1
|
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M. Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evol 2024; 41:msae177. [PMID: 39172750 PMCID: PMC11385596 DOI: 10.1093/molbev/msae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes including genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies allow detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehensive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with examples of insertions and deletion-induced effects in human and other natural populations and their contribution to evolutionary processes. We outline promising directions for future developments in statistical methodologies that would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets and to incorporate insertions and deletions in evolutionary inference.
Collapse
Affiliation(s)
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Gerton Lunter
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
2
|
Ma B, Gong H, Xu Q, Gao Y, Guan A, Wang H, Hua K, Luo R, Jin H. Bases-dependent Rapid Phylogenetic Clustering (Bd-RPC) enables precise and efficient phylogenetic estimation in viruses. Virus Evol 2024; 10:veae005. [PMID: 38361823 PMCID: PMC10868571 DOI: 10.1093/ve/veae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Understanding phylogenetic relationships among species is essential for many biological studies, which call for an accurate phylogenetic tree to understand major evolutionary transitions. The phylogenetic analyses present a major challenge in estimation accuracy and computational efficiency, especially recently facing a wave of severe emerging infectious disease outbreaks. Here, we introduced a novel, efficient framework called Bases-dependent Rapid Phylogenetic Clustering (Bd-RPC) for new sample placement for viruses. In this study, a brand-new recoding method called Frequency Vector Recoding was implemented to approximate the phylogenetic distance, and the Phylogenetic Simulated Annealing Search algorithm was developed to match the recoded distance matrix with the phylogenetic tree. Meanwhile, the indel (insertion/deletion) was heuristically introduced to foreign sequence recognition for the first time. Here, we compared the Bd-RPC with the recent placement software (PAGAN2, EPA-ng, TreeBeST) and evaluated it in Alphacoronavirus, Alphaherpesvirinae, and Betacoronavirus by using Split and Robinson-Foulds distances. The comparisons showed that Bd-RPC maintained the highest precision with great efficiency, demonstrating good performance in new sample placement on all three virus genera. Finally, a user-friendly website (http://www.bd-rpc.xyz) is available for users to classify new samples instantly and facilitate exploration of the phylogenetic research in viruses, and the Bd-RPC is available on GitHub (http://github.com/Bin-Ma/bd-rpc).
Collapse
Affiliation(s)
- Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Huimin Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Haoyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
The Two Domains of the Avian Double-β-Defensin AvBD11 Have Different Ancestors, Common with Potential Monodomain Crocodile and Turtle Defensins. BIOLOGY 2022; 11:biology11050690. [PMID: 35625418 PMCID: PMC9138766 DOI: 10.3390/biology11050690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary Vertebrate defensins are a multigene family of antimicrobial peptides that evolved following a series of gene duplication and divergence events during the expansion of vertebrates. In birds, the repertoire of avian defensins contains an atypical defensin, namely AvBD11 (avian beta-defensin 11), which consists of two repeated but divergent defensin units (or domains) while most vertebrate defensins only possess one unit. In this study, we investigated the evolutionary scenario leading to the formation of this double defensin in birds by comparing each defensin unit of AvBD11 with other defensins from birds and closely related reptiles (crocodile, turtles) predicted to have a single defensin unit. Our most outstanding results suggest that the double defensin AvBD11 probably appeared following a fusion of two ancestral genes or from an ancestral double defensin, but not from a recent internal duplication as it can be observed in other types of proteins with domain repeats. Abstract Beta-defensins are an essential group of cysteine-rich host-defence peptides involved in vertebrate innate immunity and are generally monodomain. Among bird defensins, the avian β-defensin 11 (AvBD11) is unique because of its peculiar structure composed of two β-defensin domains. The reasons for the appearance of such ‘polydefensins’ during the evolution of several, but not all branches of vertebrates, still remain an open question. In this study, we aimed at exploring the origin and evolution of the bird AvBD11 using a phylogenetic approach. Although they are homologous, the N- and C-terminal domains of AvBD11 share low protein sequence similarity and possess different cysteine spacing patterns. Interestingly, strong variations in charge properties can be observed on the C-terminal domain depending on bird species but, despite this feature, no positive selection was detected on the AvBD11 gene (neither on site nor on branches). The comparison of AvBD11 protein sequences in different bird species, however, suggests that some amino acid residues may have undergone convergent evolution. The phylogenetic tree of avian defensins revealed that each domain of AvBD11 is distant from ovodefensins (OvoDs) and may have arisen from different ancestral defensins. Strikingly, our phylogenetic analysis demonstrated that each domain of AvBD11 has common ancestors with different putative monodomain β-defensins from crocodiles and turtles and are even more closely related with these reptilian defensins than with their avian paralogs. Our findings support that AvBD11′s domains, which differ in their cysteine spacing and charge distribution, do not result from a recent internal duplication but most likely originate from a fusion of two different ancestral genes or from an ancestral double-defensin arisen before the Testudines-Archosauria split.
