1
|
Sánchez Reyes LL, McTavish EJ, O’Meara B. DateLife: Leveraging Databases and Analytical Tools to Reveal the Dated Tree of Life. Syst Biol 2024; 73:470-485. [PMID: 38507308 PMCID: PMC11282365 DOI: 10.1093/sysbio/syae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.
Collapse
Affiliation(s)
- Luna L Sánchez Reyes
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 446 Hesler Biology Building, Knoxville, TN 37996, USA
| | - Emily Jane McTavish
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343, USA
| | - Brian O’Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 446 Hesler Biology Building, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Seidel M, Sýkora V, Leschen RAB, Clarkson B, Fikáček M. Ancient relicts or recent immigrants? Different dating strategies alter diversification scenarios of New Zealand aquatic beetles (Coleoptera: Hydrophilidae: Berosus). Mol Phylogenet Evol 2021; 163:107241. [PMID: 34224848 DOI: 10.1016/j.ympev.2021.107241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Dated species-level phylogenies are crucial for understanding the origin and evolutionary history of modern faunas, yet difficult to obtain due to the frequent absence of suitable age calibrations at species level. Substitution rates of related or more inclusive clades are often used to overcome this limitation but the accuracy of this approach remains untested. We compared tree dating based on substitution rates with analyses implementing fossil data by direct node-dating and indirect root-age constraints for the New Zealand endemic Berosus water beetles (Coleoptera: Hydrophilidae). The analysis based solely on substitution rates indicated a Miocene colonization of New Zealand and Pleistocene origin of species. By contrast, all analyses that implemented fossil data resulted in significantly older age estimates, indicating an ancient early Cenozoic origin of the New Zealand clade, diversification of species during or after the Oligocene transgression and Miocene-Pliocene origin of within-species population structure. Rate-calibrated time trees were incongruent with recently published Coleoptera time trees, the fossil record of Berosus and the distribution of outgroup species. Strong variation of substitution rates among Coleoptera lineages, as well as among lineages within the family Hydrophilidae, was identified as the principal reason for low accuracy of rate-calibrated analyses, resulting in underestimated node ages in Berosus. We provide evidence that Oligocene to Pliocene events, rather than the Pleistocene Glacial cycles, played an essential role in the formation of the modern New Zealand insect fauna.
Collapse
Affiliation(s)
- Matthias Seidel
- Centrum für Naturkunde, Leibniz-Institut zur Analyse des Biodiversitätswandels, Martin-Luther-King Platz 3, Hamburg, Germany
| | - Vít Sýkora
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Richard A B Leschen
- Manaaki Whenua - Landcare Research, New Zealand Arthropod Collection, Auckland, New Zealand
| | - Bruno Clarkson
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Martin Fikáček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Entomology, National Museum, Cirkusová 1740, Prague 9, Czech Republic.
| |
Collapse
|
3
|
Freitas AVL, Rosa AHB, Nobre CEB, Melo DHA, Mota LL, Silva-Brandão KL, Machado PA, Carreira JYO. Immature Stages, Natural History, Systematics and Conservation of an Endangered Neotropical Butterfly: the Case of Scada karschina delicata (Nymphalidae: Ithomiini). NEOTROPICAL ENTOMOLOGY 2020; 49:685-695. [PMID: 32720063 DOI: 10.1007/s13744-020-00797-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The endangered butterfly Scada karschina delicata Talbot, 1932 (Nymphalidae: Danainae: Ithomiini) is endemic to northeastern Brazil, occurring in very few forest remnants of the 'Pernambuco Center of Endemism'. Larvae feed on Solanaceae and are very similar to those of other species in the subtribe Mechanitina, with lateral projections on body, one of the main synapomorphies of this subtribe. Based on molecular data, S. k. delicata clustered together with S. karschina karschina, as a monophyletic group sister to the amazon clade of S. reckia. Based on all available data, S. k. delicata is known from only five localities of mid- to high-altitude forests (from 500 to 1000 m of altitude) in northeastern Brazil. Grounded on available data, a new assessment of extinction risk is proposed, and S. k. delicata is now considered Vulnerable (VU) taxon.
