1
|
Warner JF, Besemer R, Schickle A, Borbee E, Changsut IV, Sharp K, Babonis LS. Microinjection, gene knockdown, and CRISPR-mediated gene knock-in in the hard coral, Astrangia poculata. EvoDevo 2025; 16:6. [PMID: 40380248 PMCID: PMC12085026 DOI: 10.1186/s13227-025-00243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Cnidarians have become valuable models for understanding many aspects of developmental biology including the evolution of body plan diversity, novel cell type specification, and regeneration. Most of our understanding of gene function during early development in cnidarians comes from a small number of experimental systems including Hydra and the sea anemone, Nematostella vectensis. Few molecular tools have been developed for use in hard corals, limiting our understanding of this diverse and ecologically important clade. Here, we report the development of a suite of tools for manipulating and analyzing gene expression during early development in the northern star coral, Astrangia poculata. We present methods for gene knockdown using short hairpin RNAs, gene overexpression using exogenous mRNAs, and endogenous gene tagging using CRISPR-mediated gene knock-in. Combined with the fact that spawning can be induced in the laboratory, during the reproductive window, these tools make A. poculata a tractable experimental system for investigative studies of coral development. Further application of these tools will enable functional analyses of embryonic patterning and morphogenesis across Anthozoa and open new frontiers in coral biology research.
Collapse
Affiliation(s)
- Jacob F Warner
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409, USA.
| | - Ryan Besemer
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409, USA
| | - Alicia Schickle
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, 02871, USA
| | - Erin Borbee
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | | | - Koty Sharp
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, 02871, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Durán-Fuentes JA, Maronna MM, Palacios-Gimenez OM, Castillo ER, Ryan JF, Daly M, Stampar SN. Repeatome diversity in sea anemone genomics (Cnidaria: Actiniaria) based on the Actiniaria-REPlib library. BMC Genomics 2025; 26:473. [PMID: 40361000 PMCID: PMC12070523 DOI: 10.1186/s12864-025-11591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Genomic repetitive DNA sequences (Repeatomes, REPs) are widespread in eukaryotes, influencing biological form and function. In Cnidaria, an early-diverging animal lineage, these sequences remain largely uncharacterized. This study investigates sea anemone REPs (Cnidaria: Actiniaria) in a phylogenetic context. We sequenced and assembled de novo the genome of Actinostella flosculifera and analyzed a total of 38 nuclear genomes to create the first ActiniariaREP library (Actiniaria-REPlib). We compared Actiniaria-REPlib with Repbase and RepeatModeler2 libraries, and used dnaPipeTE to annotate REPs from genomic short-read datasets of 36 species for divergence landscapes. RESULTS Our study assembled and annotated the mitochondrial genomes, including 27 newly assembled ones. We re-annotated ~92% of the unknown sequences from the initial nuclear genome library, finding that 6.4-30.6% were DNA transposons, 2.1-11.6% retrotransposons, 1-28.4% tandem repeat sequences, and 1.2-7% unclassifiable sequences. Actiniaria-REPlib recovered 9.4x more REP sequences from actiniarian genomes than Dfam and 10.4x more than Repbase. It yielded 79,903 annotated TE consensus sequences (74,643 known, 5,260 unknown), compared to Dfam with 7,697 (3,742 known, 3,944 unknown) and Repbae (763 known). CONCLUSIONS Our study significantly enhances the characterization of sea anemone repetitive DNA, assembling mitochondrial genomes, re-annotating nuclear sequences, and identifying diverse repeat elements. Actiniaria-REPlib vastly outperforms existing databases, recovering significantly more REP sequences and providing a comprehensive resource for future genomic and evolutionary studies in Actiniaria.
Collapse
Affiliation(s)
- Jeferson A Durán-Fuentes
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Maximiliano M Maronna
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Octavio M Palacios-Gimenez
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Elio R Castillo
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Instituto de Biología Subtropical (IBS) CONICET-UNaM, Universidad Nacional de Misiones LQH, Posadas, Misiones, Argentina
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience and the Department of Biology, University of Florida, Florida, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Sérgio N Stampar
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil
| |
Collapse
|
3
|
Stankiewicz KH, Guiglielmoni N, Kitchen SA, Flot JF, Barott KL, Davies SW, Finnerty JR, Grace SP, Kaufman LS, Putnam HM, Rotjan RD, Sharp KH, Peters EC, Baums IB. Genomic comparison of the temperate coral Astrangia poculata with tropical corals yields insights into winter quiescence, innate immunity, and sexual reproduction. G3 (BETHESDA, MD.) 2025; 15:jkaf033. [PMID: 39964876 PMCID: PMC12005167 DOI: 10.1093/g3journal/jkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Facultatively symbiotic corals provide important experimental models to explore the establishment, maintenance, and breakdown of the mutualism between corals and members of the algal family Symbiodiniaceae. Here, we report the de novo chromosome-scale genome assembly and annotation of the facultatively symbiotic, temperate coral Astrangia poculata. Though widespread segmental/tandem duplications of genomic regions were detected, we did not find strong evidence of a whole-genome duplication event. Comparison of the gene arrangement between As. poculata and the tropical coral Acropora millepora revealed considerable conserved colinearity despite ∼415 million years of divergence. Gene families related to sperm hyperactivation and innate immunity, including lectins, were found to contain more genes in Ac. millepora relative to As. poculata. Sperm hyperactivation in Ac. millepora is expected given the extreme requirements of gamete competition during mass spawning events in tropical corals, while lectins are important in the establishment of coral-algal symbiosis. By contrast, gene families involved in sleep promotion, feeding suppression, and circadian sleep/wake cycle processes were expanded in As. poculata. These expanded gene families may play a role in As. poculata's ability to enter a dormancy-like state (winter quiescence) to survive freezing temperatures at the northern edges of the species' range.
Collapse
Affiliation(s)
- Kathryn H Stankiewicz
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Nadège Guiglielmoni
- Department of Marine Biology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Sheila A Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jean-François Flot
- Department of Marine Biology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels—(IB), Brussels 1050, Belgium
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - John R Finnerty
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sean P Grace
- Department of Biology & Werth Center for Coastal and Marine Studies, Southern Connecticut State University, New Haven, CT 06515, USA
| | | | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Koty H Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Esther C Peters
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
4
|
Rutlekowski AI, Modepalli V, Ketchum R, Moran Y, Reitzel AM. De novo genome assembly of the Edwardsiid anthozoan Edwardsia elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf011. [PMID: 39849905 PMCID: PMC12053456 DOI: 10.1093/g3journal/jkaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Cnidarians (sea anemones, corals, hydroids, and jellyfish) are a key outgroup for comparisons with bilateral animals to trace the evolution of genomic complexity and diversity within the animal kingdom, as they separated from most other animals 100 s of million years ago. Cnidarians have extensive diversity, yet the paucity of genomic resources limits our ability to compare genomic variation between cnidarian clades and species. Here, we report the genome for Edwardsia elegans, a sea anemone in the most specious genus of the family Edwardsiidae, a phylogenetically important family of sea anemones that contains the model anemone Nematostella vectensis. The E. elegans genome is 396 Mb in length and is predicted to encode approximately 49,000 proteins. We annotated a large conservation of macrosynteny between E. elegans and other Edwardsiidae anemones as well as conservation of both microRNAs and ultra-conserved noncoding elements previously reported in other cnidarians species. We also highlight microsyntenic variation of clustered developmental genes and ancient gene clusters that vary between species of sea anemones, despite previous research showing conservation between cnidarians and bilaterians. Overall, our analysis of the E. elegans genome highlights the importance of using multiple species to represent a taxonomic group for genomic comparisons, where genomic variation can be missed for large and diverse clades.
Collapse
Affiliation(s)
- Auston I Rutlekowski
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, United States
- Center for Computational Intelligence to Predict Health and Environmental Risks, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC 28223, United States
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Remi Ketchum
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, United States
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Chapel Hill, NC 27599, United States
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, United States
- Center for Computational Intelligence to Predict Health and Environmental Risks, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC 28223, United States
| |
Collapse
|
5
|
Hao W, Han J, Baliński A, Brugler MR, Wang D, Wang X, Ruthensteiner B, Komiya T, Sun J, Yong Y, Song X. Unveiling the early evolution of black corals. Commun Biol 2025; 8:579. [PMID: 40195544 PMCID: PMC11976913 DOI: 10.1038/s42003-025-08022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Black corals, primarily deep-sea cnidarians (Anthozoa: Antipatharia), are inferred to have originated either in the Ediacaran or Cambrian based on molecular clock estimates. However, only the fossil family Sinopathidae, comprising Sinopathes and Sterictopathes, from the Early Ordovician of Hubei, China, has been recorded in the fossil record. The affinity of this family has been questioned because of morphological inconsistencies between fossil and extant species. Here we describe two transitional species of Sterictopathes from the Middle Ordovician of Shaanxi, China, bridging the fossil gaps and thereby elevating the genus Sterictopathes to a new family, Sterictopathidae fam. nov. The hypothesized evolutionary trend toward regularity in the axial skeleton from the Ordovician to modern Antipatharia is highlighted by reduced ridges and longitudinal fusion of networks. This discovery and confirmation of Ordovician black corals paves the way for future fossil findings and offers new insights into the early evolution of Hexacorallia.
Collapse
Grants
- 324MS114 Natural Science Foundation of Hainan Province
- 42372012, 42276090, 41720104002, 42202009 National Natural Science Foundation of China (National Science Foundation of China)
- This study was supported by the National Key Research and Development Program of China (2023YFF0803601), the National Natural Science Foundation of China (42372012, 42276090, 41720104002, 42202009), the International Partnership Program of Chinese Academy of Sciences (183446KYSB20210002), the project of IDSSE, Chinese Academy of Sciences (E371020101), and Hainan Provincial Natural Science Foundation of China (324MS114).