Collapse
|
4
|
Deep-Time Demographic Inference Suggests Ecological Release as Driver of Neoavian Adaptive Radiation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assessing the applicability of theory to major adaptive radiations in deep time represents an extremely difficult problem in evolutionary biology. Neoaves, which includes 95% of living birds, is believed to have undergone a period of rapid diversification roughly coincident with the Cretaceous–Paleogene (K-Pg) boundary. We investigate whether basal neoavian lineages experienced an ecological release in response to ecological opportunity, as evidenced by density compensation. We estimated effective population sizes (Ne) of basal neoavian lineages by combining coalescent branch lengths (CBLs) and the numbers of generations between successive divergences. We used a modified version of Accurate Species TRee Algorithm (ASTRAL) to estimate CBLs directly from insertion–deletion (indel) data, as well as from gene trees using DNA sequence and/or indel data. We found that some divergences near the K-Pg boundary involved unexpectedly high gene tree discordance relative to the estimated number of generations between speciation events. The simplest explanation for this result is an increase in Ne, despite the caveats discussed herein. It appears that at least some early neoavian lineages, similar to the ancestor of the clade comprising doves, mesites, and sandgrouse, experienced ecological release near the time of the K-Pg mass extinction.
Collapse
|
5
|
Abstract
The early radiation of Neoaves has been hypothesized to be an intractable “hard polytomy”. We explore the fundamental properties of insertion/deletion alleles (indels), an under-utilized form of genomic data with the potential to help solve this. We scored >5 million indels from >7000 pan-genomic intronic and ultraconserved element (UCE) loci in 48 representatives of all neoavian orders. We found that intronic and UCE indels exhibited less homoplasy than nucleotide (nt) data. Gene trees estimated using indel data were less resolved than those estimated using nt data. Nevertheless, Accurate Species TRee Algorithm (ASTRAL) species trees estimated using indels were generally similar to nt-based ASTRAL trees, albeit with lower support. However, the power of indel gene trees became clear when we combined them with nt gene trees, including a striking result for UCEs. The individual UCE indel and nt ASTRAL trees were incongruent with each other and with the intron ASTRAL trees; however, the combined indel+nt ASTRAL tree was much more congruent with the intronic trees. Finally, combining indel and nt data for both introns and UCEs provided sufficient power to reduce the scope of the polytomy that was previously proposed for several supraordinal lineages of Neoaves.
Collapse
|
6
|
Boutte J, Fishbein M, Liston A, Straub SCK. NGS-Indel Coder: A pipeline to code indel characters in phylogenomic data with an example of its application in milkweeds (Asclepias). Mol Phylogenet Evol 2019; 139:106534. [PMID: 31212081 DOI: 10.1016/j.ympev.2019.106534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/12/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Targeted genome sequencing approaches allow characterization of evolutionary relationships using a considerable number of nuclear genes and informative characters. However, most phylogenomic analyses only utilize single nucleotide polymorphisms (SNPs). Studies at the species level, especially in groups that have recently radiated, often recover low amounts of phylogenetically informative variation in coding regions, and require non-coding sequences, which are richer in indels, to resolve gene trees. Here, NGS-Indel Coder, a pipeline to detect and omit false positive indels inferred from assemblies of short read sequence data, was developed to resolve the relationships among and within major clades of the American milkweeds (Asclepias), which are the result of a rapid and recent evolutionary radiation, and whose phylogeny has been difficult to resolve. This pipeline was applied to a Hyb-Seq data set of 768 loci including targeted exons and flanking intron regions from 33 milkweed species. Robust species tree inference was improved by excluding small alignment partitions (<100 bp) that increased gene tree ambiguity and incongruence. To further investigate the robustness of indel coding, data sets that included small and large indels were explored, and species trees derived from concatenated loci versus coalescent methods based on gene trees were compared. The phylogeny of Asclepias obtained using nuclear data was well resolved, and phylogenetic information from indels improved resolution of specific nodes. The Temperate North American, Mexican Highland, and Incarnatae clades were well supported as monophyletic. Asclepias coulteri, which has been considered part of the Sonoran Desert clade based on plastome analyses, was placed as sister to all the other milkweed species studied here, rather than as a member of that clade. Two groups within the Temperate North American and Mexican clades were not resolved, and the inferred relationships strongly conflicted when comparing results based on data sets that did or did not include indel characters. This new pipeline represents a step forward in making maximal use of the information content in phylogenomic data sets.