Collapse
Affiliation(s)
- A V L Freitas
- Depto de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - A H B Rosa
- Depto de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brasil
| | - C E B Nobre
- Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Univ Federal de Pernambuco, Recife, Pernambuco, Brasil
| | - D H A Melo
- Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Univ Federal de Pernambuco, Recife, Pernambuco, Brasil
| | - L L Mota
- Depto de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brasil
| | - K L Silva-Brandão
- Centro de Ciências Naturais e Humanas, Univ Federal do ABC, Santo André, São Paulo, Brasil
| | - P A Machado
- Depto de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brasil
| | - J Y O Carreira
- Depto de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brasil
| |
Collapse
|
4
|
Brown JL, Paz A, Reginato M, Renata CA, Assis C, Lyra M, Caddah MK, Aguirre‐Santoro J, d’Horta F, Raposo do Amaral F, Goldenberg R, Lucas Silva‐Brandão K, Freitas AVL, Rodrigues MT, Michelangeli FA, Miyaki CY, Carnaval AC. Seeing the forest through many trees: Multi‐taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jason L. Brown
- School of Biological Sciences Southern Illinois University Carbondale IL USA
- Biology Department, City College of New York I Biology Program, The Graduate Center City University of New York New York NY USA
| | - Andrea Paz
- Biology Department, City College of New York I Biology Program, The Graduate Center City University of New York New York NY USA
| | - Marcelo Reginato
- Departamento de Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Cecilia Amaro Renata
- Universidade Federal de São Paulo ‐ Campus Diadema Diadema Brazil
- Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Claydson Assis
- Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Mariana Lyra
- Universidade Estadual Paulista ‐ Campus Rio Claro Rio Claro Brazil
| | - Mayara K. Caddah
- Departamento de Botânica Universidade Federal de Santa Catarina Florianópolis Brazil
| | | | | | | | | | | | | | | | | | | | - Ana C. Carnaval
- Biology Department, City College of New York I Biology Program, The Graduate Center City University of New York New York NY USA
| |
Collapse
|
5
|
Chazot N, Wahlberg N, Freitas AVL, Mitter C, Labandeira C, Sohn JC, Sahoo RK, Seraphim N, de Jong R, Heikkilä M. Priors and Posteriors in Bayesian Timing of Divergence Analyses: The Age of Butterflies Revisited. Syst Biol 2020; 68:797-813. [PMID: 30690622 PMCID: PMC6893297 DOI: 10.1093/sysbio/syz002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 11/14/2022] Open
Abstract
The need for robust estimates of times of divergence is essential for downstream analyses, yet assessing this robustness is still rare. We generated a time-calibrated genus-level phylogeny of butterflies (Papilionoidea), including 994 taxa, up to 10 gene fragments and an unprecedented set of 12 fossils and 10 host-plant node calibration points. We compared marginal priors and posterior distributions to assess the relative importance of the former on the latter. This approach revealed a strong influence of the set of priors on the root age but for most calibrated nodes posterior distributions shifted from the marginal prior, indicating significant information in the molecular data set. Using a very conservative approach we estimated an origin of butterflies at 107.6 Ma, approximately equivalent to the latest Early Cretaceous, with a credibility interval ranging from 89.5 Ma (mid Late Cretaceous) to 129.5 Ma (mid Early Cretaceous). In addition, we tested the effects of changing fossil calibration priors, tree prior, different sets of calibrations and different sampling fractions but our estimate remained robust to these alternative assumptions. With 994 genera, this tree provides a comprehensive source of secondary calibrations for studies on butterflies.
