1
|
Guo D, Gong X, Yi W, Cao L, Zhang E. Cryptic diversity, phenotypic congruence, and evolutionary history of the Leptobotia citrauratea complex (Pisces: Botiidae) within subtropical eastern China. BMC Ecol Evol 2025; 25:23. [PMID: 40098077 PMCID: PMC11912635 DOI: 10.1186/s12862-025-02362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Elucidating the emergence and maintenance of cryptic diversity is a major focus of evolutionary biology. Integrative taxonomy is widely considered as the best practice for delimiting cryptic species and exploring cryptic speciation. This approach is used here to study the Leptobotia citrauratea complex, a group of small-sized loaches so far found in subtropical floodplains and hills of eastern China. A total 170 specimens were collected from 24 sampling sites, encompassing geographical variations and divergent habitas. Six putative species, out of which two are cryptic, were delineated by integrating molecular (two mtDNA and three nuDNA genes) and morphological analyses. These species constituted three ecotypes, exhibiting phenotypic disparities concordant with a habitat transition from high- to low-flow environments. Phenotypic similarities among them were shown to not align with their phylogenetic relationships but closely correlate with habitat utilization. Convergent evolution, driven by similar selective pressure associated with habitat-specific use, likely accounts for the cryptic diversity unveiled in the recently diverging species complex. The diversification of this species complex began in the late Pliocene, coinciding with tectonic activities in the subtropical region of eastern China. Subsequent rapid differentiation during the Pleistocene was possibly driven by regional climate fluctuations. This evolutionary trajectory highlights the crucial roles of geological, climate and ecological factors in shaping biodiversity in this region.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, Hubei Province, 430079, China
| | - Xiong Gong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Wenjing Yi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Liang Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - E Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
2
|
Santaquiteria A, Miller EC, Rosas-Puchuri U, Pedraza-Marrón CDR, Troyer EM, Westneat MW, Carnevale G, Arcila D, Betancur-R R. Colonization Dynamics Explain the Decoupling of Species Richness and Morphological Disparity in Syngnatharian Fishes across Oceans. Am Nat 2025; 205:E80-E99. [PMID: 39965231 DOI: 10.1086/733931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractA clear longitudinal gradient in species richness across oceans is observed in extant marine fishes, with the Indo-Pacific exhibiting the greatest diversity. Three non-mutually-exclusive evolutionary hypotheses have been proposed to explain this diversity gradient: time for speciation, center of accumulation, and in situ diversification rates. Using the morphologically disparate syngnatharians (seahorses, dragonets, goatfishes, and relatives) as a study system, we tested these hypotheses and additionally assessed whether patterns of morphological diversity are congruent with species richness patterns. We used well-sampled phylogenies and a suite of phylogenetic comparative methods (including a novel phylogenetically corrected Kruskal-Wallis test) that account for various sources of uncertainty to estimate rates of lineage diversification and morphological disparity within all three major oceanic realms (Indo-Pacific, Atlantic, and eastern Pacific), as well as within the Indo-Pacific region. We find similar lineage diversification rates across regions, indicating that increased syngnatharian diversity in the Indo-Pacific is due to earlier colonizations from the Tethys Sea followed by in situ speciation and more frequent colonizations during the Miocene coinciding with the formation of coral reefs. These results support both time for speciation and center of accumulation hypotheses. Unlike species richness unevenness, shape disparity and evolutionary rates are similar across oceans because of the early origin of major body plans and their subsequent spread via colonization rather than in situ evolution. Our results illustrate how species richness patterns became decoupled from morphological disparity patterns during the formation of a major biodiversity hot spot.
