not yet been created by regulatory agencies. In this concise review, we discuss the pertinence and limitations of cell-based therapeutics in perinatal medicine. We also review the preclinical evidence supporting the use of therapeutic EVs for perinatal therapy. Further, we summarize the arising considerations regarding adequate cell source, biodistribution, isolation and storage methods, and regulatory roadblocks for the development of therapeutic EVs.
Collapse
Affiliation(s)
- Naveen Kumar
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Hamid Reza Bidkhori
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton 3168, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| |
Collapse
|
8
|
Bang Y, Hwang S, Kim YE, Sung DK, Yang M, Ahn SY, Sung SI, Joo KM, Chang YS. Therapeutic efficacy of thrombin-preconditioned mesenchymal stromal cell-derived extracellular vesicles on Escherichia coli-induced acute lung injury in mice. Respir Res 2024; 25:303. [PMID: 39112999 PMCID: PMC11308396 DOI: 10.1186/s12931-024-02908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS In vitro, IL-1β, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.
Collapse
Affiliation(s)
- Yuna Bang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Sein Hwang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yun Sil Chang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
9
|
Durlak W, Thébaud B. BPD: Latest Strategies of Prevention and Treatment. Neonatology 2024; 121:596-607. [PMID: 39053447 DOI: 10.1159/000540002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common long-term complication of extreme preterm birth. It is associated with lifelong multisystemic consequences. Advances in neonatal care have not reduced the incidence of BPD and no new breakthrough therapy has been successfully translated into the clinic in recent decades. SUMMARY Current evidence demonstrates benefit of new modalities of first-line noninvasive positive pressure ventilation, selected strategies of postnatal corticosteroid administration, alternative surfactant delivery methods, and caffeine. Promising emerging therapies that are being translated from bench to bedside include mesenchymal stromal cells (MSCs), insulin-like growth factor 1/binding protein-3 (IGF-1/IGFBP-3), and interleukin 1 receptor (IL-1R) antagonist (anakinra). Strong preclinical data support efficacy of MSCs in attenuating neonatal lung injury. Early-phase clinical trials have already demonstrated safety and feasibility in preterm infants. Phase II studies that aimed at demonstrating efficacy are currently underway. Both IGF-1/IGFBP-3 and IL-1R antagonist present with biological plausibility and animal data of efficacy. Phase I/II clinical trials are currently recruiting patients. KEY MESSAGES Early noninvasive respiratory support, late systemic dexamethasone, less invasive surfactant administration, and caffeine are proven strategies in reducing the risk of BPD. Potentially disruptive therapies - MSCs, IGF-1/IGFBP-3, and anakinra - are being advanced to clinical trials and their efficacy in remains to be demonstrated. Continued research efforts are needed in the growing population of extremely preterm infants at risk of developing BPD.
Collapse
Affiliation(s)
- Wojciech Durlak
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Matsuzaka Y, Yashiro R. Current Strategies and Therapeutic Applications of Mesenchymal Stem Cell-Based Drug Delivery. Pharmaceuticals (Basel) 2024; 17:707. [PMID: 38931374 PMCID: PMC11206583 DOI: 10.3390/ph17060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising approach for drug delivery strategies because of their unique properties. These strategies include stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, immunomodulatory effects, stem cell-laden scaffolds, and scaffold-free stem cell sheets. MSCs offer advantages such as low immunogenicity, homing ability, and tumor tropism, making them ideal for targeted drug delivery systems. Stem cell-derived extracellular vesicles have gained attention for their immune properties and tumor-homing abilities, presenting a potential solution for drug delivery challenges. The relationship between MSC-based drug delivery and the self-renewal and differentiation capabilities of MSCs lies in the potential of engineered MSCs to serve as effective carriers for therapeutic agents while maintaining their intrinsic properties. MSCs exhibit potent immunosuppressive functions in MSC-based drug delivery strategies. Stem cell-derived EVs have low immunogenicity and strong therapeutic potential for tissue repair and regeneration. Scaffold-free stem cell sheets represent a cutting-edge approach in regenerative medicine, offering a versatile platform for tissue engineering and regeneration across different medical specialties. MSCs have shown great potential for clinical applications in regenerative medicine because of their ability to differentiate into various cell types, secrete bioactive factors, and modulate immune responses. Researchers are exploring these innovative approaches to enhance drug delivery efficiency and effectiveness in treating various diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