Collapse
Affiliation(s)
- Nicolas Chazot
- Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62 Lund, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Niklas Wahlberg
- Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62 Lund, Sweden
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Caixa Postal 6109, Barão Geraldo 13083-970, Campinas, São Paulo, Brazil
| | - Charles Mitter
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr, College Park, MD 20742, USA
| | - Conrad Labandeira
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr, College Park, MD 20742, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave., Washington, DC 20013, USA.,Department of Entomology and BEES Program, University of Maryland, 4291 Fieldhouse Dr, College Park, MD 20741, USA.,Key Lab of Insect Evolution and Environmental Change, School of Life Sciences, Capital Normal University, XinJieKouWai St., Beijing 100048, China
| | - Jae-Cheon Sohn
- Department of Science Education, Gongju National University of Education, Gongju, 27, Ungjin-ro, Gongju-si, Chungnam 32553, Republic of Korea
| | - Ranjit Kumar Sahoo
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695 551, India
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Campinas, CTI Renato Archer - Av. Comendador Aladino Selmi, s/n - Amarais, Campinas, São Paulo 13069-901, Brazil
| | - Rienk de Jong
- Department of Entomology, Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| | - Maria Heikkilä
- Finnish Museum of Natural History LUOMUS, Zoology Unit, University of Helsinki, P.O. Box 17, Helsinki FI-00014, Finland
| |
Collapse
|
6
|
Huang Z, Chiba H, Guo D, Yago M, Braby MF, Wang M, Fan X. Molecular phylogeny and historical biogeography of Parnara butterflies (Lepidoptera: Hesperiidae). Mol Phylogenet Evol 2019; 139:106545. [PMID: 31254614 DOI: 10.1016/j.ympev.2019.106545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 11/27/2022]
Abstract
The butterfly genus Parnara (Hesperiinae: Baorini), of which some are major pests of economic crops (e.g., rice, wild rice stems and sugarcane), currently consists of 10 species and several subspecies and has a highly disjunct distribution in Australia, Africa, and Asia. We determined the systematic relationships and biogeographical history of the genus by reconstructing the phylogeny based on eight genes and 101 specimens representing all 10 recognized species. Four species delimitation methods (ABGD, bPTP, GMYC and BPP) were also employed to assess the taxonomic status of each species. Based on these results and analyses, we recognize 11 extant species in the genus. The status of the taxon P. naso poutieri (Boisduval, 1833) from Madagascar is revised as a distinct species, Parnara poutieri (Boisduval, 1833) stat. rev. The subspecies P. guttata mangala (Moore, 1866) syn. nov. is synonymized with P. guttata guttata (Bremer & Grey, 1853), while P. bada (Moore, 1878) is provisionally treated as a complex of two species, namely P. bada and P. apostata (Snellen, 1886). The monophyly of Parnara is strongly supported, with the following relationships: P. amalia + ((P. monasi + (P. poutieri + P. naso)) + ((P. kawazoei + P. bada complex) + (P. ganga + (P. ogasawarensis + (P. guttata + P. batta))))). Divergence time and ancestral range estimates indicate that the common ancestor of Parnara originated in an implausible area of Australia, Africa, and Oriental region in the mid-Oligocene and then differentiated in the late Miocene-late Pliocene. Dispersal and range expansion have played an important role in diversification of the genus in Asia and Afica. Relatively stable geotectonic plates at the time when most extant lineages appeared during the late Miocene-early Pliocene might have been the factor responsible for the relatively constant low dynamic rate of diversification within the group.
Collapse
Affiliation(s)
- Zhenfu Huang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Dong Guo
- Plant Protection Station of Shandong Province, Jinan, China
| | - Masaya Yago
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | - Min Wang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoling Fan
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Chazot N, De-Silva DL, Willmott KR, Freitas AVL, Lamas G, Mallet J, Giraldo CE, Uribe S, Elias M. Contrasting patterns of Andean diversification among three diverse clades of Neotropical clearwing butterflies. Ecol Evol 2018; 8:3965-3982. [PMID: 29721272 PMCID: PMC5916281 DOI: 10.1002/ece3.3622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
The Neotropical region is the most biodiverse on Earth, in a large part due to the highly diverse tropical Andean biota. The Andes are a potentially important driver of diversification within the mountains and for neighboring regions. We compared the role of the Andes in diversification among three subtribes of Ithomiini butterflies endemic to the Neotropics, Dircennina, Oleriina, and Godyridina. The diversification patterns of Godyridina have been studied previously. Here, we generate the first time‐calibrated phylogeny for the largest ithomiine subtribe, Dircennina, and we reanalyze a published phylogeny of Oleriina to test different biogeographic scenarios involving the Andes within an identical framework. We found common diversification patterns across the three subtribes, as well as major differences. In Dircennina and Oleriina, our results reveal a congruent pattern of diversification related to the Andes with an Andean origin, which contrasts with the Amazonian origin and multiple Andean colonizations of Godyridina. In each of the three subtribes, a clade diversified in the Northern Andes at a faster rate. Diversification within Amazonia occurred in Oleriina and Godyridina, while virtually no speciation occurred in Dircennina in this region. Dircennina was therefore characterized by higher diversification rates within the Andes compared to non‐Andean regions, while in Oleriina and Godyridina, we found no difference between these regions. Our results and discussion highlight the importance of comparative approaches in biogeographic studies.