Collapse
Affiliation(s)
- Wenjing Hao
- Shaanxi Key Laboratory of Early Life and Environments (SKLELE), State Key Laboratory of Continental Evolution and Early Life (SKLCEE), Department of Geology, Northwest University, Xi'an, China
| | - Jian Han
- Shaanxi Key Laboratory of Early Life and Environments (SKLELE), State Key Laboratory of Continental Evolution and Early Life (SKLCEE), Department of Geology, Northwest University, Xi'an, China.
| | - Andrzej Baliński
- Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Mercer R Brugler
- Department of Natural Sciences, University of South Carolina Beaufort, Beaufort, SC, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Deng Wang
- Shaanxi Key Laboratory of Early Life and Environments (SKLELE), State Key Laboratory of Continental Evolution and Early Life (SKLCEE), Department of Geology, Northwest University, Xi'an, China
| | - Xin Wang
- Centre for Orogenic Belt Geology, CGS, Xi'an Center of China Geological Survey, Xi'an, China
| | | | - Tsuyoshi Komiya
- Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jie Sun
- Shaanxi Key Laboratory of Early Life and Environments (SKLELE), State Key Laboratory of Continental Evolution and Early Life (SKLCEE), Department of Geology, Northwest University, Xi'an, China
| | - Yuanyuan Yong
- Shaanxi Key Laboratory of Early Life and Environments (SKLELE), State Key Laboratory of Continental Evolution and Early Life (SKLCEE), Department of Geology, Northwest University, Xi'an, China
| | - Xikun Song
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Capel KCC, Ayalon I, Simon-Blecher N, Zweifler Zvifler A, Benichou ICJ, Eyal G, Avisar D, Roth J, Bongaerts P, Levy O. Depth-structured lineages in the coral Stylophora pistillata of the Northern Red Sea. NPJ BIODIVERSITY 2025; 4:13. [PMID: 40188306 PMCID: PMC11972390 DOI: 10.1038/s44185-025-00083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Coral reefs are biodiversity hotspots, where new species continue to be discovered. Stylophora pistillata, a depth-generalist coral, is widely distributed throughout the Indo-Pacific and has long been considered the poster child for phenotypic plasticity. It occupies a wide range of reef habitats and exhibits a myriad of gross morphologies. Here, we used reduced representation genome sequencing (nextRAD) to assess the genetic structure of adults and recruits of S. pistillata across shallow and mesophotic populations in the northern Red Sea (Gulf of Aqaba). Across analytical approaches, we observed a complex genetic structure with at least four genetically divergent lineages occurring sympatrically with little to no admixture and structured by depth. Morphological and physiological differences previously documented suggest that the long-considered ecological opportunism of S. pistillata in the Red Sea may, in fact, have a genetic basis. Assessment of both adult colonies and recruits within each of the lineages also revealed the prevalence of local recruitment and genetic structuring across the eight-kilometer section of the Israeli Red Sea coastline. Overall, the observed patterns confirm the presence of undescribed diversity within this model organism for coral physiology and corroborate a broader pattern of extensive undescribed diversity within scleractinian corals.
Collapse
Affiliation(s)
- K C C Capel
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
- Center for Marine Biology, University of São Paulo, São Sebastiaão, São Paulo, Brazil.
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| | - I Ayalon
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
- The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
- Faculty of Exact Sciences, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - N Simon-Blecher
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
| | - A Zweifler Zvifler
- School of Earth Sciences, The University of Western Australia, Perth, WA, 6000, Australia
| | - I C J Benichou
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
| | - G Eyal
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
- School of the Environment, The university of Queensland, St Lucia QLD 4072, Queensland, Australia
| | - D Avisar
- Faculty of Exact Sciences, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - J Roth
- DNA and Forensic Biology Laboratory, Division of Identification and Forensic Science, Israel Police National HQ, Jerusalem, Israel
| | - P Bongaerts
- California Academy of Sciences, San Francisco, CA, USA
| | - O Levy
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel.
- The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel.
| |
Collapse
|
7
|
Chen X, Han W, Chang X, Tang C, Chen K, Bao L, Zhang L, Hu J, Wang S, Bao Z. High-quality genome assembly of the azooxanthellate coral Tubastraea coccinea (Lesson, 1829). Sci Data 2025; 12:507. [PMID: 40140403 PMCID: PMC11947264 DOI: 10.1038/s41597-025-04839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Coral reefs are among the most biodiverse and economically significant ecosystems globally, yet they are increasingly degrading due to global climate change and local human activities. The sun coral Tubastraea coccinea (T. coccinea) an obligate heterotroph lacking symbiotic zooxanthellae, exhibits remarkable tolerance to conditions that cause bleaching and mortality in zooxanthellate species. With its extensive low-latitude distribution across multiple oceans, T. coccinea has become a highly invasive species, adversely impacting native species, degrading local ecosystems, and causing significant socio-economic challenges that demand effective management. Despite substantial research efforts, the molecular biology of T. coccinea remains insufficiently characterized. To address this gap, we generated a draft genome assembly for T. coccinea using PacBio Hi-Fi long-read sequencing. The assembly spans 875.9 Mb with a scaffold N50 of 694.3 kb and demonstrates high completeness, with a BUSCO score of 97.4%. A total of 37,307 protein-coding sequences were identified, 95.2% of which were functionally annotated through comparisons with established protein databases. This reference genome provides a valuable resource for understanding the genetic structure of T. coccinea, advancing research into its adaptive mechanism to environmental changes, and informing conservation and management strategies to mitigate its invasive impact.
Collapse
Affiliation(s)
- Xiaomei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Wentao Han
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Xinyao Chang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Caiyin Tang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Kai Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lingling Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Jingjie Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Shi Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Zhenmin Bao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China.
| |
Collapse
|
8
|
Modica MV, Leone S, Gerdol M, Greco S, Aurelle D, Oliverio M, Fassio G, El Koulali K, Barrachina C, Dutertre S. The proteotranscriptomic characterization of venom in the white seafan Eunicella singularis elucidates the evolution of Octocorallia arsenal. Open Biol 2025; 15:250015. [PMID: 40068811 PMCID: PMC11896702 DOI: 10.1098/rsob.250015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
All the members of the phylum Cnidaria are characterized by the production of venom in specialized structures, the nematocysts. Venom of jellyfish (Medusozoa) and sea anemones (Anthozoa) has been investigated since the 1970s, revealing a remarkable molecular diversity. Specifically, sea anemones harbour a rich repertoire of neurotoxic peptides, some of which have been developed in drug leads. However, venoms of the vast majority of Anthozoa species remain uncharacterized, particularly in the class Octocorallia. To fill this gap, we applied a proteo-transcriptomic approach to investigate venom composition in Eunicella singularis, a gorgonian species common in Mediterranean hard-bottom benthic communities. Our results highlighted the peculiarities of the venom of E. singularis with respect to sea anemones, which is reflected in the presence of several toxins with novel folds, worthy of functional characterization. A comparative genomic survey across the octocoral radiation allowed us to generalize these findings and provided insights into the evolutionary history, molecular diversification patterns and putative adaptive roles of venom toxins. A comparison of whole-body and nematocyst proteomes revealed the presence of different cytolytic toxins inside and outside the nematocysts. Two instances of differential maturation patterns of toxin precursors were also identified, highlighting the intricate regulatory pathways underlying toxin expression.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Didier Aurelle
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Marco Oliverio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | | | - Célia Barrachina
- Platform MGX, IGF, University of Montpellier, Montpellier, France
| | | |
Collapse
|
9
|
Barroso RA, Rodrigues T, Campos A, Almeida D, Guardiola FA, Turkina MV, Antunes A. Proteomic Diversity of the Sea Anemone Actinia fragacea: Comparative Analysis of Nematocyst Venom, Mucus, and Tissue-Specific Profiles. Mar Drugs 2025; 23:79. [PMID: 39997203 PMCID: PMC11857728 DOI: 10.3390/md23020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Sea anemones (Actiniaria, Cnidaria) are promising targets for biomedical research, as they produce unique bioactive compounds, including toxins and antimicrobial peptides (AMPs). However, the diversity and mechanisms underlying their chemical defenses remain poorly understood. In this study, we investigate the proteomic profiles of the unexplored sea anemone Actinia fragacea by analyzing its venom nematocyst extract, tissues, and mucus secretion. A total of 4011 different proteins were identified, clustered into 3383 protein groups. Among the 83 putative toxins detected, actinoporins, neurotoxins, and phospholipase A2 were uncovered, as well as two novel zinc metalloproteinases with two specific domains (ShK) associated with potassium channel inhibition. Common Gene Ontology (GO) terms were related to immune responses, cell adhesion, protease inhibition, and tissue regeneration. Furthermore, 1406 of the 13,276 distinct peptides identified were predicted as potential AMPs, including a putative Aurelin-like AMP localized within the nematocysts. This discovery highlights and strengthens the evidence for a cnidarian-exclusive Aurelin peptide family. Several other bioactive compounds with distinctive defense functions were also detected, including enzymes, pattern recognition proteins (PRPs), and neuropeptides. This study provides the first proteome map of A. fragacea, offering a critical foundation for exploring novel bioactive compounds and valuable insights into its molecular complexity.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Tomás Rodrigues
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Campus of International Excellence, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Francisco A. Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Agostinho Antunes
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Barroso RA, Agüero-Chapin G, Sousa R, Marrero-Ponce Y, Antunes A. Unlocking Antimicrobial Peptides: In Silico Proteolysis and Artificial Intelligence-Driven Discovery from Cnidarian Omics. Molecules 2025; 30:550. [PMID: 39942653 PMCID: PMC11820242 DOI: 10.3390/molecules30030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Overcoming the growing challenge of antimicrobial resistance (AMR), which affects millions of people worldwide, has driven attention for the exploration of marine-derived antimicrobial peptides (AMPs) for innovative solutions. Cnidarians, such as corals, sea anemones, and jellyfish, are a promising valuable resource of these bioactive peptides due to their robust innate immune systems yet are still poorly explored. Hence, we employed an in silico proteolysis strategy to search for novel AMPs from omics data of 111 Cnidaria species. Millions of peptides were retrieved and screened using shallow- and deep-learning models, prioritizing AMPs with a reduced toxicity and with a structural distinctiveness from characterized AMPs. After complex network analysis, a final dataset of 3130 Cnidaria singular non-haemolytic and non-toxic AMPs were identified. Such unique AMPs were mined for their putative antibacterial activity, revealing 20 favourable candidates for in vitro testing against important ESKAPEE pathogens, offering potential new avenues for antibiotic development.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; (R.A.B.); (G.A.-C.); (R.S.)
