1
|
Scarpetta SG, Fisher RN, Karin BR, Niukula JB, Corl A, Jackman TR, McGuire JA. Iguanas rafted more than 8,000 km from North America to Fiji. Proc Natl Acad Sci U S A 2025; 122:e2318622122. [PMID: 40096595 PMCID: PMC11962422 DOI: 10.1073/pnas.2318622122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Founder-event speciation can occur when one or more organisms colonize a distant, unoccupied area via long-distance dispersal, leading to the evolution of a new species lineage. Species radiations established by long-distance, and especially transoceanic, dispersal can cause substantial shifts in regional biodiversity. Here, we investigate the occurrence and timing of the greatest known long-distance oceanic dispersal event in the history of terrestrial vertebrates-the rafting of iguanas from North America to Fiji. Iguanas are large-bodied herbivores that are well-known overwater dispersers, including species that colonized the Caribbean and the Galápagos islands. However, the origin of Fijian iguanas had not been comprehensively tested. We estimated the phylogenetic relationships and evolutionary timescale of the iguanid lizard radiation using genome-wide exons and ultraconserved elements (UCEs). Those data indicate that the closest living relative of extant Fijian iguanas is the North American desert iguana and that the two taxa likely diverged during the late Paleogene near or after the onset of volcanism that produced the Fijian archipelago. Biogeographic models estimate North America as the most probable ancestral range of Fijian iguanas. Our analyses support the hypothesis that iguanas reached Fiji via an extraordinary oceanic dispersal event from western North America, and which spanned a fifth of the earth's circumference (>8,000 km). Overwater rafting of iguanas from North America to Fiji strengthens the importance of founder-event speciation in the diversification of iguanids and elucidates the scope of long-distance dispersal across terrestrial vertebrates.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Department of Environmental Science, University of San Francisco, CA94117
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Robert N. Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA92101
| | - Benjamin R. Karin
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | | | - Ammon Corl
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Todd R. Jackman
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA93106
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Varela-Jaramillo A, Streicher JW, Venegas PJ, Ron SR. Three new species of torrent treefrogs (Anura, Hylidae) of the Hyloscirtusbogotensis group from the eastern Andean slopes and the biogeographic history of the genus. Zookeys 2025; 1231:233-292. [PMID: 40124314 PMCID: PMC11926613 DOI: 10.3897/zookeys.1231.124926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/12/2025] [Indexed: 03/25/2025] Open
Abstract
The Hyloscirtusbogotensis group contains 17 species of treefrogs from the tropical Andes and Central America. A taxonomic review of the Amazonian clades of this group is presented based on DNA sequences of nuclear and mitochondrial DNA and a preliminary phylogenomic analysis of ultraconserved elements, as well as morphological, bioacoustic, and environmental characters. Additionally, the role of the Andes in the diversification of the genus Hyloscirtus is explored by reconstructing their ancestral basin (Amazon, Pacific, Caribbean). Our integrative analysis indicates the existence of eight undescribed candidate species within the group. Three of those species are described, previously masked within H.albopunctulatus, H.phyllognathus, and H.torrenticola. A lectotype is also designated for Hylaalbopunctulata. The new evidence suggests that neither Hyloscirtusphyllognathus nor H.torrenticola occur in Ecuador. The new species, H.elbakyanae sp. nov., H.dispersus sp. nov., and Hyloscirtusmaycu sp. nov. differ from other members of the group in bioacoustics and external morphology. The most useful diagnostic characters among species were advertisement calls. In contrast, skin coloration is highly variable intraspecifically and, as a result, of low diagnostic value. High variation in color is partly a result of phenotypic plasticity. Our biogeographic reconstructions indicate that the Andean barrier influenced the diversification of Hyloscirtus. Since the early Oligocene, there have been only four colonization events across de Andes, between the Pacific and Amazon basins. Two of those events occurred more than 14 Mya, when most of the tropical Andes were below 3000 m. Species in the highland H.larinopygion group are younger, suggesting recent diversification as high montane forests and paramo habitats emerged.
Collapse
Affiliation(s)
- Andrea Varela-Jaramillo
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo. 17-01-2184, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
- 3Diversity, Santo Domingo Oe5-71 y Cuba, Quito, Ecuador3DiversityQuitoEcuador
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstrasse 33, 04103 Leipzig, GermanyUniversity of LeipzigLeipzigGermany
| | - Jeffrey W. Streicher
- Herpetology, Natural History Museum, Cromwell Road, London, SW7 5BD, United KingdomNatural History MuseumLondonUnited Kingdom
| | - Pablo J. Venegas
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo. 17-01-2184, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
- Rainforest Partnership, 4005 Guadalupe St., Austin, TX 78751, USARainforest PartnershipAustinUnited States of America
- Instituto Peruano de Herpetología (IPH), Augusto Salazar Bondy 136, Urb. Higuereta, Surco, Lima, PeruInstituto Peruano de Herpetología (IPH)LimaPeru
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo. 17-01-2184, Quito, EcuadorPontificia Universidad Católica del EcuadorQuitoEcuador
| |
Collapse
|
3
|
Abalde S, Jondelius U. A Phylogenomic Backbone for Acoelomorpha Inferred From Transcriptomic Data. Syst Biol 2025; 74:70-85. [PMID: 39451056 PMCID: PMC11809588 DOI: 10.1093/sysbio/syae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 10/26/2024] Open
Abstract