12
|
Garcia SG, Sanroque-Muñoz M, Clos-Sansalvador M, Font-Morón M, Monguió-Tortajada M, Borràs FE, Franquesa M. Hollow fiber bioreactor allows sustained production of immortalized mesenchymal stromal cell-derived extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:201-220. [PMID: 39698535 PMCID: PMC11648467 DOI: 10.20517/evcna.2023.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 12/20/2024]
Abstract
Aim: Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have been reported to hold great potential as cell-free therapies due to their low immunogenicity and minimal toxicity. However, the large doses of MSC-EVs that are required for their clinical application highlight the urgency of finding a large-scale system for MSC-EV manufacture. In this study, we aimed to set up a hollow fiber bioreactor system for the continuous homogenous production of functional and high-quality MSC-EVs. Methods: MSC lines from two donors were immortalized (iMSC) and inoculated into hollow fiber bioreactors. Throughout 4 weeks, conditioned medium was daily harvested. iMSC-EVs were purified and characterized for content, immunophenotype, size, and functionality and compared to 2D cultured iMSC. Results: The iMSC inoculated into the bioreactor remained viable during the whole culture period, and they maintained their MSC phenotype at the end of EV production. Our results showed that the bioreactor system allows to obtain 3D-cultured iMSC-derived EVs (3D-EVs) that are comparable to flask (2D)-cultured iMSC-derived EVs (2D-EVs) in terms of protein and lipid content, size, and phenotype. We also confirm that 3D-derived EVs exhibit comparable functionality to 2D-EVs, showing pro-angiogenic potential in a dose-dependent manner. Conclusions: These findings suggest that setting up a hollow fiber bioreactor system inoculating immortalized MSC lines facilitates the large-scale, functional, and high-quality production of iMSC-EVs. Our results emphasize the great potential of this production methodology to standardize EV production in the pursuit of clinical applications.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Authors contributed equally
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Biochemistry and Cell Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Authors contributed equally
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| | - Marta Monguió-Tortajada
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| |
Collapse
|
13
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
14
|
Saneh H, Wanczyk H, Walker J, Finck C. Effectiveness of extracellular vesicles derived from hiPSCs in repairing hyperoxia-induced injury in a fetal murine lung explant model. Stem Cell Res Ther 2024; 15:80. [PMID: 38486338 PMCID: PMC10941466 DOI: 10.1186/s13287-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
15
|
Goryunov K, Ivanov M, Kulikov A, Shevtsova Y, Burov A, Podurovskaya Y, Zubkov V, Degtyarev D, Sukhikh G, Silachev D. A Review of the Use of Extracellular Vesicles in the Treatment of Neonatal Diseases: Current State and Problems with Translation to the Clinic. Int J Mol Sci 2024; 25:2879. [PMID: 38474125 PMCID: PMC10932115 DOI: 10.3390/ijms25052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neonatal disorders, particularly those resulting from prematurity, pose a major challenge in health care and have a significant impact on infant mortality and long-term child health. The limitations of current therapeutic strategies emphasize the need for innovative treatments. New cell-free technologies utilizing extracellular vesicles (EVs) offer a compelling opportunity for neonatal therapy by harnessing the inherent regenerative capabilities of EVs. These nanoscale particles, secreted by a variety of organisms including animals, bacteria, fungi and plants, contain a repertoire of bioactive molecules with therapeutic potential. This review aims to provide a comprehensive assessment of the therapeutic effects of EVs and mechanistic insights into EVs from stem cells, biological fluids and non-animal sources, with a focus on common neonatal conditions such as hypoxic-ischemic encephalopathy, respiratory distress syndrome, bronchopulmonary dysplasia and necrotizing enterocolitis. This review summarizes evidence for the therapeutic potential of EVs, analyzes evidence of their mechanisms of action and discusses the challenges associated with the implementation of EV-based therapies in neonatal clinical practice.