Collapse
|
3
|
Dierickx K, Wamuini Lunkayilakio S, Bills R, Vreven E. Morphometric synthesis of Pollimyrus (Teleostei, Mormyridae) with the description of four new species. JOURNAL OF FISH BIOLOGY 2025; 106:846-892. [PMID: 39581570 PMCID: PMC11949749 DOI: 10.1111/jfb.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Mormyridae, a species-rich family endemic to Africa, remains taxonomically understudied. This has been the case for the genus Pollimyrus Taverne, 1971, which hinders further understanding of the distribution, ecology, and conservation of its species. Therefore, an in-depth morphometric comparison of all currently valid species is carried out using most of the available type specimens. Species delineations were re-evaluated, and four species new to science described: Pollimyrus ibalazambai sp. nov. (the Luki River, the Democratic Republic of the Congo), Pollimyrus krameri sp. nov. (the Lugenda River, Mozambique), Pollimyrus vanneeri sp. nov. (the Kouilou-Niari River, the Republic of the Congo), and Pollimyrus weyli sp. nov. (the Buzi River, Mozambique). In this study, Pollimyrus guttatus is confirmed to belong to Pollimyrus, whereas Pollimyrus eburneensis and Cyphomyrus plagiostoma seem more similar to species allocated to other genera. No or only little morphological differences were found between the type series of several species, which could indicate the need for synonymization of these species (Pollimyrus cuandoensis with Pollimyrus marianne and Pollimyrus nigripinnis with Pollimyrus pulverulentus). As such 20 species are currently morphologically identifiable in the genus Pollimyrus. The present study highlights the critical need for further synthetic efforts and new collecting efforts across Africa for this and other Mormyridae genera.
Collapse
Affiliation(s)
- Katrien Dierickx
- Department of Archaeology and Cultural HistoryNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Section of Vertebrates, Ichthyology, Royal Museum for Central AfricaTervurenBelgium
| | | | - Roger Bills
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Emmanuel Vreven
- Section of Vertebrates, Ichthyology, Royal Museum for Central AfricaTervurenBelgium
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| |
Collapse
|
4
|
Axelrod CJ, Urquhart EM, Mahabir PN, Carlson BA, Gordon SP. Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish. Integr Comp Biol 2024; 64:506-519. [PMID: 38886128 DOI: 10.1093/icb/icae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Swanne P Gordon
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Capobianco A, Friedman M. Fossils indicate marine dispersal in osteoglossid fishes, a classic example of continental vicariance. Proc Biol Sci 2024; 291:20241293. [PMID: 39137888 PMCID: PMC11321865 DOI: 10.1098/rspb.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The separation of closely related terrestrial or freshwater species by vast marine barriers represents a biogeographical riddle. Such cases can provide evidence for vicariance, a process whereby ancient geological events like continental rifting divided ancestral geographical ranges. With an evolutionary history extending tens of millions of years, freshwater ecology, and distribution encompassing widely separated southern landmasses, osteoglossid bonytongue fishes are a textbook case of vicariance attributed to Mesozoic fragmentation of the Gondwanan supercontinent. Largely overlooked fossils complicate the clean narrative invoked for extant species by recording occurrences on additional continents and in marine settings. Here, we present a new total-evidence phylogenetic hypothesis for bonytongue fishes combined with quantitative models of range evolution and show that the last common ancestor of extant osteoglossids was likely marine, and that the group colonized freshwater settings at least four times when both extant and extinct lineages are considered. The correspondence between extant osteoglossid relationships and patterns of continental fragmentation therefore represents a striking example of biogeographical pseudocongruence. Contrary to arguments against vicariance hypotheses that rely only on temporal or phylogenetic evidence, these results provide direct palaeontological support for enhanced dispersal ability early in the history of a group with widely separated distributions in the modern day.