Xenacoelomorpha are mostly microscopic, morphologically simple worms, lacking many structures typical of other bilaterians. Xenacoelomorphs-which include three main groups, namely Acoela, Nemertodermatida, and Xenoturbella-have been proposed to be an early diverging Bilateria, sister to protostomes and deuterostomes, but other phylogenomic analyses have recovered this clade nested within the deuterostomes, as sister to Ambulacraria. The position of Xenacoelomorpha within the metazoan tree has understandably attracted a lot of attention, overshadowing the study of phylogenetic relationships within this group. Given that Xenoturbella includes only six species whose relationships are well understood, we decided to focus on the most speciose Acoelomorpha (Acoela + Nemertodermatida). Here, we have sequenced 29 transcriptomes, doubling the number of sequenced species, to infer a backbone tree for Acoelomorpha based on genomic data. The recovered topology is mostly congruent with previous studies. The most important difference is the recovery of Paratomella as the first off-shoot within Acoela, dramatically changing the reconstruction of the ancestral acoel. Besides, we have detected incongruence between the gene trees and the species tree, likely linked to incomplete lineage sorting, and some signal of introgression between the families Dakuidae and Mecynostomidae, which hampers inferring the correct placement of this family and, particularly, of the genus Notocelis. We have also used this dataset to infer for the first time diversification times within Acoelomorpha, which coincide with known bilaterian diversification and extinction events. Given the importance of morphological data in acoelomorph phylogenetics, we tested several partitions and models. Although morphological data failed to recover a robust phylogeny, phylogenetic placement has proven to be a suitable alternative when a reference phylogeny is available.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
4
|
Li YX, Ip JCH, Chen C, Xu T, Zhang Q, Sun Y, Ma PZ, Qiu JW. Phylogenomics of Bivalvia Using Ultraconserved Elements Reveal New Topologies for Pteriomorphia and Imparidentia. Syst Biol 2025; 74:16-33. [PMID: 39283716 DOI: 10.1093/sysbio/syae052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 02/11/2025] Open
Abstract
Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085 bp in mean length from in vitro experiments. Our results introduced novel schemes from 6 major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata, and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered 3 Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Department of Biology, Hong Kong Baptist University, 224 Wateroo Road, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, 8 Castle Peak Road, Tuen Mun, Hong Kong SAR, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, 6 Xianxialing Road, Laoshan District, Qingdao 266100, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, 8 Nanhai Road, Shinan District, Qingdao 266071, China
| | - Pei-Zhen Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, 224 Wateroo Road, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
| |
Collapse
|
5
|
Pan D, Sun Y, Shi B, Wang R, Ng PKL, Guinot D, Cumberlidge N, Sun H. Phylogenomic analysis of brachyuran crabs using transcriptome data reveals possible sources of conflicting phylogenetic relationships within the group. Mol Phylogenet Evol 2024; 201:108201. [PMID: 39278384 DOI: 10.1016/j.ympev.2024.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Despite extensive morphological and molecular studies, the phylogenetic interrelationships within the infraorder Brachyura and the phylogenetic positions of many taxa remain uncertain. Studies that used a limited number of molecular markers have often failed to provide sufficient resolution, and may be susceptible to stochastic errors and incomplete lineage sorting (ILS). Here we reconstructed the phylogenetic relationships within the Brachyura using transcriptome data of 56 brachyuran species, including 14 newly sequenced taxa. Five supermatrices were constructed in order to exclude different sources of systematic error. The results of the phylogenetic analyses indicate that Heterotremata is non-monophyletic, and that the two Old World primary freshwater crabs (Potamidae and Gecarcinucidae) and the Hymenosomatoidea form a clade that is sister to the Thoracotremata, and outside the Heterotremata. We also found that ILS is the main cause of the gene-tree discordance of these freshwater crabs. Divergence time estimations indicate that the Brachyura has an ancient origin, probably either in the Triassic or Jurassic, and that the majority of extant families and superfamilies first appeared during the Cretaceous, with a constant increase of diversity in Post-Cretaceous-Palaeogene times. The results support the hypothesis that the two Old World freshwater crab families included in this study (Potamidae and Gecarcinucidae) diverged from their marine ancestors around 120 Ma, in the Cretaceous. In addition, this work provides new insights that may aid in the reclassification of some of the more problematic brachyuran groups.
Collapse
Affiliation(s)
- Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| | - Yunlong Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruxiao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Danièle Guinot
- Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Institut de Systématique, Évolution, Biodiversité (ISYEB), Case Postale 53, 57 rue Cuvier, F-75231 Paris cedex 05, France
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Salinas NR, Eshel G, Coruzzi GM, DeSalle R, Tessler M, Little DP. BAD2matrix: Phylogenomic matrix concatenation, indel coding, and more. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11604. [PMID: 39628543 PMCID: PMC11610412 DOI: 10.1002/aps3.11604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 03/16/2024] [Indexed: 12/06/2024]
Abstract
Premise Common steps in phylogenomic matrix production include biological sequence concatenation, morphological data concatenation, insertion/deletion (indel) coding, gene content (presence/absence) coding, removing uninformative characters for parsimony analysis, recording with reduced amino acid alphabets, and occupancy filtering. Existing software does not accomplish these tasks on a phylogenomic scale using a single program. Methods and Results BAD2matrix is a Python script that performs the above-mentioned steps in phylogenomic matrix construction for DNA or amino acid sequences as well as morphological data. The script works in UNIX-like environments (e.g., LINUX, MacOS, Windows Subsystem for LINUX). Conclusions BAD2matrix helps simplify phylogenomic pipelines and can be downloaded from https://github.com/dpl10/BAD2matrix/tree/master under a GNU General Public License v2.