Collapse
Affiliation(s)
- Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Mikhail Ivanov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulikov
- Medical Institute, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Artem Burov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Yulia Podurovskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Victor Zubkov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Dmitry Degtyarev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
16
|
Young KC, Schmidt AF, Tan AW, Sbragia L, Elsaie A, Shivanna B. Pathogenesis and Physiologic Mechanisms of Neonatal Pulmonary Hypertension: Preclinical Studies. Clin Perinatol 2024; 51:21-43. [PMID: 38325942 DOI: 10.1016/j.clp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Neonatal pulmonary hypertension (PH) is a devastating disorder of the pulmonary vasculature characterized by elevated pulmonary vascular resistance and mean pulmonary arterial pressure. Occurring predominantly because of maldevelopment or maladaptation of the pulmonary vasculature, PH in neonates is associated with suboptimal short-term and long-term outcomes because its pathobiology is unclear in most circumstances, and it responds poorly to conventional pulmonary vasodilators. Understanding the pathogenesis and pathophysiology of neonatal PH can lead to novel strategies and precise therapies. The review is designed to achieve this goal by summarizing pulmonary vascular development and the pathogenesis and pathophysiology of PH associated with maladaptation, bronchopulmonary dysplasia, and congenital diaphragmatic hernia based on evidence predominantly from preclinical studies. We also discuss the pros and cons of and provide future directions for preclinical studies in neonatal PH.
Collapse
Affiliation(s)
- Karen C Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, 1580 North West 10th Avenue, RM-345, Miami, Fl 33136, USA.
| | - Augusto F Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, 1580 North West 10th Avenue, RM-345, Miami, Fl 33136, USA
| | - April W Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, 1580 North West 10th Avenue, RM-345, Miami, Fl 33136, USA
| | - Lourenco Sbragia
- Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, 10th Floor, Monte Alegre14049-900, Ribeirao Preto SP, Brazil
| | - Ahmed Elsaie
- Ascension Via Christi St.Joseph Hospital, 3rd Floor, section of Neonatology, 3600 East Harry StreetWichita, KS 67218, USA; Department of Pediatrics, Cairo University, Cairo 11956, Egypt
| | - Binoy Shivanna
- Division of Neonatology, Department of Pediatrics, 6621 Fannin Street, MC: WT 6-104, Houston, TX 77030, USA
| |
Collapse
|
17
|
Ao M, Ma H, Guo M, Dai X, Zhang X. Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia. Hum Cell 2024; 37:381-393. [PMID: 38159195 DOI: 10.1007/s13577-023-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus, this study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.
Collapse
Affiliation(s)
- Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
| |
Collapse
|
18
|
Zhai Z, Cui T, Chen J, Mao X, Zhang T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J Transl Med 2023; 21:895. [PMID: 38071321 PMCID: PMC10709966 DOI: 10.1186/s12967-023-04729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.
Collapse
Affiliation(s)
- Zhengyao Zhai
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tairong Cui
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jialiang Chen
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xulong Mao
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
19
|
Zhang S, Mulder C, Riddle S, Song R, Yue D. Mesenchymal stromal/stem cells and bronchopulmonary dysplasia. Front Cell Dev Biol 2023; 11:1247339. [PMID: 37965579 PMCID: PMC10642488 DOI: 10.3389/fcell.2023.1247339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants, leading to chronic respiratory disease. There has been an improvement in perinatal care, but many infants still suffer from impaired branching morphogenesis, alveolarization, and pulmonary capillary formation, causing lung function impairments and BPD. There is an increased risk of respiratory infections, pulmonary hypertension, and neurodevelopmental delays in infants with BPD, all of which can lead to long-term morbidity and mortality. Unfortunately, treatment options for Bronchopulmonary dysplasia are limited. A growing body of evidence indicates that mesenchymal stromal/stem cells (MSCs) can treat various lung diseases in regenerative medicine. MSCs are multipotent cells that can differentiate into multiple cell types, including lung cells, and possess immunomodulatory, anti-inflammatory, antioxidative stress, and regenerative properties. MSCs are regulated by mitochondrial function, as well as oxidant stress responses. Maintaining mitochondrial homeostasis will likely be key for MSCs to stimulate proper lung development and regeneration in Bronchopulmonary dysplasia. In recent years, MSCs have demonstrated promising results in treating and preventing bronchopulmonary dysplasia. Studies have shown that MSC therapy can reduce inflammation, mitochondrial impairment, lung injury, and fibrosis. In light of this, MSCs have emerged as a potential therapeutic option for treating Bronchopulmonary dysplasia. The article explores the role of MSCs in lung development and disease, summarizes MSC therapy's effectiveness in treating Bronchopulmonary dysplasia, and delves into the mechanisms behind this treatment.