Collapse
Affiliation(s)
- Alessio Capobianco
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
| | - Matt Friedman
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Saunders AN, Gallant JR. A review of the reproductive biology of mormyroid fishes: An emerging model for biomedical research. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:144-163. [PMID: 38361399 DOI: 10.1002/jez.b.23242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
Mormyroidea is a superfamily of weakly electric African fishes with great potential as a model in a variety of biomedical research areas including systems neuroscience, muscle cell and craniofacial development, ion channel biophysics, and flagellar/ciliary biology. However, they are currently difficult to breed in the laboratory setting, which is essential for any tractable model organism. As such, there is a need to better understand the reproductive biology of mormyroids to breed them more reliably in the laboratory to effectively use them as a biomedical research model. This review seeks to (1) briefly highlight the biomedically relevant phenotypes of mormyroids and (2) compile information about mormyroid reproduction including sex differences, breeding season, sexual maturity, gonads, gametes, and courtship/spawning behaviors. We also highlight areas of mormyroid reproductive biology that are currently unexplored and/or have the potential for further investigation that may provide insights into more successful mormyroid laboratory breeding methods.
Collapse
Affiliation(s)
- Alyssa N Saunders
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Rodríguez-Machado S, Elías DJ, McMahan CD, Gruszkiewicz-Tolli A, Piller KR, Chakrabarty P. Disentangling historical relationships within Poeciliidae (Teleostei: Cyprinodontiformes) using ultraconserved elements. Mol Phylogenet Evol 2024; 190:107965. [PMID: 37977500 DOI: 10.1016/j.ympev.2023.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Poeciliids (Cyprinodontiformes: Poeciliidae), commonly known as livebearers, are popular fishes in the aquarium trade (e.g., guppies, mollies, swordtails) that are widely distributed in the Americas, with 274 valid species in 27 genera. This group has undergone various taxonomic changes recently, spurred by investigations using traditional genetic markers. Here we used over 1,000 ultraconserved loci to infer the relationships within Poeciliidae in the first attempt at understanding their diversification based on genome-scale data. We explore gene tree discordance and investigate potential incongruence between concatenation and coalescent inference methods. Our aim is to examine the influence of incomplete lineage sorting and reticulate evolution on the poeciliids' evolutionary history and how these factors contribute to the observed gene tree discordace. Our concatenated and coalescent phylogenomic inferences recovered four major clades within Poeciliidae. Most supra-generic level relationships we inferred were congruent with previous molecular studies, but we found some disagreements; the Middle American taxa Phallichthys and Poecilia (Mollienesia) were recovered as non-monophyletic, and unlike other recent molecular studies, we recovered Brachyrhaphis as monophyletic. Our study is the first to provide signatures of reticulate evolution in Poeciliidae at the family level; however, continued finer-scale investigations are needed to understand the complex evolutionary history of the family along with a much-needed taxonomic re-evaluation.
Collapse
Affiliation(s)
- Sheila Rodríguez-Machado
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Diego J Elías
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States; Field Museum of Natural History, Chicago, IL 60605, United States
| | - Caleb D McMahan
- Field Museum of Natural History, Chicago, IL 60605, United States
| | - Anna Gruszkiewicz-Tolli
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
| | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
8
|
Losilla M, Gallant JR. Molecular evolution of the ependymin-related gene epdl2 in African weakly electric fish. G3 (BETHESDA, MD.) 2023; 13:6931758. [PMID: 36529459 PMCID: PMC9997568 DOI: 10.1093/g3journal/jkac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites' locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating.
Collapse
Affiliation(s)
- Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Cohen KE, Lucanus O, Summers AP, Kolmann MA. Lip service: Histological phenotypes correlate with diet and feeding ecology in herbivorous pacus. Anat Rec (Hoboken) 2023; 306:326-342. [PMID: 36128598 DOI: 10.1002/ar.25075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
Complex prey processing requires the repositioning of food between the teeth, as modulated by a soft tissue appendage like a tongue or lips. In this study, we trace the evolution of lips and ligaments, which are used during prey capture and prey processing in an herbivorous group of fishes. Pacus (Serrasalmidae) are Neotropical freshwater fishes that feed on leaves, fruits, and seeds. These prey are hard or tough, require high forces to fracture, contain abrasive or caustic elements, or deform considerably before failure. Pacus are gape-limited and do not have the pharyngeal jaws many bony fishes use to dismantle and/or transport prey. Despite their gape limitation, pacus feed on prey larger than their mouths, relying on robust teeth and a hypertrophied lower lip for manipulation and breakdown of food. We used histology to compare the lip morphology across 14 species of pacus and piranhas to better understand this soft tissue. We found that frugivorous pacus have larger, more complex lips which are innervated and folded at their surface, while grazing species have callused, mucus-covered lips. Unlike mammalian lips or tongues, pacu lips lack any intrinsic skeletal or smooth muscle. This implies that pacu lips lack dexterity; however, we found a novel connection to the primordial ligament which suggests that the lips are actuated by the jaw adductors. We propose that pacus combine hydraulic repositioning of prey inside the buccal cavity with direct oral manipulation, the latter using a combination of a morphologically heterodont dentition and compliant lips for reorienting food.