Collapse
Affiliation(s)
- Nelson R. Salinas
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
| | - Gil Eshel
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Gloria M. Coruzzi
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Rob DeSalle
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Michael Tessler
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Biology, Medgar Evers CollegeCity University of New YorkBrooklynNew YorkUSA
| | - Damon P. Little
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
| |
Collapse
|
7
|
Rosling A, Eshghi Sahraei S, Kalsoom Khan F, Desirò A, Bryson AE, Mondo SJ, Grigoriev IV, Bonito G, Sánchez-García M. Evolutionary history of arbuscular mycorrhizal fungi and genomic signatures of obligate symbiosis. BMC Genomics 2024; 25:529. [PMID: 38811885 PMCID: PMC11134847 DOI: 10.1186/s12864-024-10391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions. Their taxonomic ranks are currently fluid. RESULTS In this study, we recognize these three monophyletic linages as phyla, and use a balanced taxon sampling and broad taxonomic representation for phylogenomic analysis that rejects a hard polytomy and resolves Glomeromycota as sister to a clade composed of Mucoromycota and Mortierellomycota. Low copy numbers of genes associated with plant cell wall degradation could not be assigned to the transition to a plant symbiotic lifestyle but appears to be an ancestral phylogenetic signal. Both plant symbiotic lineages, Glomeromycota and Endogonales, lack numerous thiamine metabolism genes but the lack of fatty acid synthesis genes is specific to AM fungi. Many genes previously thought to be missing specifically in Glomeromycota are either missing in all analyzed phyla, or in some cases, are actually present in some of the analyzed AM fungal lineages, e.g. the high affinity phosphorus transporter Pho89. CONCLUSION Based on a broad taxon sampling of fungal genomes we present a well-supported phylogeny for AM fungi and their sister lineages. We show that among these lineages, two independent evolutionary transitions to mutualistic plant symbiosis happened in a genomic background profoundly different from that known from the emergence of ectomycorrhizal fungi in Dikarya. These results call for further reevaluation of genomic signatures associated with plant symbiosis.
Collapse
Affiliation(s)
- Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | | | | | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Abigail E Bryson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Stephen J Mondo
- Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
8
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Scarpetta SG. A Palaeogene stem crotaphytid ( Aciprion formosum) and the phylogenetic affinities of early fossil pleurodontan iguanians. ROYAL SOCIETY OPEN SCIENCE 2024; 11:221139. [PMID: 38204790 PMCID: PMC10776235 DOI: 10.1098/rsos.221139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Pleurodonta is an ancient, diverse clade of iguanian lizard distributed primarily in the Western Hemisphere. Although the clade is a frequent subject of systematic research, phylogenetic resolution among the major pleurodontan clades is elusive. That uncertainty has complicated the interpretations of many fossil pleurodontans. I describe a fossil skull of a pleurodontan lizard from the Palaeogene of Wyoming that was previously allocated to the puzzling taxon Aciprion formosum, and provide an updated morphological matrix for iguanian lizards. Phylogenetic analyses using Bayesian inference demonstrate that the fossil skull is the oldest and first definitive stem member of Crotaphytidae (collared and leopard lizards), establishing the presence of that clade in North America during the Palaeogene. I also discuss new or revised hypotheses for the relationships of several early pleurodontans. In particular, I examine potential evidence for crown-Pleurodonta in the Cretaceous of Mongolia (Polrussia), stem Pleurodonta in the Cretaceous of North America (Magnuviator) and a stem anole in the Eocene of North America (Afairiguana). I suggest that the placement of the fossil crotaphytid is stable to the uncertain phylogeny of Pleurodonta, but recognize the dynamic nature of fossil diagnosis and the potential for updated systematic hypotheses for the other fossils analysed here.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 UC Berkeley Road, Berkeley, CA 94720, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
10
|
Portik DM, Streicher JW, Wiens JJ. Frog phylogeny: A time-calibrated, species-level tree based on hundreds of loci and 5,242 species. Mol Phylogenet Evol 2023; 188:107907. [PMID: 37633542 DOI: 10.1016/j.ympev.2023.107907] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Large-scale, time-calibrated phylogenies from supermatrix studies have become crucial for evolutionary and ecological studies in many groups of organisms. However, in frogs (anuran amphibians), there is a serious problem with existing supermatrix estimates. Specifically, these trees are based on a limited number of loci (15 or fewer), and the higher-level relationships estimated are discordant with recent phylogenomic estimates based on much larger numbers of loci. Here, we attempted to rectify this problem by generating an expanded supermatrix and combining this with data from phylogenomic studies. To assist in aligning ribosomal sequences for this supermatrix, we developed a new program (TaxonomyAlign) to help perform taxonomy-guided alignments. The new combined matrix contained 5,242 anuran species with data from 307 markers, but with 95% missing data overall. This dataset represented a 71% increase in species sampled relative to the previous largest supermatrix analysis of anurans (adding 2,175 species). Maximum-likelihood analyses generated a tree in which higher-level relationships (and estimated clade ages) were generally concordant with those from phylogenomic analyses but were more discordant with the previous largest supermatrix analysis. We found few obvious problems arising from the extensive missing data in most species. We also generated a set of 100 time-calibrated trees for use in comparative analyses. Overall, we provide an improved estimate of anuran phylogeny based on the largest number of combined taxa and markers to date. More broadly, we demonstrate the potential to combine phylogenomic and supermatrix analyses in other groups of organisms.
Collapse
Affiliation(s)
- Daniel M Portik
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA; California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA.
| |
Collapse
|
11
|
Luo A, Zhang C, Zhou QS, Ho SYW, Zhu CD. Impacts of Taxon-Sampling Schemes on Bayesian Tip Dating Under the Fossilized Birth-Death Process. Syst Biol 2023; 72:781-801. [PMID: 36919368 PMCID: PMC10405359 DOI: 10.1093/sysbio/syad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
Evolutionary timescales can be inferred by molecular-clock analyses of genetic data and fossil evidence. Bayesian phylogenetic methods such as tip dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of different densities of diversified sampling on Bayesian tip dating on unresolved fossilized birth-death (FBD) trees, in which fossil taxa are topologically constrained but their exact placements are averaged out. We used synthetic data generated by simulations of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses under the diversified-sampling FBD process show that increasing taxon-sampling density does not necessarily improve divergence-time estimates. However, when informative priors were specified for the root age or when tree topologies were fixed to those used for simulation, the performance of tip dating on unresolved FBD trees maintains its accuracy and precision or improves with taxon-sampling density. By exploring three situations in which models are mismatched, we find that including all relevant fossils, without pruning off those that are incompatible with the diversified-sampling FBD process, can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have practical implications for using Bayesian tip dating to infer evolutionary timescales across the Tree of Life. [Bayesian tip dating; eutherian mammals; fossilized birth-death process; phylogenomics; taxon sampling.].