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Guillermin Agüero-Chapin
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; (R.A.B.); (G.A.-C.); (R.S.)
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rita Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; (R.A.B.); (G.A.-C.); (R.S.)
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de Mexico 03920, Mexico;
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Ecuador
| | - Agostinho Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; (R.A.B.); (G.A.-C.); (R.S.)
- Department of Biology, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Liang Y, Xu K, Li J, Shi J, Wei J, Zheng X, He W, Zhang X. The molecular basis of octocoral calcification revealed by genome and skeletal proteome analyses. Gigascience 2025; 14:giaf031. [PMID: 40167990 PMCID: PMC11959691 DOI: 10.1093/gigascience/giaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
The ability of octocorals and stony corals to deposit calcium carbonate (CaCO3) has contributed to their ecological success. Whereas stony corals possess a homogeneous aragonite skeleton, octocorals have developed distinct skeletal structures composed of different CaCO3 polymorphs and a skeletal organic matrix. Nevertheless, the molecular basis of skeletal structure formation in octocorals remains inadequately understood. Here, we sequenced the genomes and skeletal proteomes of two calcite-forming octocorals, namely Paragorgia papillata and Chrysogorgia sp. The assembled genomes sizes were 618.13 Mb and 781.04 Mb for P. papillata and Chrysogorgia sp., respectively, with contig N50s of 2.67 Mb and 2.61 Mb. Comparative genomic analyses identified 162 and 285 significantly expanded gene families in the genomes of P. papillata and Chrysogorgia sp., respectively, which are primarily associated with biomineralization and immune response. Furthermore, comparative analyses of skeletal proteomes demonstrated that corals with different CaCO3 polymorphs share a fundamental toolkit comprising cadherin, von Willebrand factor type A, and carbonic anhydrase domains for calcified skeleton deposition. In contrast, collagen is abundant in the calcite-forming octocoral skeletons but occurs rarely in aragonitic stony corals. Additionally, certain collagens have developed domains related to matrix adhesion and immunity, which may confer novel genetic functions in octocoral calcification. These findings enhance our understanding of the diverse forms of coral biomineralization processes and offer preliminary insights into the formation and evolution of the octocoral skeleton.
Collapse
Affiliation(s)
- Yanshuo Liang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyuan Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266237, China
| | - Jingyuan Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiehong Wei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zheng
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanying He
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
12
|
Seid CA, Hiley AS, McCowin MF, Carvajal JI, Cha H, Ahyong ST, Ashford OS, Breedy O, Eernisse DJ, Goffredi SK, Hendrickx ME, Kocot KM, Mah CL, Miller AK, Mongiardino Koch N, Mooi R, O'Hara TD, Pleijel F, Stiller J, Tilic E, Valentich-Scott P, Warén A, Wicksten MK, Wilson NG, Cordes EE, Levin LA, Cortés J, Rouse GW. A faunal inventory of methane seeps on the Pacific margin of Costa Rica. Zookeys 2025; 1222:1-250. [PMID: 39877055 PMCID: PMC11770332 DOI: 10.3897/zookeys.1222.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 01/31/2025] Open
Abstract
The methane seeps on the Pacific margin of Costa Rica support extensive animal diversity and offer insights into deep-sea biogeography. During five expeditions between 2009 and 2019, we conducted intensive faunal sampling via 63 submersible dives to 11 localities at depths of 300-3600 m. Based on these expeditions and published literature, we compiled voucher specimens, images, and 274 newly published DNA sequences to present a taxonomic inventory of macrofaunal and megafaunal diversity with a focus on invertebrates. In total 488 morphospecies were identified, representing the highest number of distinct morphospecies published from a single seep or vent region to date. Of these, 131 are described species, at least 58 are undescribed species, and the remainder include some degree of taxonomic uncertainty, likely representing additional undescribed species. Of the described species, 38 are known only from the Costa Rica seeps and their vicinity. Fifteen range extensions are also reported for species known from Mexico, the Galápagos seamounts, Chile, and the western Pacific; as well as 16 new depth records and three new seep records for species known to occur at vents or organic falls. No single evolutionary narrative explains the patterns of biodiversity at these seeps, as even morphologically indistinguishable species can show different biogeographic affinities, biogeographic ranges, or depth ranges. The value of careful molecular taxonomy and comprehensive specimen-based regional inventories is emphasized for biodiversity research and monitoring.
Collapse
Affiliation(s)
- Charlotte A. Seid
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Avery S. Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Marina F. McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - José I. Carvajal
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Harim Cha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Shane T. Ahyong
- Australian Museum, Sydney, New South Wales, AustraliaAustralian MuseumSydneyAustralia
- University of New South Wales, Kensington, New South Wales, AustraliaUniversity of New South WalesKensingtonAustralia
| | - Oliver S. Ashford
- Ocean Program, World Resources Institute, London, UKOcean Program, World Resources InstituteLondonUnited Kingdom
| | - Odalisca Breedy
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Douglas J. Eernisse
- California State University Fullerton, Fullerton, California, USACalifornia State University FullertonFullertonUnited States of America
| | - Shana K. Goffredi
- Occidental College, Los Angeles, California, USAOccidental CollegeLos AngelesUnited States of America
| | - Michel E. Hendrickx
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, MexicoUniversidad Nacional Autónoma de MéxicoMazatlánMexico
| | - Kevin M. Kocot
- University of Alabama, Tuscaloosa, Alabama, USAUniversity of AlabamaTuscaloosaUnited States of America
| | - Christopher L. Mah
- Smithsonian National Museum of Natural History, Washington, DC, USASmithsonian National Museum of Natural HistoryWashingtonUnited States of America
| | - Allison K. Miller
- University of Otago, Dunedin, New ZealandUniversity of OtagoDunedinNew Zealand
| | - Nicolás Mongiardino Koch
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Rich Mooi
- California Academy of Sciences, San Francisco, California, USACalifornia Academy of SciencesSan FranciscoUnited States of America
| | - Timothy D. O'Hara
- Museums Victoria, Melbourne, Victoria, AustraliaMuseums VictoriaMelbourneAustralia
| | - Fredrik Pleijel
- University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Josefin Stiller
- University of Copenhagen, Copenhagen, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Ekin Tilic
- Senckenberg Research Institute and Natural History Museum, Frankfurt, GermanySenckenberg Research Institute and Natural History MuseumFrankfurtGermany
| | - Paul Valentich-Scott
- Santa Barbara Museum of Natural History, Santa Barbara, California, USASanta Barbara Museum of Natural HistorySanta BarbaraUnited States of America
| | - Anders Warén
- Swedish Museum of Natural History, Stockholm, SwedenSwedish Museum of Natural HistoryStockholmSweden
| | - Mary K. Wicksten
- Texas A&M University, College Station, Texas, USATexas A&M UniversityTexasUnited States of America
| | - Nerida G. Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, AustraliaWestern Australian MuseumWelshpoolAustralia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, AustraliaUniversity of Western AustraliaPerthAustralia
| | - Erik E. Cordes
- Temple University, Philadelphia, Pennsylvania, USATemple UniversityPhiladelphiaUnited States of America
| | - Lisa A. Levin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Jorge Cortés
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| |
Collapse
|
13
|
Ganot P, Rausch T, Hsi-Yang Fritz M, Zoccola D, Wang X, Aranda M, Benes V, Allemand D, Tambutté S. Genome sequence of the Mediterranean red coral Corallium rubrum. BMC Res Notes 2024; 17:375. [PMID: 39709469 DOI: 10.1186/s13104-024-07006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES Corallium rubrum, the precious red coral, is an octocoral endemic to the western Mediterranean Sea. Like most octocorals, it produces tiny, calcified structures called sclerites. Uniquely, it also produces a completely calcified axial skeleton that is a bright red color. This combination of color and hardness has made the red coral prized for centuries, leading to extensive fishing and trade for use in jewelry. Understanding how it produces this red skeleton is thus a central question in economics, culture, and biology. To gain insights into this process, we sequenced the C. rubrum genome. DATA DESCRIPTION Our C. rubrum genome assembly is 655 megabases (Mb) in size, distributed across 2910 scaffolds with a very low level of unknown nucleotides (0.95%). We used a pipeline based on the MaSuRCA hybrid assembler, combining long PacBio reads and short Illumina reads, followed by several steps to improve the assembly, including scaffolding, merging, and polishing. This represents the third published genome of an octocoral and the first within the order Scleralcyonacea.