Collapse
Affiliation(s)
- Julien Boutte
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA.
| |
Collapse
|
7
|
Chang JM, Floden EW, Herrero J, Gascuel O, Di Tommaso P, Notredame C. Incorporating alignment uncertainty into Felsenstein's phylogenetic bootstrap to improve its reliability. Bioinformatics 2019; 37:1506-1514. [PMID: 30726875 PMCID: PMC8275982 DOI: 10.1093/bioinformatics/btz082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/12/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Motivation Most evolutionary analyses are based on pre-estimated multiple sequence alignment. Wong et al. established the existence of an uncertainty induced by multiple sequence alignment when reconstructing phylogenies. They were able to show that in many cases different aligners produce different phylogenies, with no simple objective criterion sufficient to distinguish among these alternatives. Results We demonstrate that incorporating MSA induced uncertainty into bootstrap sampling can significantly increase correlation between clade correctness and its corresponding bootstrap value. Our procedure involves concatenating several alternative multiple sequence alignments of the same sequences, produced using different commonly used aligners. We then draw bootstrap replicates while favoring columns of the more unique aligner among the concatenated aligners. We named this concatenation and bootstrapping method, Weighted Partial Super Bootstrap (wpSBOOT). We show on three simulated datasets of 16, 32 and 64 tips that our method improves the predictive power of bootstrap values. We also used as a benchmark an empirical collection of 853 1-to-1 orthologous genes from seven yeast species and found wpSBOOT to significantly improve discrimination capacity between topologically correct and incorrect trees. Bootstrap values of wpSBOOT are comparable to similar readouts estimated using a single method. However, for reduced trees by 50% and 95% bootstrap thresholds, wpSBOOT comes out the lowest Type I error (less FP). Availability The automated generation of replicates has been implemented in the T-Coffee package, which is available as open source freeware available from www.tcoffee.org. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jia-Ming Chang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Evan W Floden
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Olivier Gascuel
- Unité Bioinformatique Evolutive, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI)-USR 3756 CNRS and Institut Pasteur, Paris, France
| | - Paolo Di Tommaso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
8
|
Oesterle S, Roberts TM, Widmer LA, Mustafa H, Panke S, Billerbeck S. Sequence-based prediction of permissive stretches for internal protein tagging and knockdown. BMC Biol 2017; 15:100. [PMID: 29084520 PMCID: PMC5661948 DOI: 10.1186/s12915-017-0440-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Internal tagging of proteins by inserting small functional peptides into surface accessible permissive sites has proven to be an indispensable tool for basic and applied science. Permissive sites are typically identified by transposon mutagenesis on a case-by-case basis, limiting scalability and their exploitation as a system-wide protein engineering tool. METHODS We developed an apporach for predicting permissive stretches (PSs) in proteins based on the identification of length-variable regions (regions containing indels) in homologous proteins. RESULTS We verify that a protein's primary structure information alone is sufficient to identify PSs. Identified PSs are predicted to be predominantly surface accessible; hence, the position of inserted peptides is likely suitable for diverse applications. We demonstrate the viability of this approach by inserting a Tobacco etch virus protease recognition site (TEV-tag) into several PSs in a wide range of proteins, from small monomeric enzymes (adenylate kinase) to large multi-subunit molecular machines (ATP synthase) and verify their functionality after insertion. We apply this method to engineer conditional protein knockdowns directly in the Escherichia coli chromosome and generate a cell-free platform with enhanced nucleotide stability. CONCLUSIONS Functional internally tagged proteins can be rationally designed and directly chromosomally implemented. Critical for the successful design of protein knockdowns was the incorporation of surface accessibility and secondary structure predictions, as well as the design of an improved TEV-tag that enables efficient hydrolysis when inserted into the middle of a protein. This versatile and portable approach can likely be adapted for other applications, and broadly adopted. We provide guidelines for the design of internally tagged proteins in order to empower scientists with little or no protein engineering expertise to internally tag their target proteins.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Lukas Andreas Widmer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
- Life Science Zürich Graduate School in Systems Biology, Zürich, Switzerland
| | - Harun Mustafa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sonja Billerbeck
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Present address: Chemistry Department, Columbia University, 550 West 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
9
|
Potts AJ, Hedderson TA, Grimm GW. Constructing Phylogenies in the Presence Of Intra-Individual Site Polymorphisms (2ISPs) with a Focus on the Nuclear Ribosomal Cistron. Syst Biol 2013; 63:1-16. [DOI: 10.1093/sysbio/syt052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alastair J. Potts
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, 7700, South Africa; and 2Department of Palaeobiology, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| | - Terry A. Hedderson