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Samaradiwakara NP, de Farias ARG, Tennakoon DS, Aluthmuhandiram JVS, Bhunjun CS, Chethana KWT, Kumla J, Lumyong S. Appendage-Bearing Sordariomycetes from Dipterocarpus alatus Leaf Litter in Thailand. J Fungi (Basel) 2023; 9:625. [PMID: 37367561 DOI: 10.3390/jof9060625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Nethmini P Samaradiwakara
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Danushka S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Janith V S Aluthmuhandiram
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chitrabhanu S Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
13
|
Raheem DC, Gower DJ, Breugelmans K, Ranawana KB, Backeljau T. The systematics and evolution of the Sri Lankan rainforest land snail Corilla: New insights from RADseq-based phylogenetics. Mol Phylogenet Evol 2023; 182:107731. [PMID: 36781030 DOI: 10.1016/j.ympev.2023.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The stylommatophoran land-snail genus Corilla is endemic to Sri Lanka and India's Western Ghats. On the basis of habitat distribution and shell morphology, the 10 extant Sri Lankan species fall into two distinct groups, lowland and montane. Here, we use phylogenetic analyses of restriction-site-associated DNA sequencing (RADseq) data and ancestral-state reconstructions of habitat association and shell morphology to clarify the systematics and evolution of Sri Lankan Corilla. Our dataset consists of 9 species of Corilla. Phylogenetic analyses were based on 88 assemblies (9,604-4,132,850 bp) generated by the RADseq assembler ipyrad, using four parameter combinations and different levels of missing data. Trees were inferred using a maximum likelihood (ML) approach. Ancestral states were reconstructed using maximum parsimony (MP) and ML approaches, with 1 binary state character analysed for habitat association (lowland vs montane) and 6 binary state characters analysed for shell morphology (shape, colour, lip width, length of upper palatal folds, orientation of upper palatal folds and collabral sculpture). Over a wide range of missing data (40-87 % missing individuals per locus) and assembly sizes (62,279-4,132,850 bp), nearly all trees conformed to one of two topologies (A and B), most relationships were strongly supported and total branch support approached the maximal value. Apart from the position of Corilla odontophora 'south', topologies A and B showed similar, well-resolved relationships at and above the species level. Our study agrees with the shell-based taxonomy of C. adamsi, C. beddomeae, C. carabinata, C. colletti and C. humberti (all maximally supported as monophyletic species). It shows that C. erronea and C. fryae constitute a single relatively widespread species (for which the valid name is C. erronea) and that the names C. gudei and C. odontophora each apply to at least two distinct, yet conchologically-cryptic species. The MP and ML ancestral-state reconstructions yielded broadly similar results and provide firm evidence that diversification in Sri Lankan Corilla has involved evolutionary convergence in the shell morphology of lowland lineages, with a pale shell and wide lip having evolved on at least two separate occasions (in C. carabinata and C. colletti) from montane ancestors having a dark, narrow-lipped shell.
Collapse
Affiliation(s)
- Dinarzarde C Raheem
- Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; Department of Life Sciences, Natural History Museum, London SW7 5BD, UK.
| | - David J Gower
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Karin Breugelmans
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | - Kithsiri B Ranawana
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
14
|
Next-generation sequencing data show rapid radiation and several long-distance dispersal events in early Costaceae. Mol Phylogenet Evol 2023; 179:107664. [PMID: 36403710 DOI: 10.1016/j.ympev.2022.107664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
The monocot family Costaceae Nakai consists of seven genera but their mutual relationships have not been satisfactorily resolved in previous studies employing classical molecular markers. Phylogenomic analyses of 365 nuclear genes and nearly-complete plastome data provide almost fully resolved insights into their diversification. Paracostus is identified as sister to all other taxa, followed by several very short branches leading to discrete lineages, suggesting an ancient rapid radiation of these early lineages and leaving the exact relationships among them unresolved. Relationships among Chamaecostus, Dimerocostus and Monocostus confirmed earlier findings that these genera form a monophyletic group. The Afro-American Costus is also monophyletic. By contrast, Tapeinochilos appeared as a well-supported crown lineage of Cheilocostus rendering it paraphyletic. As these two genera differ morphologically from one another owing to a shift from insect- to bird-pollination, we propose to keep both names. The divergence time within Costaceae was estimated using penalized likelihood utilizing two fossils within Zingiberales, †Spirematospermum chandlerae and †Ensete oregonense, indicated a relatively recent diversification of Costaceae, between 18 and 9 Mya. Based on these data, the current pantropical distribution of the family is hypothesized to be the result of several long-distance intercontinental dispersal events, which do not correlate with global geoclimatic changes.
Collapse
|
15
|
Mahbub S, Sawmya S, Saha A, Reaz R, Rahman MS, Bayzid MS. Quartet Based Gene Tree Imputation Using Deep Learning Improves Phylogenomic Analyses Despite Missing Data. JOURNAL OF COMPUTATIONAL BIOLOGY : A JOURNAL OF COMPUTATIONAL MOLECULAR CELL BIOLOGY 2022; 29:1156-1172. [PMID: 36048555 DOI: 10.1089/cmb.2022.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Species tree estimation is frequently based on phylogenomic approaches that use multiple genes from throughout the genome. However, for a combination of reasons (ranging from sampling biases to more biological causes, as in gene birth and loss), gene trees are often incomplete, meaning that not all species of interest have a common set of genes. Incomplete gene trees can potentially impact the accuracy of phylogenomic inference. We, for the first time, introduce the problem of imputing the quartet distribution induced by a set of incomplete gene trees, which involves adding the missing quartets back to the quartet distribution. We present Quartet based Gene tree Imputation using Deep Learning (QT-GILD), an automated and specially tailored unsupervised deep learning technique, accompanied by cues from natural language processing, which learns the quartet distribution in a given set of incomplete gene trees and generates a complete set of quartets accordingly. QT-GILD is a general-purpose technique needing no explicit modeling of the subject system or reasons for missing data or gene tree heterogeneity. Experimental studies on a collection of simulated and empirical datasets suggest that QT-GILD can effectively impute the quartet distribution, which results in a dramatic improvement in the species tree accuracy. Remarkably, QT-GILD not only imputes the missing quartets but can also account for gene tree estimation error. Therefore, QT-GILD advances the state-of-the-art in species tree estimation from gene trees in the face of missing data.