Collapse
Affiliation(s)
- Philippe Ganot
- Research Unit on the Biology of Precious Corals CSM-CHANEL, 8 Quai Antoine 1er, Monaco, Principality of Monaco.
- Department of Marine Biology, CSM, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Principality of Monaco.
| | - Tobias Rausch
- EMBL, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | | | - Didier Zoccola
- Department of Marine Biology, CSM, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Principality of Monaco
| | - Xin Wang
- Marine Science Program, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Marine Science Program, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vladimir Benes
- EMBL, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Denis Allemand
- Research Unit on the Biology of Precious Corals CSM-CHANEL, 8 Quai Antoine 1er, Monaco, Principality of Monaco
- CSM, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Principality of Monaco
| | - Sylvie Tambutté
- Research Unit on the Biology of Precious Corals CSM-CHANEL, 8 Quai Antoine 1er, Monaco, Principality of Monaco
- Department of Marine Biology, CSM, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Principality of Monaco
| |
Collapse
|
14
|
Jung J, Zoppe SF, Söte T, Moretti S, Duprey NN, Foreman AD, Wald T, Vonhof H, Haug GH, Sigman DM, Mulch A, Schindler E, Janussen D, Martínez-García A. Coral photosymbiosis on Mid-Devonian reefs. Nature 2024; 636:647-653. [PMID: 39443794 PMCID: PMC11655356 DOI: 10.1038/s41586-024-08101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The ability of stony corals to thrive in the oligotrophic (low-nutrient, low-productivity) surface waters of the tropical ocean is commonly attributed to their symbiotic relationship with photosynthetic dinoflagellates1,2. The evolutionary history of this symbiosis might clarify its organismal and environmental roles3, but its prevalence through time, and across taxa, morphologies and oceanic settings, is currently unclear4-6. Here we report measurements of the nitrogen isotope (15N/14N) ratio of coral-bound organic matter (CB-δ15N) in samples from Mid-Devonian reefs (Givetian, around 385 million years ago), which represent a constraint on the evolution of coral photosymbiosis. Colonial tabulate and fasciculate (dendroid) rugose corals have low CB-δ15N values (2.51 ± 0.97‰) in comparison with co-occurring solitary and (pseudo)colonial (cerioid or phaceloid) rugose corals (5.52 ± 1.63‰). The average of the isotopic difference per deposit (3.01 ± 0.58‰) is statistically indistinguishable from that observed between modern symbiont-barren and symbiont-bearing corals (3.38 ± 1.05‰). On the basis of this evidence, we infer that Mid-Devonian tabulate and some fasciculate (dendroid) rugose corals hosted active photosymbionts, while solitary and some (pseudo)colonial (cerioid or phaceloid) rugose corals did not. The low CB-δ15N values of the Devonian tabulate and fasciculate rugose corals relative to the modern range suggest that Mid-Devonian reefs formed in biogeochemical regimes analogous to the modern oligotrophic subtropical gyres. Widespread oligotrophy during the Devonian may have promoted coral photosymbiosis, the occurrence of which may explain why Devonian reefs were the most productive reef ecosystems of the Phanerozoic.
Collapse
Affiliation(s)
- Jonathan Jung
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Simon F Zoppe
- Goethe University Frankfurt, Institute of Geosciences, Frankfurt am Main, Germany
| | - Till Söte
- Department of Geology and Paleontology, University of Münster, Münster, Germany
| | - Simone Moretti
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Nicolas N Duprey
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Alan D Foreman
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Tanja Wald
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Hubert Vonhof
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gerald H Haug
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Earth and Planetary Sciences, ETH Zürich, Zurich, Switzerland
| | - Daniel M Sigman
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Andreas Mulch
- Goethe University Frankfurt, Institute of Geosciences, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Eberhard Schindler
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Dorte Janussen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
15
|
Yoshioka Y, Yamashita H, Uchida T, Shinzato C, Kawamitsu M, Fourreau CJL, Castelló GM, Fiedler BK, van den Eeckhout TM, Borghi S, Reimer JD, Shoguchi E. Azooxanthellate Palythoa (Cnidaria: Anthozoa) Genomes Reveal Toxin-related Gene Clusters and Loss of Neuronal Genes in Hexacorals. Genome Biol Evol 2024; 16:evae197. [PMID: 39240721 DOI: 10.1093/gbe/evae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/08/2024] Open
Abstract
Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa 907-0451, Japan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa 277-8564, Japan
| | - Mayumi Kawamitsu
- Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Guillermo Mironenko Castelló
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Britta Katharina Fiedler
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Timotheus Maximilian van den Eeckhout
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Stefano Borghi
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
16
|
Benedict C, Delgado A, Pen I, Vaga C, Daly M, Quattrini AM. Sea anemone (Anthozoa, Actiniaria) diversity in Mo'orea (French Polynesia). Mol Phylogenet Evol 2024; 198:108118. [PMID: 38849066 DOI: 10.1016/j.ympev.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sea anemones (Order Actiniaria) are a diverse group of marine invertebrates ubiquitous across marine ecosystems. Despite their wide distribution and success, a knowledge gap persists in our understanding of their diversity within tropical systems, owed to sampling bias of larger and more charismatic species overshadowing cryptic lineages. This study aims to delineate the sea anemone diversity in Mo'orea (French Polynesia) with the use of a dataset from the Mo'orea Biocode's "BioBlitz" initiative, which prioritized the sampling of more cryptic and understudied taxa. Implementing a target enrichment approach, we integrate 71 newly sequenced samples into an expansive phylogenetic framework and contextualize Mo'orea's diversity within global distribution patterns of sea anemones. Our analysis corroborates the presence of several previously documented sea anemones in French Polynesia and identifies for the first time the occurrence of members of genera Andvakia and Aiptasiomorpha. This research unveils the diverse sea anemone ecosystem in Mo'orea, spotlighting the area's ecological significance and emphasizing the need for continued exploration. Our methodology, encompassing a broad BLAST search coupled with phylogenetic analysis, proved to be a practical and effective approach for overcoming the limitations posed by the lack of comprehensive sequence data for sea anemones. We discuss the merits and limitations of current molecular methodologies and stress the importance of further research into lesser-studied marine organisms like sea anemones. Our work sets a precedent for future phylogenetic studies stemming from BioBlitz endeavors.
Collapse
Affiliation(s)
- Charlotte Benedict
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA.
| | - Alonso Delgado
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Isabel Pen
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Claudia Vaga
- Department of Invertebrate Zoology, Smithsonian Institution's National Museum of Natural History, 10th and Constitution Ave NW, Washington, DC 20560, USA
| | - Marymegan Daly
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution's National Museum of Natural History, 10th and Constitution Ave NW, Washington, DC 20560, USA
| |
Collapse
|
17
|
Li J, Zhan Z, Li Y, Sun Y, Zhou T, Xu K. Chromosome-level genome assembly of a deep-sea Venus flytrap sea anemone sheds light upon adaptations to an extremely oligotrophic environment. Mol Ecol 2024; 33:e17504. [PMID: 39166453 DOI: 10.1111/mec.17504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.
Collapse
Affiliation(s)
- Junyuan Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Zifeng Zhan
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
McIlroy D, Pasinetti G, Pérez-Pinedo D, McKean C, Dufour SC, Matthews JJ, Menon LR, Nicholls R, Taylor RS. The Palaeobiology of Two Crown Group Cnidarians: Haootia quadriformis and Mamsetia manunis gen. et sp. nov. from the Ediacaran of Newfoundland, Canada. Life (Basel) 2024; 14:1096. [PMID: 39337880 PMCID: PMC11432848 DOI: 10.3390/life14091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
The Ediacaran of eastern Newfoundland preserves the world's oldest known eumetazoan body fossils, as well as the earliest known record of fossilized muscular tissue. Re-examination of the holotype of the eight-armed Haootia quadriformis in terms of its morphology, the arrangement of its muscle filament bundles, and hitherto undescribed aspects of its anatomy support its interpretation as a crown staurozoan. We also document several new fossils preserving muscle tissue with a different muscular architecture to Haootia, but with only four arms. This new material allows us to describe a new crown group staurozoan, Mamsetia manunis gen. et sp. nov. This work confirms the presence of crown group medusozoan cnidarians of the Staurozoa in the Ediacaran of Newfoundland circa 565 Ma.
Collapse
Affiliation(s)
- D McIlroy
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - G Pasinetti
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - D Pérez-Pinedo
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - C McKean
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - S C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - J J Matthews
- Museum of Natural History, University of Oxford, Oxford OX3 7DQ, UK
| | - L R Menon
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| | | | - R S Taylor
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
19
|
Nocella E, Fassio G, Zuccon D, Puillandre N, Modica MV, Oliverio M. From coral reefs into the abyss: the evolution of corallivory in the Coralliophilinae (Neogastropoda, Muricidae). CORAL REEFS (ONLINE) 2024; 43:1285-1302. [PMID: 39308990 PMCID: PMC11413129 DOI: 10.1007/s00338-024-02537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
In this study, we delved into the interaction between corallivorous marine gastropods, the muricid Coralliophilinae Chenu, 1859, and their cnidarian food targets. Coralliophilinae is a subfamily of specialised corallivorous caenogastropods that feed by browsing on octocorals or hexacorals. Only sparse information is available on the phylogenetic relationships and the degree of specificity of the trophic relationships within this corallivorous lineage. To address these gaps, we generated the largest molecular dataset to date, comprising two mitochondrial (cox1 and 16S rDNA) and one nuclear gene (ITS2 rDNA) from 586 specimens collected worldwide. The coral hosts of coralliophilines were identified through an integrative approach, combining literature data with new records, employing morphological and/or molecular markers, and incorporating data from DNA barcoding of the snail stomach content. Our comprehensive approach unveiled the existence of numerous cryptic species in Coralliophilinae, while the phylogeny showed that most of the currently accepted genera are not monophyletic. The molecular dating confirmed the origin of the Coralliophilinae in Middle Eocene, with diversification of most lineages during the Miocene. Our results indicate that the subfamily's ancestor evolved in shallow waters in association with Scleractinia. Through the evolutionary history of Coralliophilinae, multiple host shifts to other cnidarian orders were observed, not correlated with changes in the depth range. The results of diversification analyses within the subfamily further suggest that the association with the host has influenced the evolutionary patterns of Coralliophilinae, but not vice versa. Supplementary Information The online version contains supplementary material available at 10.1007/s00338-024-02537-1.