Collapse
Affiliation(s)
- Nicolas Chazot
- Department of Biology Lunds Universitet Lund Sweden.,Institut de Systématique, Évolution, Biodiversité ISYEB-UMR 7205-CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle Sorbonne Universités Paris France
| | - Donna Lisa De-Silva
- Institut de Systématique, Évolution, Biodiversité ISYEB-UMR 7205-CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle Sorbonne Universités Paris France
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida Gainesville FL USA
| | - André V L Freitas
- Departamento de Biologia Animal and Museu de Zoologia Instituto de Biologia Universidade Estadual de Campinas Campinas São Paulo Brazil
| | - Gerardo Lamas
- Museo de Historia Natural Universidad Nacional de San Marcos Lima Peru
| | - James Mallet
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Carlos E Giraldo
- Grupo de Investigación de Sanidad Vegetal Universidad Católica de Oriente Rionegro Colombia
| | - Sandra Uribe
- Universidad Nacional de Colombia, Sede Medellín Medellín Colombia
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité ISYEB-UMR 7205-CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle Sorbonne Universités Paris France
| |
Collapse
|
8
|
Jiang Y, Garzón-Orduña IJ, Winterton SL, Yang F, Liu X. Phylogenetic relationships among tribes of the green lacewing subfamily Chrysopinae recovered based on mitochondrial phylogenomics. Sci Rep 2017; 7:7218. [PMID: 28775310 PMCID: PMC5543154 DOI: 10.1038/s41598-017-07431-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/28/2017] [Indexed: 11/24/2022] Open
Abstract
Chrysopidae (green lacewings) is the second largest family in Neuroptera, and it includes medium-size lacewings largely recognized by the presence of golden-colored eyes, bright green bodies and delicate wings with dense venation patterns. The subfamily Chrysopinae includes 97% of the species diversity in the family and it is currently divided into four tribes: Ankylopterygini, Belonopterygini, Chrysopini and Leucochrysini. Here we sequenced and annotated the nearly complete mitochondrial genomes of four species of each these tribes: Abachrysa eureka, Italochrysa insignis, Leucochrysa pretiosa, Parankyloteryx sp. We then reconstructed the phylogenetic relationships with estimated divergence times among tribes of Chrysopinae based on the mt genomic data. Our results suggest that Chrysopinae sans Nothancyla verreauxi evolved as two reciprocally monophyletic lineages formed by stem members of the tribes Leucochrysini plus Belonopterygini on one hand, and the stem members of Ankylopterygini plus Chrysopini on the other. Our estimations of divergence times place the diversification of stem Chrysopinae into the extant tribes during the Middle Jurassic to Late Cretaceous. The relatively young ages previously estimated for the green lacewing divergences were probably underestimated due to false inferences of homology between non-sister taxa that are later correctly identified as homoplasy after more taxa are added.
Collapse
Affiliation(s)
- Yunlan Jiang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Ivonne J Garzón-Orduña
- California State Collection of Arthropods, California Department of Food and Agriculture, Sacramento, CA, 95832, USA
| | - Shaun L Winterton
- California State Collection of Arthropods, California Department of Food and Agriculture, Sacramento, CA, 95832, USA
| | - Fan Yang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 2017; 355:71-75. [PMID: 28059765 DOI: 10.1126/science.aag2737] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/15/2016] [Accepted: 11/18/2016] [Indexed: 11/02/2022]
Abstract
The nightshade family Solanaceae holds exceptional economic and cultural importance. The early diversification of Solanaceae is thought to have occurred in South America during its separation from Gondwana, but the family's sparse fossil record provides few insights. We report 52.2-million-year-old lantern fruits from terminal-Gondwanan Patagonia, featuring highly inflated, five-lobed calyces, as a newly identified species of the derived, diverse New World genus Physalis (e.g., groundcherries and tomatillos). The fossils are considerably older than corresponding molecular divergence dates and demonstrate an ancient history for the inflated calyx syndrome. The derived position of these early Eocene fossils shows that Solanaceae were well diversified long before final Gondwanan breakup.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Mónica R Carvalho
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - María A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - N Rubén Cúneo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina
| |
Collapse
|
10
|
Grímsson F, Kapli P, Hofmann CC, Zetter R, Grimm GW. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family. PeerJ 2017; 5:e3373. [PMID: 28607837 PMCID: PMC5466002 DOI: 10.7717/peerj.3373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/04/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. METHODS Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. RESULTS The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. DISCUSSION With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.