Collapse
Affiliation(s)
- Sazan Mahbub
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.,Department of Computer Science, University of Maryland, College Park, Maryland, USA
| | - Shashata Sawmya
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Arpita Saha
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Rezwana Reaz
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - M Sohel Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
16
|
Roycroft E, Moritz C, Rowe KC, Moussalli A, Eldridge MDB, Portela Miguez R, Piggott MP, Potter S. Sequence Capture From Historical Museum Specimens: Maximizing Value for Population and Phylogenomic Studies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.931644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The application of high-throughput, short-read sequencing to degraded DNA has greatly increased the feasibility of generating genomic data from historical museum specimens. While many published studies report successful sequencing results from historical specimens; in reality, success and quality of sequence data can be highly variable. To examine predictors of sequencing quality, and methodological approaches to improving data accuracy, we generated and analyzed genomic sequence data from 115 historically collected museum specimens up to 180 years old. Data span both population genomic and phylogenomic scales, including historically collected specimens from 34 specimens of four species of Australian rock-wallabies (genus Petrogale) and 92 samples from 79 specimens of Australo-Papuan murine rodents (subfamily Murinae). For historical rodent specimens, where the focus was sampling for phylogenomics, we found that regardless of specimen age, DNA sequence libraries prepared from toe pad or bone subsamples performed significantly better than those taken from the skin (in terms of proportion of reads on target, number of loci captured, and data accuracy). In total, 93% of DNA libraries from toe pad or bone subsamples resulted in reliable data for phylogenetic inference, compared to 63% of skin subsamples. For skin subsamples, proportion of reads on target weakly correlated with collection year. Then using population genomic data from rock-wallaby skins as a test case, we found substantial improvement in final data quality by mapping to a high-quality “closest sister” de novo assembly from fresh tissues, compared to mapping to a sample-specific historical de novo assembly. Choice of mapping approach also affected final estimates of the number of segregating sites and Watterson's θ, both important parameters for population genomic inference. The incorporation of accurate and reliable sequence data from historical specimens has important outcomes for evolutionary studies at both population and phylogenomic scales. By assessing the outcomes of different approaches to specimen subsampling, library preparation and bioinformatic processing, our results provide a framework for increasing sequencing success for irreplaceable historical specimens.
Collapse
|
17
|
Abreu EF, Pavan SE, Tsuchiya MTN, McLean BS, Wilson DE, Percequillo AR, Maldonado JE. Old specimens for old branches: Assessing effects of sample age in resolving a rapid Neotropical radiation of squirrels. Mol Phylogenet Evol 2022; 175:107576. [PMID: 35809853 DOI: 10.1016/j.ympev.2022.107576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
Abstract
Ultraconserved Elements (UCEs) have been useful to resolve challenging phylogenies of non-model clades, unpuzzling long-conflicted relationships in key branches of the Tree of Life at both deep and shallow levels. UCEs are often reliably recovered from historical samples, unlocking a vast number of preserved natural history specimens for analysis. However, the extent to which sample age and preservation method impact UCE recovery as well as downstream inferences remains unclear. Furthermore, there is an ongoing debate on how to curate, filter, and properly analyze UCE data when locus recovery is uneven across sample age and quality. In the present study we address these questions with an empirical dataset composed of over 3800 UCE loci from 219 historical and modern samples of Sciuridae, a globally distributed and ecologically important family of rodents. We provide a genome-scale phylogeny of two squirrel subfamilies (Sciurillinae and Sciurinae: Sciurini) and investigate their placement within Sciuridae. For historical specimens, recovery of UCE loci and mean length per locus were inversely related to sample age; deeper sequencing improved the number of UCE loci recovered but not locus length. Most of our phylogenetic inferences-performed on six datasets with alternative data-filtering strategies, and using three distinct optimality criteria-resulted in distinct topologies. Datasets containing more loci (40% and 50% taxa representativeness matrices) yielded more concordant topologies and higher support values than strictly filtered datasets (60% matrices) particularly with IQ-Tree and SVDquartets, while filtering based on information content provided better topological resolution for inferences with the coalescent gene-tree based approach in ASTRAL-III. We resolved deep relationships in Sciuridae (including among the five currently recognized subfamilies) and relationships among the deepest branches of Sciurini, but conflicting relationships remain at both genus- and species-levels for the rapid Neotropical tree squirrel radiation. Our results suggest that phylogenomic consensus can be difficult and heavily influenced by the age of available samples and the filtering steps used to optimize dataset properties.
Collapse
Affiliation(s)
- Edson F Abreu
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA.