Collapse
Affiliation(s)
- Elisa Nocella
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Dario Zuccon
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antillles, 57 Rue Cuvier, CP 51, 75005 Paris, France
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antillles, 57 Rue Cuvier, CP 51, 75005 Paris, France
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Oliverio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Wei Z, Yang Y, Meng L, Zhang N, Liu S, Meng L, Li Y, Shao C. The Mitogenomic Landscape of Hexacorallia Corals: Insight into Their Slow Evolution. Int J Mol Sci 2024; 25:8218. [PMID: 39125787 PMCID: PMC11311739 DOI: 10.3390/ijms25158218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.
Collapse
Affiliation(s)
- Zhanfei Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Yang Yang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Lihui Meng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Nannan Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Liang Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.Y.); (N.Z.); (S.L.)
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| |
Collapse
|
21
|
Mason B, Hayward DC, Moya A, Cooke I, Sorenson A, Brunner R, Andrade N, Huerlimann R, Bourne DG, Schaeffer P, Grinblat M, Ravasi T, Ueda N, Tang SL, Ball EE, Miller DJ. Microbiome manipulation by corals and other Cnidaria via quorum quenching. Curr Biol 2024; 34:3226-3232.e5. [PMID: 38942019 DOI: 10.1016/j.cub.2024.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
A dynamic mucous layer containing numerous micro-organisms covers the surface of corals and has multiple functions including both removal of sediment and "food gathering."1 It is likely to also act as the primary barrier to infection; various proteins and compounds with antimicrobial activity have been identified in coral mucus, though these are thought to be largely or exclusively of microbial origin. As in Hydra,2 anti-microbial peptides (AMPs) are likely to play major roles in regulating the microbiomes of corals.3,4 Some eukaryotes employ a complementary but less obvious approach to manipulate their associated microbiome by interfering with quorum signaling, effectively preventing bacteria from coordinating gene expression across a population. Our investigation of immunity in the reef-building coral Acropora millepora,5 however, led to the discovery of a coral gene referred to here as AmNtNH1 that can inactivate a range of acyl homoserine lactones (AHLs), common bacterial quorum signaling molecules, and is induced on immune challenge of adult corals and expressed during the larval settlement process. Closely related proteins are widely distributed within the Scleractinia (hard corals) and some other cnidarians, with multiple paralogs in Acropora, but their closest relatives are bacterial, implying that these are products of one or more lateral gene transfer events post-dating the cnidarian-bilaterian divergence. The deployment by corals of genes used by bacteria to compete with other bacteria reflects a mechanism of microbiome manipulation previously unknown in Metazoa but that may apply more generally.
Collapse
Affiliation(s)
- Benjamin Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David C Hayward
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Alanna Sorenson
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Ramona Brunner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Natalia Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - David G Bourne
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick Schaeffer
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Nobuo Ueda
- Marine Science Section, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 15529, Taiwan
| | - Eldon E Ball
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia; Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
22
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
23
|
Quattrini AM, McCartin LJ, Easton EE, Horowitz J, Wirshing HH, Bowers H, Mitchell K, González‐García MDP, Sei M, McFadden CS, Herrera S. Skimming genomes for systematics and DNA barcodes of corals. Ecol Evol 2024; 14:e11254. [PMID: 38746545 PMCID: PMC11091489 DOI: 10.1002/ece3.11254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 01/06/2025] Open
Abstract
Numerous genomic methods developed over the past two decades have enabled the discovery and extraction of orthologous loci to help resolve phylogenetic relationships across various taxa and scales. Genome skimming (or low-coverage genome sequencing) is a promising method to not only extract high-copy loci but also 100s to 1000s of phylogenetically informative nuclear loci (e.g., ultraconserved elements [UCEs] and exons) from contemporary and museum samples. The subphylum Anthozoa, including important ecosystem engineers (e.g., stony corals, black corals, anemones, and octocorals) in the marine environment, is in critical need of phylogenetic resolution and thus might benefit from a genome-skimming approach. We conducted genome skimming on 242 anthozoan corals collected from 1886 to 2022. Using existing target-capture baitsets, we bioinformatically obtained UCEs and exons from the genome-skimming data and incorporated them with data from previously published target-capture studies. The mean number of UCE and exon loci extracted from the genome skimming data was 1837 ± 662 SD for octocorals and 1379 ± 476 SD loci for hexacorals. Phylogenetic relationships were well resolved within each class. A mean of 1422 ± 720 loci was obtained from the historical specimens, with 1253 loci recovered from the oldest specimen collected in 1886. We also obtained partial to whole mitogenomes and nuclear rRNA genes from >95% of samples. Bioinformatically pulling UCEs, exons, mitochondrial genomes, and nuclear rRNA genes from genome skimming data is a viable and low-cost option for phylogenetic studies. This approach can be used to review and support taxonomic revisions and reconstruct evolutionary histories, including historical museum and type specimens.
Collapse
Affiliation(s)
- Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Luke J. McCartin
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erin E. Easton
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyPort IsabelTexasUSA
| | - Jeremy Horowitz
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Herman H. Wirshing
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Hailey Bowers
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | | | - María del P. González‐García
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Department of Marine SciencesUniversity of Puerto RicoMayagüezPuerto Rico
| | - Makiri Sei
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | | | - Santiago Herrera
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
24
|
DeLeo DM, Bessho-Uehara M, Haddock SH, McFadden CS, Quattrini AM. Evolution of bioluminescence in Anthozoa with emphasis on Octocorallia. Proc Biol Sci 2024; 291:20232626. [PMID: 38654652 PMCID: PMC11040251 DOI: 10.1098/rspb.2023.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.
Collapse
Affiliation(s)
- Danielle M. DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | - Manabu Bessho-Uehara
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Dept of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | | | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
25
|
Addamo AM, Modrell MS, Taviani M, Machordom A. Unravelling the relationships among Madrepora Linnaeus, 1758, Oculina Lamark, 1816 and Cladocora Ehrenberg, 1834 (Cnidaria: Anthozoa: Scleractinia). INVERTEBR SYST 2024; 38:IS23027. [PMID: 38744497 DOI: 10.1071/is23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
Despite the widespread use of integrative taxonomic approaches, many scleractinian coral genera and species remain grouped in polyphyletic families, classified as incertae sedis or simply understudied. Oculinidae Gray, 1847 represents a family for which many taxonomic questions remain unresolved, particularly those related to some of the current genera, such as Oculina Lamark, 1816 or recently removed genera, including Cladocora Ehrenberg, 1834 and Madrepora Linnaeus, 1758. Cladocora is currently assigned to the family Cladocoridae Milne Edwards & Haime, 1857 and a new family, Bathyporidae Kitahara, Capel, Zilberberg & Cairns, 2024, was recently raised to accommodate Madrepora . However, the name Bathyporidae is not valid because this was not formed on the basis of a type genus name. To resolve taxonomic questions related to these three genera, the evolutionary relationships are explored through phylogenetic analyses of 18 molecular markers. The results of these analyses support a close relationship between the species Oculina patagonica and Cladocora caespitosa , indicating that these may belong to the same family (and possibly genus), and highlighting the need for detailed revisions of Oculina and Cladocora . By contrast, a distant relationship is found between these two species and Madrepora oculata , with the overall evidence supporting the placement of Madrepora in the resurrected family Madreporidae Ehrenberg, 1834. This study advances our knowledge of coral systematics and highlights the need for a comprehensive review of the genera Oculina , Cladocora and Madrepora .
Collapse
Affiliation(s)
- Anna M Addamo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain; and European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy; and Climate Change Research Centre (CCRC), University of Insubria, I-21100 Varese, Italy; and Present address: Faculty of Biosciences and Aquaculture, Nord University, NO-8049 Bodø, Norway
| | - Melinda S Modrell
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain
| | - Marco Taviani
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), I-40129 Bologna, Italy; and Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain
| |
Collapse
|
26
|
Bossert S, Pauly A, Danforth BN, Orr MC, Murray EA. Lessons from assembling UCEs: A comparison of common methods and the case of Clavinomia (Halictidae). Mol Ecol Resour 2024; 24:e13925. [PMID: 38183389 DOI: 10.1111/1755-0998.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Sequence data assembly is a foundational step in high-throughput sequencing, with untold consequences for downstream analyses. Despite this, few studies have interrogated the many methods for assembling phylogenomic UCE data for their comparative efficacy, or for how outputs may be impacted. We study this by comparing the most commonly used assembly methods for UCEs in the under-studied bee lineage Nomiinae and a representative sampling of relatives. Data for 63 UCE-only and 75 mixed taxa were assembled with five methods, including ABySS, HybPiper, SPAdes, Trinity and Velvet, and then benchmarked for their relative performance in terms of locus capture parameters and phylogenetic reconstruction. Unexpectedly, Trinity and Velvet trailed the other methods in terms of locus capture and DNA matrix density, whereas SPAdes performed favourably in most assessed metrics. In comparison with SPAdes, the guided-assembly approach HybPiper generally recovered the highest quality loci but in lower numbers. Based on our results, we formally move Clavinomia to Dieunomiini and render Epinomia once more a subgenus of Dieunomia. We strongly advise that future studies more closely examine the influence of assembly approach on their results, or, minimally, use better-performing assembly methods such as SPAdes or HybPiper. In this way, we can move forward with phylogenomic studies in a more standardized, comparable manner.