Collapse
Affiliation(s)
- Karly E Cohen
- Biology Department, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, USA
| | - Oliver Lucanus
- BelowWater, Inc., Montreal, Quebec, Canada.,Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Adam P Summers
- Biology Department, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, USA
| | - Matthew A Kolmann
- Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA.,Dept. of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Peterson R, Sullivan J, Pirro S. The Complete Genome Sequences of 38 Species of Elephantfishes (Mormyridae, Osteoglossiformes). BIODIVERSITY GENOMES 2022; 2022:10.56179/001c.56077. [PMID: 36467627 PMCID: PMC9718373 DOI: 10.56179/001c.56077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We present the complete genome sequences of 38 species of elephantfishes from 20 genera. Illumina sequencing was performed on genetic material from single wild-caught individuals. The reads were assembled using a de novo method followed by a finishing step. The raw and assembled data is publicly available via Genbank.
Collapse
Affiliation(s)
- Rose Peterson
- Department of Biological Sciences, The George Washington University
| | | | | |
Collapse
|
11
|
Sullivan JP, Hopkins CD, Pirro S, Peterson R, Chakona A, Mutizwa TI, Mukweze Mulelenu C, Alqahtani FH, Vreven E, Dillman CB. Mitogenome recovered from a 19 th Century holotype by shotgun sequencing supplies a generic name for an orphaned clade of African weakly electric fishes (Osteoglossomorpha, Mormyridae). Zookeys 2022; 1129:163-196. [PMID: 36761845 PMCID: PMC9836601 DOI: 10.3897/zookeys.1129.90287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Heteromormyrus Steindachner, 1866, a genus of Mormyridae (Teleostei: Osteoglossomorpha), has been monotypic since the description of Heteromormyruspauciradiatus (Steindacher, 1866) from a single specimen. No type locality other than "Angola" was given and almost no specimens have been subsequently identified to this species. In order to investigate the relationship of this taxon to fresh specimens collected in Angola and elsewhere, whole genome paired-end sequencing of DNA extracted from the holotype specimen of Heteromormyruspauciradiatus was performed and a nearly complete mitogenome assembled from the sequences obtained. Comparison of cytochrome oxidase I and cytochrome b sequences from this mitogenome to sequences from recently collected material reveal that Heteromormyruspauciradiatus is closely related to specimens identified as Hippopotamyrusansorgii (Boulenger, 1905), Hippopotamyrusszaboi Kramer, van der Bank & Wink, 2004, Hippopotamyruslongilateralis Kramer & Swartz, 2010, as well as to several undescribed forms from subequatorial Africa collectively referred to in the literature as the "Hippopotamyrusansorgii species complex" and colloquially known as "slender stonebashers." Previous molecular phylogenetic work has shown that these species are not close relatives of Hippopotamyruscastor Pappenheim, 1906, the type species of genus Hippopotamyrus Pappenheim, 1906 from Cameroon, and are thus misclassified. Hippopotamyrusansorgii species complex taxa and another species shown to have been misclassified, Paramormyropstavernei (Poll, 1972), are placed in genus Heteromormyrus and one genetic lineage from the Kwanza and Lucala rivers of Angola are identified as conspecific Heteromormyruspauciradiatus. Three additional new combinations and a synonymy in Mormyridae are introduced. The morphological characteristics and geographical distribution of the genus Heteromormyrus are reviewed. The electric organ discharges (EODs) of Heteromormyrus species are to be treated in a separate study.