| | - Silvia E Pavan
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA; Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, USA
| | - Bryan S McLean
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Don E Wilson
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alexandre R Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
18
|
Ebbs ET, Loker ES, Bu L, Locke SA, Tkach VV, Devkota R, Flores VR, Pinto HA, Brant SV. Phylogenomics and Diversification of the Schistosomatidae Based on Targeted Sequence Capture of Ultra-Conserved Elements. Pathogens 2022; 11:769. [PMID: 35890014 PMCID: PMC9321907 DOI: 10.3390/pathogens11070769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Schistosomatidae Stiles and Hassall 1898 is a medically significant family of digenetic trematodes (Trematoda: Digenea), members of which infect mammals or birds as definitive hosts and aquatic or amphibious gastropods as intermediate hosts. Currently, there are 17 named genera, for many of which evolutionary interrelationships remain unresolved. The lack of a resolved phylogeny has encumbered our understanding of schistosomatid evolution, specifically patterns of host-use and the role of host-switching in diversification. Here, we used targeted sequence capture of ultra-conserved elements (UCEs) from representatives of 13 of the 17 named genera and 11 undescribed lineages that are presumed to represent either novel genera or species to generate a phylogenomic dataset for the estimation of schistosomatid interrelationships. This study represents the largest phylogenetic effort within the Schistosomatidae in both the number of loci and breadth of taxon sampling. We present a near-comprehensive family-level phylogeny providing resolution to several clades of long-standing uncertainty within Schistosomatidae, including resolution for the placement of the North American mammalian schistosomes, implying a second separate capture of mammalian hosts. Additionally, we present evidence for the placement of Macrobilharzia at the base of the Schistosoma + Bivitellobilharzia radiation. Patterns of definitive and intermediate host use and a strong role for intermediate host-switching are discussed relative to schistosomatid diversification.
Collapse
Affiliation(s)
- Erika T. Ebbs
- Department of Biology, Purchase College, The State University of New York, Purchase, NY 10577, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Sean A. Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez 00681-9000, Puerto Rico;
| | - Vasyl V. Tkach
- Grand Forks Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Ramesh Devkota
- Vance Granville Community College, Henderson, NC 27536, USA;
| | - Veronica R. Flores
- Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, San Carlos de Bariloche 8400, Argentina;
| | - Hudson A. Pinto
- Department of Parasitology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| |
Collapse
|
19
|
Uribe JE, González VL, Irisarri I, Kano Y, Herbert DG, Strong EE, Harasewych MG. A phylogenomic backbone for gastropod molluscs. Syst Biol 2022; 71:1271-1280. [PMID: 35766870 DOI: 10.1093/sysbio/syac045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gastropods have survived several mass extinctions during their evolutionary history resulting in extraordinary diversity in morphology, ecology, and developmental modes, which complicate the reconstruction of a robust phylogeny. Currently, gastropods are divided into six subclasses: Caenogastropoda, Heterobranchia, Neomphaliones, Neritimorpha, Patellogastropoda, and Vetigastropoda. Phylogenetic relationships among these taxa historically lack consensus, despite numerous efforts using morphological and molecular information. We generated sequence data for transcriptomes derived from twelve taxa belonging to clades with little or no prior representation in previous studies in order to infer the deeper cladogenetic events within Gastropoda and, for the first time, infer the position of the deep-sea Neomphaliones using a phylogenomic approach. We explored the impact of missing data, homoplasy, and compositional heterogeneity on the inferred phylogenetic hypotheses. We recovered a highly supported backbone for gastropod relationships that is congruent with morphological and mitogenomic evidence, in which Patellogastropoda, true limpets, are the sister lineage to all other gastropods (Orthogastropoda) which are divided into two main clades (i) Vetigastropoda s.l. (including Pleurotomariida + Neomphaliones) and (ii) Neritimorpha + (Caenogastropoda + Heterobranchia). As such, our results support the recognition of five subclasses (or infraclasses) in Gastropoda: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia.
Collapse
Affiliation(s)
- Juan E Uribe
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| | - Vanessa L González
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany.,Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - David G Herbert
- Department of Natural Sciences, National Museum Wales, Cathays Park, Cardiff, CF10 3NP, UK
| | - Ellen E Strong
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| | - M G Harasewych
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| |
Collapse
|
20
|
Reynolds RG, Miller AH, Pasachnik SA, Knapp CR, Welch ME, Colosimo G, Gerber GP, Drawert B, Iverson JB. Phylogenomics and historical biogeography of West Indian Rock Iguanas (genus Cyclura). Mol Phylogenet Evol 2022; 174:107548. [PMID: 35690377 DOI: 10.1016/j.ympev.2022.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The genus Cyclura includes nine extant species and six subspecies of West Indian Rock Iguanas and is one of the most imperiled genera of squamate reptiles globally. An understanding of species diversity, evolutionary relationships, diversification, and historical biogeography in this group is crucial for implementing sound long-term conservation strategies. We collected DNA samples from 1 to 10 individuals per taxon from all Cyclura taxa (n = 70 ingroup individuals), focusing where possible on incorporating individuals from different populations of each species. We also collected 1-2 individuals from each of seven outgroup species of iguanas (Iguana delicatissima; five Ctenosaura species) and Anolis sagrei (n = 12 total outgroup individuals). We used targeted genomic sequence capture to isolate and to sequence 1,872 loci comprising of 687,308 base pairs (bp) from each of the 82 individuals from across the nuclear genome. We extracted mitochondrial reads and assembled and annotated mitogenomes for all Cyclura taxa plus outgroup species. We present well-supported phylogenomic gene tree/species tree analyses for all extant species of Cyclura using ASTRAL-III, SVDQuartets, and StarBEAST2 methods, and discuss the taxonomic, biogeographic, and conservation implications of these data. We find a most recent common ancestor of the genus 9.91 million years ago. The earliest divergence within Cyclura separates C. pinguis from a clade comprising all other Cyclura. Within the latter group, a clade comprising C. carinata from the southern Lucayan Islands and C. ricordii from Hispaniola is the sister taxon to a clade comprising the other Cyclura. Among the other Cyclura, the species C. cornuta and C. stejnegeri (from Hispaniola and Isla Mona) form the sister taxon to a clade of species from Jamaica (C. collei), Cuba and Cayman Islands (C. nubila and C. lewisi), and the eastern (C. rileyi) and western (C. cychlura) Lucayan Islands. Cyclura cychlura and C. rileyi form a clade whose sister taxa are C. nubila and C. lewisi. Cyclura collei is the sister taxon to these four species combined.