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Washington State University, Pullman, Washington, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alain Pauly
- Royal Belgian Institute of Natural Sciences, O.D. Taxonomy and Phylogeny, Brussels, Belgium
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
27
|
Vaga CF, Seiblitz IGL, Stolarski J, Capel KCC, Quattrini AM, Cairns SD, Huang D, Quek RZB, Kitahara MV. 300 million years apart: the extreme case of macromorphological skeletal convergence between deltocyathids and a turbinoliid coral (Anthozoa, Scleractinia). INVERTEBR SYST 2024; 38:IS23053. [PMID: 38744500 DOI: 10.1071/is23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms. ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E.
Collapse
Affiliation(s)
- C F Vaga
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - I G L Seiblitz
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - K C C Capel
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Invertebrate Department, National Museum of Rio de Janeiro, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - D Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Conservatory Drive, Singapore 117377, Singapore; and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - R Z B Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; and Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| | - M V Kitahara
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| |
Collapse
|
28
|
Barroso RA, Ramos L, Moreno H, Antunes A. Evolutionary Analysis of Cnidaria Small Cysteine-Rich Proteins (SCRiPs), an Enigmatic Neurotoxin Family from Stony Corals and Sea Anemones (Anthozoa: Hexacorallia). Toxins (Basel) 2024; 16:75. [PMID: 38393153 PMCID: PMC10892658 DOI: 10.3390/toxins16020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Cnidarians (corals, sea anemones, and jellyfish) produce toxins that play central roles in key ecological processes, including predation, defense, and competition, being the oldest extant venomous animal lineage. Cnidaria small cysteine-rich proteins (SCRiPs) were the first family of neurotoxins detected in stony corals, one of the ocean's most crucial foundation species. Yet, their molecular evolution remains poorly understood. Moreover, the lack of a clear classification system has hindered the establishment of an accurate and phylogenetically informed nomenclature. In this study, we extensively surveyed 117 genomes and 103 transcriptomes of cnidarians to identify orthologous SCRiP gene sequences. We annotated a total of 168 novel putative SCRiPs from over 36 species of stony corals and 12 species of sea anemones. Phylogenetic reconstruction identified four distinct SCRiP subfamilies, according to strict discrimination criteria based on well-supported monophyly with a high percentage of nucleotide and amino acids' identity. Although there is a high prevalence of purifying selection for most SCRiP subfamilies, with few positively selected sites detected, a subset of Acroporidae sequences is influenced by diversifying positive selection, suggesting potential neofunctionalizations related to the fine-tuning of toxin potency. We propose a new nomenclature classification system relying on the phylogenetic distribution and evolution of SCRiPs across Anthozoa, which will further assist future proteomic and functional research efforts.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Hugo Moreno
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
29
|
Capel KCC, Zilberberg C, Carpes RM, Morrison CL, Vaga CF, Quattrini AM, Zb Quek R, Huang D, Cairns SD, Kitahara MV. How long have we been mistaken? Multi-tools shedding light into the systematics of the widespread deep-water genus Madrepora Linnaeus, 1758 (Scleractinia). Mol Phylogenet Evol 2024; 191:107994. [PMID: 38113961 DOI: 10.1016/j.ympev.2023.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M. oculata, one of the most widespread scleractinian species. Population structure of 107 samples from three Southwestern Atlantic sedimentary basins revealed the occurrence of a cryptic species, herein named M. piresae sp. nov. (authored by Kitahara, Capel and Zilberberg), which can be found in sympatry with M. oculata. Phylogeny reconstructions based on 134 UCEs and exon regions corroborated the population genetic data, with the recovery of two well-supported groups, and reinforced the polyphyly of the family Oculinidae. In order to better accommodate the genus Madrepora, while reducing taxonomical confusion associated with the name Madreporidae, we propose the monogeneric family Bathyporidae fam. nov. (authored by Kitahara, Capel, Zilberberg and Cairns). Our findings advance the knowledge on the widespread deep-water genus Madrepora, resolve a long-standing question regarding the phylogenetic position of the genus, and highlight the need of a worldwide review of the genus.
Collapse
Affiliation(s)
- Kátia C C Capel
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil.
| | - Carla Zilberberg
- Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Raphael M Carpes
- Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Cheryl L Morrison
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, Kearneysville, United States
| | - Claudia F Vaga
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Randolph Zb Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Stephen D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Marcelo V Kitahara
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States.
| |
Collapse
|
30
|
Núñez-Flores M, Solórzano A, Avaria-Llautureo J, Gomez-Uchida D, López-González PJ. Diversification dynamics of a common deep-sea octocoral family linked to the Paleocene-Eocene thermal maximum. Mol Phylogenet Evol 2024; 190:107945. [PMID: 37863452 DOI: 10.1016/j.ympev.2023.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The deep-sea has experienced dramatic changes in physical and chemical variables in the geological past. However, little is known about how deep-sea species richness responded to such changes over time and space. Here, we studied the diversification dynamics of one of the most diverse octocorallian families inhabiting deep sea benthonic environments worldwide and sustaining highly diverse ecosystems, Primnoidae. A newly dated species-level phylogeny was constructed to infer their ancestral geographic locations and dispersal rates initially. Then, we tested whether their global and regional (the Southern Ocean) diversification dynamics were mediated by dispersal rate and abiotic factors as changes in ocean geochemistry. Finally, we tested whether primnoids showed changes in speciation and extinction at discrete time points. Our results suggested primnoids likely originated in the southwestern Pacific Ocean during the Lower Cretaceous ∼112 Ma, with further dispersal after the physical separation of continental landmasses along the late Mesozoic and Cenozoic. Only the speciation rate of the Southern Ocean primnoids showed a significant correlation to ocean chemistry. Moreover, the Paleocene-Eocene thermal maximum marked a significant increase in the diversification of primnoids at global and regional scales. Our results provide new perspectives on the macroevolutionary and biogeographic patterns of an ecologically important benthic organism typically found in deep-sea environments.
Collapse
Affiliation(s)
- Mónica Núñez-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile; Laboratorio Ecología de Abejas, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| | - Andrés Solórzano
- Escuela de Geología, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | | | - Daniel Gomez-Uchida
- Genomics in Ecology, Evolution, and Conservation Laboratory (GEECLAB), Department of Zoology, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Pablo J López-González
- Biodiversidad y Ecología Acuática. Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
31
|
Warner JF, Besemer R, Schickle A, Borbee E, Changsut IV, Sharp K, Babonis LS. Microinjection, gene knockdown, and CRISPR-mediated gene knock-in in the hard coral, Astrangia poculata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567385. [PMID: 38948709 PMCID: PMC11213136 DOI: 10.1101/2023.11.16.567385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cnidarians have become valuable models for understanding many aspects of developmental biology including the evolution of body plan diversity, novel cell type specification, and regeneration. Most of our understanding of gene function during early development in cnidarians comes from a small number of experimental systems including the sea anemone, Nematostella vectensis. Few molecular tools have been developed for use in hard corals, limiting our understanding of this diverse and ecologically important clade. Here, we report the development of a suite of tools for manipulating and analyzing gene expression during early development in the northern star coral, Astrangia poculata. We present methods for gene knockdown using short hairpin RNAs, gene overexpression using exogenous mRNAs, and endogenous gene tagging using CRISPR-mediated gene knock-in. Combined with our ability to control spawning in the laboratory, these tools make A. poculata a tractable experimental system for investigative studies of coral development. Further application of these tools will enable functional analyses of embryonic patterning and morphogenesis across Anthozoa and open new frontiers in coral biology research.
Collapse
Affiliation(s)
- Jacob F. Warner
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409
| | - Ryan Besemer
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409
| | - Alicia Schickle
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI 02871
| | - Erin Borbee
- Department of Biology, Texas State University, San Marcos, TX, 78666
| | | | - Koty Sharp
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI 02871
| | - Leslie S. Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
32
|
Morrissey D, Gordon JD, Saso E, Bilewitch JP, Taylor ML, Hayes V, McFadden CS, Quattrini AM, Allcock AL. Bamboozled! Resolving deep evolutionary nodes within the phylogeny of bamboo corals (Octocorallia: Scleralcyonacea: Keratoisididae). Mol Phylogenet Evol 2023; 188:107910. [PMID: 37640170 DOI: 10.1016/j.ympev.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.