Collapse
Affiliation(s)
| | - Paschalia Kapli
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Reinhard Zetter
- Department of Palaeontology, University of Vienna, Wien, Austria
| | - Guido W. Grimm
- Department of Palaeontology, University of Vienna, Wien, Austria
- Orléans, France
| |
Collapse
|
11
|
Lisa De-Silva D, Mota LL, Chazot N, Mallarino R, Silva-Brandão KL, Piñerez LMG, Freitas AV, Lamas G, Joron M, Mallet J, Giraldo CE, Uribe S, Särkinen T, Knapp S, Jiggins CD, Willmott KR, Elias M. North Andean origin and diversification of the largest ithomiine butterfly genus. Sci Rep 2017; 7:45966. [PMID: 28387233 PMCID: PMC5384087 DOI: 10.1038/srep45966] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
The Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species' elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others.
Collapse
Affiliation(s)
- Donna Lisa De-Silva
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205–CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier CP50 F-75005, Paris, France
| | - Luísa L. Mota
- Departamento de Zoologia and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Nicolas Chazot
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205–CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier CP50 F-75005, Paris, France
- Department of Biology, Lunds Universitet, Lund, Sweden
| | - Ricardo Mallarino
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Karina L. Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Luz Miryam Gómez Piñerez
- Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
- Grupo de investigación Ciencias Forenses y Salud, Tecnológico de Antioquia, Medellin, Colombia
| | - André V.L. Freitas
- Departamento de Zoologia and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mathieu Joron
- Centre d’Ecologie Fonctionnelle et Evolutive, CEFE, UMR 5175 CNRS - EPHE - Université de Montpellier - Université Paul Valéry Montpellier, 34293 Montpellier 5, France
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Carlos E. Giraldo
- Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
- Grupo de Investigación de Sanidad Vegetal, Universidad Católica de Oriente, Rionegro, Antioquia, Colombia
| | - Sandra Uribe
- Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Sandra Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Keith R. Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205–CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier CP50 F-75005, Paris, France
| |
Collapse
|
12
|
Abstract
Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.
Collapse
Affiliation(s)
- Charles Mitter
- Department of Entomology, University of Maryland, College Park, Maryland 20742;
| | - Donald R Davis
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Michael P Cummings
- Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
13
|
Chazot N, Willmott KR, Condamine FL, De‐Silva DL, Freitas AVL, Lamas G, Morlon H, Giraldo CE, Jiggins CD, Joron M, Mallet J, Uribe S, Elias M. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol Ecol 2016; 25:5765-5784. [DOI: 10.1111/mec.13773] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Nicolas Chazot
- Institut de Systématique, Évolution, Biodiversité ISYEB – UMR 7205 – CNRS MNHN UPMC EPHE Muséum national d'Histoire naturelle Sorbonne Universités 57 rue Cuvier CP50 F‐75005 Paris France
- Department of Biology University of Lund 223 62 Lund Sweden
| | - Keith R. Willmott
- McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
| | - Fabien L. Condamine
- CNRS UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier) Place Eugène Bataillon 34095 Montpellier France
- Department of Biological Sciences University of Alberta T6G 2E9 Edmonton AB Canada
| | - Donna Lisa De‐Silva
- Institut de Systématique, Évolution, Biodiversité ISYEB – UMR 7205 – CNRS MNHN UPMC EPHE Muséum national d'Histoire naturelle Sorbonne Universités 57 rue Cuvier CP50 F‐75005 Paris France
| | - André V. L. Freitas
- Departamento de Zoologia and Museu de Zoologia Instituto de Biologia Universidade Estadual de Campinas Campinas São Paulo Brazil
| | - Gerardo Lamas
- Museo de Historia Natural Universidad Nacional de San Marcos Lima Peru
| | - Hélène Morlon
- IBENS Ecole Normale Supérieure UMR 8197 CNRS Paris France
| | - Carlos E. Giraldo
- Grupo de Investigación de Sanidad Vegetal Universidad Católica de Oriente Rionegro Antioquia Colombia
| | | | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175 CNRS – EPHE – Université de Montpellier – Université Paul Valéry Montpellier 34293 Montpellier 5 France
| | - James Mallet
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA 02138 USA
| | - Sandra Uribe
- Universidad Nacional de Colombia, sede Medellín Medellín Colombia
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité ISYEB – UMR 7205 – CNRS MNHN UPMC EPHE Muséum national d'Histoire naturelle Sorbonne Universités 57 rue Cuvier CP50 F‐75005 Paris France
| |
Collapse
|
14
|
Matos-Maraví P. Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and neotropical butterfly diversification rates. Evolution 2016; 70:1638-50. [DOI: 10.1111/evo.12960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Pável Matos-Maraví
- School of Biological Sciences, University of South Bohemia and Institute of Entomology; Biology Centre CAS; Ceske Budejovice Czech Republic
| |
Collapse
|