Collapse
Affiliation(s)
- R Graham Reynolds
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA.
| | - Aryeh H Miller
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Charles R Knapp
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Giuliano Colosimo
- Department of Biology, University of Rome Tor Vergata, Rome, Latium 00133, Italy
| | - Glenn P Gerber
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Brian Drawert
- Department of Computer Science, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA
| | - John B Iverson
- Dept. of Biology, Earlham College, Richmond, IN 47374, USA
| |
Collapse
|
21
|
Pinheiro D, Santander-Jimenéz S, Ilic A. PhyloMissForest: a random forest framework to construct phylogenetic trees with missing data. BMC Genomics 2022; 23:377. [PMID: 35585494 PMCID: PMC9116704 DOI: 10.1186/s12864-022-08540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the pursuit of a better understanding of biodiversity, evolutionary biologists rely on the study of phylogenetic relationships to illustrate the course of evolution. The relationships among natural organisms, depicted in the shape of phylogenetic trees, not only help to understand evolutionary history but also have a wide range of additional applications in science. One of the most challenging problems that arise when building phylogenetic trees is the presence of missing biological data. More specifically, the possibility of inferring wrong phylogenetic trees increases proportionally to the amount of missing values in the input data. Although there are methods proposed to deal with this issue, their applicability and accuracy is often restricted by different constraints. Results We propose a framework, called PhyloMissForest, to impute missing entries in phylogenetic distance matrices and infer accurate evolutionary relationships. PhyloMissForest is built upon a random forest structure that infers the missing entries of the input data, based on the known parts of it. PhyloMissForest contributes with a robust and configurable framework that incorporates multiple search strategies and machine learning, complemented by phylogenetic techniques, to provide a more accurate inference of lost phylogenetic distances. We evaluate our framework by examining three real-world datasets, two DNA-based sequence alignments and one containing amino acid data, and two additional instances with simulated DNA data. Moreover, we follow a design of experiments methodology to define the hyperparameter values of our algorithm, which is a concise method, preferable in comparison to the well-known exhaustive parameters search. By varying the percentages of missing data from 5% to 60%, we generally outperform the state-of-the-art alternative imputation techniques in the tests conducted on real DNA data. In addition, significant improvements in execution time are observed for the amino acid instance. The results observed on simulated data also denote the attainment of improved imputations when dealing with large percentages of missing data. Conclusions By merging multiple search strategies, machine learning, and phylogenetic techniques, PhyloMissForest provides a highly customizable and robust framework for phylogenetic missing data imputation, with significant topological accuracy and effective speedups over the state of the art. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08540-6).
Collapse
Affiliation(s)
- Diogo Pinheiro
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, 1000-029, Portugal
| | - Sergio Santander-Jimenéz
- Department of Computer and Communications Technologies, University of Extremadura, Campus universitario s/n, Cáceres, 10003, Spain
| | - Aleksandar Ilic
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, 1000-029, Portugal.
| |
Collapse
|
22
|
de Lima Ferreira P, Batista R, Andermann T, Groppo M, Bacon CD, Antonelli A. Target sequence capture of Barnadesioideae (Compositae) demonstrates the utility of low coverage loci in phylogenomic analyses. Mol Phylogenet Evol 2022; 169:107432. [DOI: 10.1016/j.ympev.2022.107432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
|
23
|
Field JT, Abrams AJ, Cartee JC, McTavish EJ. Rapid alignment updating with Extensiphy. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jasper Toscani Field
- Quantitative and Systems Biology Program School of Natural Sciences University of California Merced CA USA
| | - A. Jeanine Abrams
- Division of STD Prevention National Centers for HIV/AIDS Viral Hepatitis, STD, and TB Prevention Atlanta GA USA
| | - John C. Cartee
- Division of STD Prevention National Centers for HIV/AIDS Viral Hepatitis, STD, and TB Prevention Atlanta GA USA
| | - Emily Jane McTavish
- Life and Environmental Sciences Department School of Natural Sciences University of California Merced CA USA
| |
Collapse
|
24
|
Welt RS, Raxworthy CJ. Dispersal, not vicariance, explains the biogeographic origin of iguanas on Madagascar. Mol Phylogenet Evol 2021; 167:107345. [PMID: 34748875 DOI: 10.1016/j.ympev.2021.107345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
Lizards of the clade Iguanidae (sensu lato) are primarily a New World group. Thus, the remarkable presence of an endemic lineage of iguanas (family Opluridae) on the isolated Indian Ocean island of Madagascar has long been considered a biogeographic anomaly. Previous work attributed this disjunct extant distribution to: (1) vicariance at about 140-165 Ma, caused by the breakup of Gondwana and the separation of South America, Africa, and Madagascar (with subsequent extinction of iguanas on Africa, and potentially other Gondwanan landmasses), (2) vicariance at about 80-90 Ma, caused by the sundering of hypothesized land-bridge connections between South America, Antarctica, India, and Madagascar, or (3) long-distance overwater dispersal from South America to Madagascar. Each hypothesis has been supported with molecular divergence dating analyses, and thus the biogeographic origin of the Opluridae is not yet well resolved. Here we utilize genetic sequences of ultraconserved elements for all Iguania families and the majority of Iguanidae (s.l.) genera, and morphological data for extant and fossil taxa (used for divergence dating analyses), to produce the most comprehensive dataset applied to date to test these origin hypotheses. We find strong support for a sister relationship between the Opluridae (Madagascar) and Leiosauridae (South America). Divergence of the Opluridae from Leiosauridae is dated to between the late Cretaceous and mid-Paleogene, at a time when Madagascar was already an island and was isolated from all other Gondwanan landmasses. Consequently, our results support a hypothesis of long-distance overwater dispersal of the Opluridae lineage, either directly from South America to Madagascar or potentially via Antarctica or Africa, leading to this radiation of iguanas in the Indian Ocean.
Collapse
Affiliation(s)
- Rachel S Welt
- Department of Herpetology, American Museum of Natural History, USA.
| | | |
Collapse
|
25
|
Houston DD, Satler JD, Stack TK, Carroll HM, Bevan AM, Moya AL, Alexander KD. A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements. Mol Phylogenet Evol 2021; 166:107320. [PMID: 34626810 DOI: 10.1016/j.ympev.2021.107320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.