Collapse
Affiliation(s)
- Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Cassidy Mulder
- Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of premature birth, imposing a significant and potentially life-long burden on patients and their families. Despite advances in our understanding of the mechanisms that contribute to patterns of lung injury and dysfunctional repair, current therapeutic strategies remain non-specific with limited success. Contemporary definitions of BPD continue to rely on clinician prescribed respiratory support requirements at specific time points. While these criteria may be helpful in broadly identifying infants at higher risk of adverse outcomes, they do not offer any precise information regarding the degree to which each compartment of the lung is affected. In this review we will outline the different pulmonary phenotypes of BPD and discuss important features in the pathogenesis, clinical presentation, and management of these frequently overlapping scenarios.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
21
|
Zheng R, Xu T, Wang X, Yang L, Wang J, Huang X. Stem cell therapy in pulmonary hypertension: current practice and future opportunities. Eur Respir Rev 2023; 32:230112. [PMID: 37758272 PMCID: PMC10523152 DOI: 10.1183/16000617.0112-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterised by elevated pulmonary arterial pressure and right-sided heart failure. While conventional drug therapies, including prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors, have been shown to improve the haemodynamic abnormalities of patients with PH, the 5-year mortality rate remains high. Thus, novel therapies are urgently required to prolong the survival of patients with PH. Stem cell therapies, including mesenchymal stem cells, endothelial progenitor cells and induced pluripotent stem cells, have shown therapeutic potential for the treatment of PH and clinical trials on stem cell therapies for PH are ongoing. This review aims to present the latest preclinical achievements of stem cell therapies, focusing on the therapeutic effects of clinical trials and discussing the challenges and future perspectives of large-scale applications.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Tingting Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Xinghong Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Wu S, Benny M, Duara J, Williams K, Tan A, Schmidt A, Young KC. Extracellular vesicles: pathogenic messengers and potential therapy for neonatal lung diseases. Front Pediatr 2023; 11:1205882. [PMID: 37397144 PMCID: PMC10311919 DOI: 10.3389/fped.2023.1205882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of nano-sized membranous structures increasingly recognized as mediators of intercellular and inter-organ communication. EVs contain a cargo of proteins, lipids and nucleic acids, and their cargo composition is highly dependent on the biological function of the parental cells. Their cargo is protected from the extracellular environment by the phospholipid membrane, thus allowing for safe transport and delivery of their intact cargo to nearby or distant target cells, resulting in modification of the target cell's gene expression, signaling pathways and overall function. The highly selective, sophisticated network through which EVs facilitate cell signaling and modulate cellular processes make studying EVs a major focus of interest in understanding various biological functions and mechanisms of disease. Tracheal aspirate EV-miRNA profiling has been suggested as a potential biomarker for respiratory outcome in preterm infants and there is strong preclinical evidence showing that EVs released from stem cells protect the developing lung from the deleterious effects of hyperoxia and infection. This article will review the role of EVs as pathogenic messengers, biomarkers, and potential therapies for neonatal lung diseases.
Collapse
Affiliation(s)
- Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - April Tan
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
| | - Karen C. Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Holtz Children’s Hospital, Jackson Memorial Medical Center, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Valsecchi C, Croce S, Lenta E, Acquafredda G, Comoli P, Avanzini MA. TITLE: New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res 2023; 192:106796. [PMID: 37207738 DOI: 10.1016/j.phrs.2023.106796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Mesenchymal Stromal Cell (MSC) clinical applications have been widely reported and their therapeutic potential has been documented in several diseases. MSCs can be isolated from several human tissues and easily expanded in vitro, they are able to differentiate in a variety of cell lineages, and they are known to interact with most immunological cells, showing immunosuppressive and tissue repair properties. Their therapeutic efficacy is closely associated with the release of bioactive molecules, namely Extracellular Vesicles (EVs), effective as their parental cells. EVs isolated from MSCs act by fusing with target cell membrane and releasing their content, showing a great potential for the treatment of injured tissues and organs, and for the modulation of the host immune system. EV-based therapies provide, as major advantages, the possibility to cross the epithelium and blood barrier and their activity is not influenced by the surrounding environment. In the present review, we deal with pre-clinical reports and clinical trials to provide data in support of MSC and EV clinical efficacy with particular focus on neonatal and pediatric diseases. Considering pre-clinical and clinical data so far available, it is likely that cell-based and cell-free therapies could become an important therapeutic approach for the treatment of several pediatric diseases.
Collapse
Affiliation(s)
- Chiara Valsecchi
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Elisa Lenta
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Gloria Acquafredda
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Patrizia Comoli
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| |
Collapse
|
24
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|