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, 7700, South Africa; and 2Department of Palaeobiology, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| | - Guido W. Grimm
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, 7700, South Africa; and 2Department of Palaeobiology, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| |
Collapse
|
10
|
|
11
|
Diversification in a biodiversity hotspot – The evolution of Southeast Asian rhacophorid tree frogs on Borneo (Amphibia: Anura: Rhacophoridae). Mol Phylogenet Evol 2013; 68:567-81. [DOI: 10.1016/j.ympev.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/24/2022]
|
12
|
Klopfstein S, Vilhelmsen L, Heraty JM, Sharkey M, Ronquist F. The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. PLoS One 2013; 8:e69344. [PMID: 23936325 PMCID: PMC3732274 DOI: 10.1371/journal.pone.0069344] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Previous molecular analyses of higher hymenopteran relationships have largely been based on subjectively aligned ribosomal sequences (18S and 28S). Here, we reanalyze the 18S and 28S data (unaligned about 4.4 kb) using an objective and a semi-objective alignment approach, based on MAFFT and BAli-Phy, respectively. Furthermore, we present the first analyses of a substantial protein-coding data set (4.6 kb from one mitochondrial and four nuclear genes). Our results indicate that previous studies may have suffered from inflated support values due to subjective alignment of the ribosomal sequences, but apparently not from significant biases. The protein data provide independent confirmation of several earlier results, including the monophyly of non-xyelid hymenopterans, Pamphilioidea + Unicalcarida, Unicalcarida, Vespina, Apocrita, Proctotrupomorpha and core Proctotrupomorpha. The protein data confirm that Aculeata are nested within a paraphyletic Evaniomorpha, but cast doubt on the monophyly of Evanioidea. Combining the available morphological, ribosomal and protein-coding data, we examine the total-evidence signal as well as congruence and conflict among the three data sources. Despite an emerging consensus on many higher-level hymenopteran relationships, several problems remain unresolved or contentious, including rooting of the hymenopteran tree, relationships of the woodwasps, placement of Stephanoidea and Ceraphronoidea, and the sister group of Aculeata.
Collapse
Affiliation(s)
- Seraina Klopfstein
- Department of Biodiversity Informatics, Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Gibb GC, Kennedy M, Penny D. Beyond phylogeny: pelecaniform and ciconiiform birds, and long-term niche stability. Mol Phylogenet Evol 2013; 68:229-38. [PMID: 23562800 DOI: 10.1016/j.ympev.2013.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 01/14/2023]
Abstract
Phylogenetic trees are a starting point for the study of further evolutionary and ecological questions. We show that for avian evolutionary relationships, improved taxon sampling, longer sequences and additional data sets are giving stability to the prediction of the grouping of pelecaniforms and ciconiiforms, thus allowing inferences to be made about long-term niche occupancy. Here we report the phylogeny of the pelecaniform birds and their water-carnivore allies using complete mitochondrial genomes, and show that the basic groupings agree with nuclear sequence phylogenies, even though many short branches are not yet fully resolved. In detail, we show that the Pelecaniformes (minus the tropicbird) and the Ciconiiformes (storks, herons and ibises) form a natural group within a seabird water-carnivore clade. We find pelicans are the closest relatives of the shoebill (in a clade with the hammerkop), and we confirm that tropicbirds are not pelecaniforms. In general, the group appears to be an adaptive radiation into an 'aquatic carnivore' niche that it has occupied for 60-70 million years. From an ecological and life history perspective, the combined pelecaniform-ciconiform group is more informative than focusing on differences in morphology. These findings allow a start to integrating molecular evolution and macroecology.
Collapse
Affiliation(s)
- Gillian C Gibb
- Institute of Agriculture & Environment, and Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
14
|
Yuri T, Kimball RT, Harshman J, Bowie RCK, Braun MJ, Chojnowski JL, Han KL, Hackett SJ, Huddleston CJ, Moore WS, Reddy S, Sheldon FH, Steadman DW, Witt CC, Braun EL. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. BIOLOGY 2013; 2:419-44. [PMID: 24832669 PMCID: PMC4009869 DOI: 10.3390/biology2010419] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/19/2022]
Abstract
Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions.
Collapse
Affiliation(s)
- Tamaki Yuri
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| | - John Harshman
- 4869 Pepperwood Way, San Jose, CA 95124, USA; E-Mail:
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; E-Mail:
| | - Michael J. Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA; E-Mails: (M.J.B.); (C.J.H.)
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD 20742, USA
| | - Jena L. Chojnowski
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| | - Kin-Lan Han
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| | - Shannon J. Hackett
- Zoology Department, Field Museum of Natural History, 1400 South Lakeshore Drive, Chicago, IL 60605, USA; E-Mail:
| | - Christopher J. Huddleston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA; E-Mails: (M.J.B.); (C.J.H.)
| | - William S. Moore
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; E-Mail:
| | - Sushma Reddy
- Biology Department, Loyola University Chicago, Chicago, IL 60660, USA; E-Mail:
| | - Frederick H. Sheldon
- Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA; E-Mail:
| | - David W. Steadman
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; E-Mail:
| | - Christopher C. Witt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail:
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| |
Collapse
|