Collapse
Affiliation(s)
- Declan Morrissey
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland.
| | - Jessica D Gordon
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Emma Saso
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jaret P Bilewitch
- National Institute of Water & Atmospheric Research Ltd (NIWA), 301 Evans Bay Parade, Wellington 6021, New Zealand
| | - Michelle L Taylor
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Vonda Hayes
- Department of Fisheries and Oceans, St. John's, Newfoundland and Labrador, Canada
| | - Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - A Louise Allcock
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland
| |
Collapse
|
33
|
Zhou Y, Liu H, Feng C, Lu Z, Liu J, Huang Y, Tang H, Xu Z, Pu Y, Zhang H. Genetic adaptations of sea anemone to hydrothermal environment. SCIENCE ADVANCES 2023; 9:eadh0474. [PMID: 37862424 PMCID: PMC10588955 DOI: 10.1126/sciadv.adh0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Hydrothermal vent habitats are characterized by high hydrostatic pressure, darkness, and the continuous release of toxic metal ions into the surrounding environment where sea anemones and other invertebrates thrive. Nevertheless, the understanding of metazoan metal ion tolerances and environmental adaptations remains limited. We assembled a chromosome-level genome for the vent sea anemone, Alvinactis idsseensis sp. nov. Comparative genomic analyses revealed gene family expansions and gene innovations in A. idsseensis sp. nov. as a response to high concentrations of metal ions. Impressively, the metal tolerance proteins MTPs is a unique evolutionary response to the high concentrations of Fe2+ and Mn2+ present in the environments of these anemones. We also found genes associated with high concentrations of polyunsaturated fatty acids that may respond to high hydrostatic pressure and found sensory and circadian rhythm-regulated genes that were essential for adaptations to darkness. Overall, our results provide insights into metazoan adaptation to metal ions, high pressure, and darkness in hydrothermal vents.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zaiqing Lu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yanan Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Zehui Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujin Pu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
34
|
Delgado A, Larson P, Sheridan N, Daly M. Bellactis lux n. sp. (Cnidaria: Anthozoa: Actiniaria: Aiptasiidae), a new sea anemone from the Gulf of Mexico. Zootaxa 2023; 5353:379-392. [PMID: 38220677 DOI: 10.11646/zootaxa.5353.4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 01/16/2024]
Abstract
Here we describe a new species of sea anemone from the family Aiptasiidae based on specimens collected from the Gulf of Mexico (USA: Florida & Alabama). Accounts of this species have been known since the early 1990s, primarily from an underwater field guide and hobbyist aquarium literature under the name Lightbulb Anemone. We describe it as a new species from the genus Bellactis based on anatomy, histology, and cnidom. Members of this species are small in size, with a smooth, typically contracted column divided into regions based on color and bearing rows of two or three elevated cinclides in the mid column. Their tentacles are distinctive, translucent, distally inflated and can be bulbous in shape, with sub annular rings. This description synthesizes information about Bellactis and contextualizes what is known about its diversity in light of other members of the Aiptasiidae.
Collapse
Affiliation(s)
- Alonso Delgado
- Department of Evolution; Ecology & Organismal Biology; The Ohio State University; Columbus Ohio USA 43210.
| | - Paul Larson
- Florida Fish and Wildlife Conservation Commission; 100 8 Avenue SE; St. Petersburg; FL 33701; USA.
| | - Nancy Sheridan
- Florida Fish and Wildlife Conservation Commission; 100 8 Avenue SE; St. Petersburg; FL 33701; USA.
| | - Marymegan Daly
- Department of Evolution; Ecology & Organismal Biology; The Ohio State University; Columbus Ohio USA 43210.
| |
Collapse
|
35
|
Horowitz J, Quattrini AM, Brugler MR, Miller DJ, Pahang K, Bridge TCL, Cowman PF. Bathymetric evolution of black corals through deep time. Proc Biol Sci 2023; 290:20231107. [PMID: 37788705 PMCID: PMC10547549 DOI: 10.1098/rspb.2023.1107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.
Collapse
Affiliation(s)
- Jeremy Horowitz
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Mercer R. Brugler
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
- Department of Natural Sciences, University of South Carolina Beaufort, 1100 Boundary Street, Beaufort, SC 29902, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - David J. Miller
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Kristina Pahang
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
| | - Tom C. L. Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Peter F. Cowman
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| |
Collapse
|
36
|
Maegele I, Rupp S, Özbek S, Guse A, Hambleton EA, Holstein TW. A predatory gastrula leads to symbiosis-independent settlement in Aiptasia. Proc Natl Acad Sci U S A 2023; 120:e2311872120. [PMID: 37748072 PMCID: PMC10556626 DOI: 10.1073/pnas.2311872120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
The planula larvae of the sea anemone Aiptasia have so far not been reported to complete their life cycle by undergoing metamorphosis into adult forms. This has been a major obstacle in their use as a model for coral-dinoflagellate endosymbiosis. Here, we show that Aiptasia larvae actively feed on crustacean nauplii, displaying a preference for live prey. This feeding behavior relies on functional stinging cells, indicative of complex neuronal control. Regular feeding leads to significant size increase, morphological changes, and efficient settlement around 14 d postfertilization. Surprisingly, the presence of dinoflagellate endosymbionts does not affect larval growth or settlement dynamics but is crucial for sexual reproduction. Our findings finally close Aiptasia's life cycle and highlight the functional nature of its larvae, as in Haeckel's Gastrea postulate, yet reveal its active carnivory, thus contributing to our understanding of early metazoan evolution.
Collapse
Affiliation(s)
- Ira Maegele
- Molecular Evolution and Genomics, Centre for Organismal Studies, Heidelberg University, 69120Heidelberg, Germany
| | - Sebastian Rupp
- Quantitative Organismic Networks, Department of Biology, Ludwig-Maximilians-University Munich, 82152Martinsried, Germany
| | - Suat Özbek
- Molecular Evolution and Genomics, Centre for Organismal Studies, Heidelberg University, 69120Heidelberg, Germany
| | - Annika Guse
- Quantitative Organismic Networks, Department of Biology, Ludwig-Maximilians-University Munich, 82152Martinsried, Germany
| | - Elizabeth A. Hambleton
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030Vienna, Austria
| | - Thomas W. Holstein
- Molecular Evolution and Genomics, Centre for Organismal Studies, Heidelberg University, 69120Heidelberg, Germany
| |
Collapse
|
37
|
Rossel S, Peters J, Laakmann S, Martínez Arbizu P, Holst S. Potential of MALDI-TOF MS-based proteomic fingerprinting for species identification of Cnidaria across classes, species, regions and developmental stages. Mol Ecol Resour 2023; 23:1620-1631. [PMID: 37417794 DOI: 10.1111/1755-0998.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Janna Peters
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| |
Collapse
|
38
|
Molodtsova TN, Moskalenko VN, Lipukhin EV, Antokhina TI, Ananeva MS, Simakova UV. Cerianthus lloydii (Ceriantharia: Anthozoa: Cnidaria): New Status and New Perspectives. BIOLOGY 2023; 12:1167. [PMID: 37759567 PMCID: PMC10525267 DOI: 10.3390/biology12091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023]
Abstract
Subclass Ceriantharia is a well-defined and probably ancient group of marine benthic organisms renowned for their bilateral symmetry, which is reflected in the arrangement of tentacles and mesenteries. Four species of Ceriantharia have been reported in the Arctic, including Cerianthus lloydii Gosse, 1859, also known from the Northern Atlantic and Northern Pacific. The integrity of this species was questioned in the literature, so we performed a molecular study of C. lloydii from several geographically distant locations using 18S and COI genes. The phylogenetic reconstructions show that specimens of C. lloydii form a single group with high support (>0.98), subdivided into distinctive clades: (1) specimens from Northern Europe, the Black and Barents seas, and (2) specimens from the White, Kara, Laptev, and Bering seas and also the Canadian Arctic and the Labrador Sea available via the BOLD database. There are several BOLD COI sequences of Pachycerianthus borealis (Verrill, 1873), which form a third clade of the C. lloydii group, sister to the European and Arctic clades. Based on low similarity (COI 86-87%) between C. lloydii and the type species of the genus Cerianthus Delle Chiaje, 1841-C. membranaceus (Gmelin, 1791), we propose a new status for the genus Synarachnactis Carlgren, 1924, and a new family Synarachnactidae to accommodate C. lloydii.
Collapse
Affiliation(s)
- Tina N. Molodtsova
- Shirshov Institute of Oceanology RAS, 36 Nakhimovsky Prospect, Moscow 117218, Russia
| | | | - Elizabeth V. Lipukhin
- Shirshov Institute of Oceanology RAS, 36 Nakhimovsky Prospect, Moscow 117218, Russia
| | - Tatiana I. Antokhina
- Severtsov Institute of Ecology and Evolution RAS, 33 Leninski Prospect, Moscow 119071, Russia
| | - Marina S. Ananeva
- Shirshov Institute of Oceanology RAS, 36 Nakhimovsky Prospect, Moscow 117218, Russia
| | - Ulyana V. Simakova
- Shirshov Institute of Oceanology RAS, 36 Nakhimovsky Prospect, Moscow 117218, Russia
| |
Collapse
|
39
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
40
|
Ashwood LM, Elnahriry KA, Stewart ZK, Shafee T, Naseem MU, Szanto TG, van der Burg CA, Smith HL, Surm JM, Undheim EAB, Madio B, Hamilton BR, Guo S, Wai DCC, Coyne VL, Phillips MJ, Dudley KJ, Hurwood DA, Panyi G, King GF, Pavasovic A, Norton RS, Prentis PJ. Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family. BMC Biol 2023; 21:121. [PMID: 37226201 DOI: 10.1186/s12915-023-01617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Zachary K Stewart
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thomas Shafee
- Department of Animal Plant & Soil Sciences, La Trobe University, Melbourne, Australia
- Swinburne University of Technology, Melbourne, VIC, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Chloé A van der Burg
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Eivind A B Undheim
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Victoria L Coyne
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
41
|
Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI, Wirshing HH, Rodriguez E, McFadden CS. Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Sci Rep 2023; 13:7443. [PMID: 37156831 PMCID: PMC10167242 DOI: 10.1038/s41598-023-34059-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence of nad5 introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Karen E Snyder
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, São Sebastião, 11612-109, Brazil
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Natasha Floerke
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Herman H Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Estefanía Rodriguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | | |
Collapse
|
42
|
Ramos NI, DeLeo DM, Horowitz J, McFadden CS, Quattrini AM. Selection in coral mitogenomes, with insights into adaptations in the deep sea. Sci Rep 2023; 13:6016. [PMID: 37045882 PMCID: PMC10097804 DOI: 10.1038/s41598-023-31243-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Corals are a dominant benthic fauna that occur across a vast range of depths from just below the ocean's surface to the abyssopelagic zone. However, little is known about the evolutionary mechanisms that enable them to inhabit such a wide range of environments. The mitochondrial (mt) genome, which is involved in energetic pathways, may be subject to selection pressures at greater depths to meet the metabolic demands of that environment. Here, we use a phylogenomic framework combined with codon-based models to evaluate whether mt protein-coding genes (PCGs) associated with cellular energy functions are under positive selection across depth in three groups of corals: Octocorallia, Scleractinia, and Antipatharia. The results demonstrated that mt PCGs of deep- and shallow-water species of all three groups were primarily under strong purifying selection (0.0474 < ω < 0.3123), with the exception of positive selection in atp6 (ω = 1.3263) of deep-sea antipatharians. We also found evidence for positive selection at fifteen sites across cox1, mtMutS, and nad1 in deep-sea octocorals and nad3 of deep-sea antipatharians. These results contribute to our limited understanding of mt adaptations as a function of depth and provide insight into the molecular response of corals to the extreme deep-sea environment.