Collapse
Affiliation(s)
- John P. Sullivan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA,Cornell University Museum of Vertebrates, Ithaca, New York, USA
| | - Carl D. Hopkins
- Cornell University Museum of Vertebrates, Ithaca, New York, USA,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | | | - Rose Peterson
- The George Washington University, Washington, D.C., USA
| | - Albert Chakona
- NRF-South African Institute for Aquatic Biodiversity, Makhanda, South Africa,Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Tadiwa I. Mutizwa
- NRF-South African Institute for Aquatic Biodiversity, Makhanda, South Africa,Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Christian Mukweze Mulelenu
- Département de Zootechnie, Faculté des Sciences Agronomiques, Université de Kolwezi, Kolwezi, Democratic Republic of the Congo,Département de Gestion des Ressources Naturelles Renouvelables, Unité de recherche en Biodiversité et Exploitation durable des Zones Humides, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo,Laboratory of Biodiversity and Evolutionary Genomics, Katholieke Universiteit, Leuven, Belgium,Zoology Department, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Fahad H. Alqahtani
- National Centre for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Emmanuel Vreven
- Laboratory of Biodiversity and Evolutionary Genomics, Katholieke Universiteit, Leuven, Belgium,Zoology Department, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Casey B. Dillman
- Cornell University Museum of Vertebrates, Ithaca, New York, USA,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Ford KL, Peterson R, Bernt M, Albert JS. Convergence is Only Skin Deep: Craniofacial Evolution in Electric Fishes from South America and Africa (Apteronotidae and Mormyridae). Integr Org Biol 2022; 4:obac022. [PMID: 35976714 PMCID: PMC9375771 DOI: 10.1093/iob/obac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Apteronotidae and Mormyridae are species-rich clades of weakly electric fishes from Neotropical and Afrotropical freshwaters, respectively, known for their high morphological disparity and often regarded as a classic example of convergent evolution. Here, we use CT-imaging and 3D geometric morphometrics to quantify disparity in craniofacial morphologies, and to test the hypothesis of convergent skull-shape evolution in a phylogenetic context. For this study, we examined 391 specimens representing 78 species of Apteronotidae and Mormyridae including 30 of 37 (81%) of all valid genera with the goal to sample most of the craniofacial disparity known in these clades. We found no overlap between Apteronotidae and Mormyridae in the skull-shape morphospace using PCA and a common landmark scheme, and therefore no instances of complete phenotypic convergence. Instead, we found multiple potential instances of incomplete convergence, and at least one parallel shift among electric fish clades. The greatest components of shape variance in both families are the same as observed for most vertebrate clades: heterocephaly (i.e., opposite changes in relative sizes of the snout and braincase regions of the skull), and heterorhynchy (i.e., dorsoventral changes in relative snout flexion and mouth position). Mormyrid species examined here exhibit less craniofacial disparity than do apteronotids, potentially due to constraints associated with a larger brain size, ecological constraints related to food-type availability. Patterns of craniofacial evolution in these two clades depict a complex story of phenotypic divergence and convergence in which certain superficial similarities of external morphology obscure deeper osteological and presumably developmental differences of skull form and function. Among apteronotid and mormyrid electric fishes, craniofacial convergence is only skin deep.
Collapse
Affiliation(s)
- Kassandra L Ford
- Institute of Ecology and Evolution, Universität Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Switzerland
- Department of Biology, University of Louisiana at Lafayette, USA
| | - Rose Peterson
- Department of Biological Sciences, George Washington University, USA
| | - Maxwell Bernt
- Department of Biology, University of Louisiana at Lafayette, USA
- Department of Ichthyology, American Museum of Natural History, USA
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, USA
| |
Collapse
|