Collapse
Affiliation(s)
- Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Danielle M DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Jeremy Horowitz
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | | | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| |
Collapse
|
43
|
Herrera S, Cordes EE. Genome assembly of the deep-sea coral Lophelia pertusa. GIGABYTE 2023; 2023:gigabyte78. [PMID: 36935863 PMCID: PMC10022433 DOI: 10.46471/gigabyte.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Like their shallow-water counterparts, cold-water corals create reefs that support highly diverse communities, and these structures are subject to numerous anthropogenic threats. Here, we present the genome assembly of Lophelia pertusa from the southeastern coast of the USA, the first one for a deep-sea scleractinian coral species. We generated PacBio continuous long reads data for an initial assembly and proximity ligation data for scaffolding. The assembly was annotated using evidence from transcripts, proteins, and ab initio gene model predictions. This assembly is comparable to high-quality reference genomes from shallow-water scleractinian corals. The assembly comprises 2,858 scaffolds (N50 1.6 Mbp) and has a size of 556.9 Mbp. Approximately 57% of the genome comprises repetitive elements and 34% of coding DNA. We predicted 41,089 genes, including 91.1% of complete metazoan orthologs. This assembly will facilitate investigations into the ecology of this species and the evolution of deep-sea corals.
Collapse
Affiliation(s)
- Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Erik E. Cordes
- Biology Department, Temple University, Philadelphia, PA, USA
| |
Collapse
|
44
|
First In Situ Observation of Sperm Release in Corynactis carnea (Anthozoa: Corallimorpharia) from Patagonia, Argentina. DIVERSITY 2023. [DOI: 10.3390/d15020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Jewel sea anemones constitute a relatively small group of solitary cnidarians, a sister group of scleractinian corals. In the southwest Atlantic Ocean off Argentina, two species of jewel sea anemones have been found: Corynactis carnea and Corallimorphus rigidus. Corynactis carnea is a common and abundant species in shallow water of northern Atlantic Patagonia, but reproductive data on this species is scarce; the species is known to reproduce asexually. During a SCUBA diving survey in an Atlantic rocky reefs (20 m depth) in Patagonia, we observed for the first time specimens of C. carnea releasing sperm, eight days after the full moon and during the summer season while spawning has been previously observed in at least three species of Corynactis, but all were recorded as occurring in winter.
Collapse
|
45
|
Single-cell atavism reveals an ancient mechanism of cell type diversification in a sea anemone. Nat Commun 2023; 14:885. [PMID: 36797294 PMCID: PMC9935875 DOI: 10.1038/s41467-023-36615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Cnidocytes are the explosive stinging cells unique to cnidarians (corals, jellyfish, etc). Specialized for prey capture and defense, cnidocytes comprise a group of over 30 morphologically and functionally distinct cell types. These unusual cells are iconic examples of biological novelty but the developmental mechanisms driving diversity of the stinging apparatus are poorly characterized, making it challenging to understand the evolutionary history of stinging cells. Using CRISPR/Cas9-mediated genome editing in the sea anemone Nematostella vectensis, we show that a single transcription factor (NvSox2) acts as a binary switch between two alternative stinging cell fates. Knockout of NvSox2 causes a transformation of piercing cells into ensnaring cells, which are common in other species of sea anemone but appear to have been silenced in N. vectensis. These results reveal an unusual case of single-cell atavism and expand our understanding of the diversification of cell type identity.
Collapse
|
46
|
Glon H, Häussermann V, Brewin PE, Brickle P, Kong S, Smith ML, Daly M. There and Back Again: The Unexpected Journeys of Metridium de Blainville, 1824 between the Old Oceans and throughout the Modern World. THE BIOLOGICAL BULLETIN 2023; 244:9-24. [PMID: 37167618 DOI: 10.1086/723800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractMembers of the sea anemone genus Metridium are abundant in temperate rocky habitats and fouling communities. Their biogeographic history is expected to reflect changes in currents and habitats that have influenced benthic communities, such as the climate-influenced changes that occurred during the Last Glacial Maximum. More recently, however, anthropogenic influences such as shipping transportation and the creation of artificial habitat have altered and affected the composition of modern-day marine communities. Here we use sequence-capture data to examine the genetic structure of Metridium across its shallow-water distribution to (1) evaluate species boundaries within Metridium, (2) elucidate the dispersal history of Metridium between and among oceans, and (3) assess the influence of anthropogenic movement on modern-day populations. We find strong evidence for two species within Metridium: M. farcimen and M. senile. Dispersal from the Pacific to the Atlantic included a subsequent isolation of a small population in or above the Bering Sea, which has presumably moved southward. Within the native range of M. senile, admixture is prevalent even between oceans as a result of anthropogenic activities. The nonnative populations in Chile and the Falkland Islands came from at least two distinct introduction events originating from both coasts of the United States in the North Pacific and North Atlantic Oceans. Hybridization between M. senile and M. farcimen is documented as occurring in anthropogenically influenced habitats. The heavy influence from anthropogenic activities will continue to impact our understanding of marine organisms, particularly within the native range and for those that are easily transported across long distances.
Collapse
|
47
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
48
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
49
|
Steinworth BM, Martindale MQ, Ryan JF. Gene Loss may have Shaped the Cnidarian and Bilaterian Hox and ParaHox Complement. Genome Biol Evol 2022; 15:6889381. [PMID: 36508343 PMCID: PMC9825252 DOI: 10.1093/gbe/evac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian-bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.
Collapse
Affiliation(s)
- Bailey M Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | | |
Collapse
|
50
|
Osés GL, Wood R, Romero GR, Evangelista Martins Prado GM, Bidola P, Herzen J, Pfeiffer F, Stampar SN, Alves Forancelli Pacheco ML. Ediacaran Corumbella has a cataphract calcareous skeleton with controlled biomineralization. iScience 2022; 25:105676. [PMID: 36561886 PMCID: PMC9763863 DOI: 10.1016/j.isci.2022.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Corumbella is a terminal Ediacaran tubular, benthic fossil of debated morphology, composition, and biological affinity. Here, we show that Corumbella had a biomineralized skeleton, with a bilayered construction of imbricated calcareous plates and rings (sclerites) yielding a cataphract organization, that enhanced flexibility. Each sclerite likely possessed a laminar microfabric with consistent crystallographic orientation, within an organic matrix. Original aragonitic mineralogy is supported by relict aragonite and elevated Sr (mean = ca. 11,800 ppm in central parts of sclerites). In sum, the presence of a polarisation axis, sclerites with a laminar microfabric, and a cataphract skeletal organization reminiscent of early Cambrian taxa, are all consistent with, but not necessarily indicative of, a bilaterian affinity. A cataphract skeleton with an inferred complex microstructure confirms the presence of controlled biomineralization in metazoans by the terminal Ediacaran, and offers insights into the evolution of development and ecology at the root of the 'Cambrian radiation'.
Collapse
Affiliation(s)
- Gabriel Ladeira Osés
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos-SP 13565-905, Brazil,School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK,Laboratório de Paleobiologia e Astrobiologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Sorocaba-SP 18052-780, Brazil,Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo-SP 05508-090, Brazil
| | - Rachel Wood
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Guilherme Raffaeli Romero
- Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, São Paulo-SP 05508-080, Brazil
| | | | - Pidassa Bidola
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max Plank Straße 1, 21502 Geesthacht, Germany
| | - Julia Herzen
- Research Group of Physics of Biomedical Imaging, School of Natural Sciences, Technical University of Munich, James-Franck Straße 1, 85748 Garching b. München, Germany,Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching b. München, Germany
| | - Franz Pfeiffer
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching b. München, Germany,Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, James-Franck Straße 1, 85748 Garching b. München, Germany,Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22D, 81675 Munich, Germany
| | - Sérgio Nascimento Stampar
- Laboratório de Evolução e Diversidade Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências - Câmpus de Bauru, Universidade Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru-SP 17033-360, Brazil
| | - Mírian Liza Alves Forancelli Pacheco
- Laboratório de Paleobiologia e Astrobiologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Sorocaba-SP 18052-780, Brazil,Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo-SP 05508-090, Brazil,Corresponding author
| |
Collapse
|