Collapse
Affiliation(s)
- Derek D Houston
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Jordan D Satler
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Taylor K Stack
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Hannah M Carroll
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Earth Planetary and Space Sciences, University of California-Los Angeles, CA, USA.
| | - Alissa M Bevan
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Autumn L Moya
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Kevin D Alexander
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| |
Collapse
|
26
|
Yardeni G, Viruel J, Paris M, Hess J, Groot Crego C, de La Harpe M, Rivera N, Barfuss MHJ, Till W, Guzmán-Jacob V, Krömer T, Lexer C, Paun O, Leroy T. Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations. Mol Ecol Resour 2021; 22:927-945. [PMID: 34606683 PMCID: PMC9292372 DOI: 10.1111/1755-0998.13523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Target capture has emerged as an important tool for phylogenetics and population genetics in nonmodel taxa. Whereas developing taxon‐specific capture probes requires sustained efforts, available universal kits may have a lower power to reconstruct relationships at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly developed target capture set for Bromeliaceae, a large and ecologically diverse plant family with highly variable diversification rates. The set targets 1776 coding regions, including genes putatively involved in key innovations, with the aim to empower testing of a wide range of evolutionary hypotheses. We compare the relative power of this taxon‐specific set, Bromeliad1776, to the universal Angiosperms353 kit. The taxon‐specific set results in higher enrichment success across the entire family; however, the overall performance of both kits to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of universal kits for resolving evolutionary relationships. For more detailed phylogenetic or population genetic analyses, for example the exploration of gene tree concordance, nucleotide diversity or population structure, the taxon‐specific capture set presents clear benefits. We discuss the potential lessons that this comparative study provides for future phylogenetic and population genetic investigations, in particular for the study of evolutionary radiations.
Collapse
Affiliation(s)
- Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Margot Paris
- Unit of Ecology & Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Department of Soil Ecology, Helmholtz Centre for Environmental Research, UFZ, Halle (Saale), Germany
| | - Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Norma Rivera
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Valeria Guzmán-Jacob
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
| | - Thorsten Krömer
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Cruaud A, Delvare G, Nidelet S, Sauné L, Ratnasingham S, Chartois M, Blaimer BB, Gates M, Brady SG, Faure S, van Noort S, Rossi JP, Rasplus JY. Ultra-Conserved Elements and morphology reciprocally illuminate conflicting phylogenetic hypotheses in Chalcididae (Hymenoptera, Chalcidoidea). Cladistics 2021; 37:1-35. [PMID: 34478176 DOI: 10.1111/cla.12416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2020] [Indexed: 11/30/2022] Open
Abstract
Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra-Conserved Elements (UCEs) with supermatrix (RAxML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum-likelihood approaches, an artifactual mid-point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gérard Delvare
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,UMR CBGP, CIRAD, F-34398, Montpellier, France
| | - Sabine Nidelet
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Marguerite Chartois
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michael Gates
- USDA, ARS, SEL, c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Seán G Brady
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Sariana Faure
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Simon van Noort
- Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, PO Box 61, Cape Town, 8000, South Africa.,Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Jean-Pierre Rossi
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jean-Yves Rasplus
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
28
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
29
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
30
|
Silva GSC, Melo BF, Roxo FF, Ochoa LE, Shibatta OA, Sabaj MH, Oliveira C. Phylogenomics of the bumblebee catfishes (Siluriformes: Pseudopimelodidae) using ultraconserved elements. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriel S. C. Silva
- Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Botucatu Brazil
| | - Bruno F. Melo
- Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Botucatu Brazil
| | - Fábio F. Roxo
- Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Botucatu Brazil
| | - Luz E. Ochoa
- Museu de Zoologia Universidade de São Paulo (USP) São Paulo Brazil
| | - Oscar A. Shibatta
- Museu de Zoologia Centro de Ciências Biológicas Universidade Estadual de Londrina (UEL) Londrina Brazil
| | - Mark H. Sabaj
- Department of Ichthyology Academy of Natural Sciences of Drexel University Philadelphia PA USA
| | - Claudio Oliveira
- Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Botucatu Brazil
| |
Collapse
|
31
|
Smith BT, Mauck WM, Benz BW, Andersen MJ. Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets. Genome Biol Evol 2021; 12:1131-1147. [PMID: 32470111 PMCID: PMC7486955 DOI: 10.1093/gbe/evaa113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/21/2023] Open
Abstract
The resolution of the Tree of Life has accelerated with advances in DNA sequencing technology. To achieve dense taxon sampling, it is often necessary to obtain DNA from historical museum specimens to supplement modern genetic samples. However, DNA from historical material is generally degraded, which presents various challenges. In this study, we evaluated how the coverage at variant sites and missing data among historical and modern samples impacts phylogenomic inference. We explored these patterns in the brush-tongued parrots (lories and lorikeets) of Australasia by sampling ultraconserved elements in 105 taxa. Trees estimated with low coverage characters had several clades where relationships appeared to be influenced by whether the sample came from historical or modern specimens, which were not observed when more stringent filtering was applied. To assess if the topologies were affected by missing data, we performed an outlier analysis of sites and loci, and a data reduction approach where we excluded sites based on data completeness. Depending on the outlier test, 0.15% of total sites or 38% of loci were driving the topological differences among trees, and at these sites, historical samples had 10.9× more missing data than modern ones. In contrast, 70% data completeness was necessary to avoid spurious relationships. Predictive modeling found that outlier analysis scores were correlated with parsimony informative sites in the clades whose topologies changed the most by filtering. After accounting for biased loci and understanding the stability of relationships, we inferred a more robust phylogenetic hypothesis for lories and lorikeets.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, New York
| | - William M Mauck
- Department of Ornithology, American Museum of Natural History, New York, New York.,New York Genome Center, New York, New York
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico
| |
Collapse
|
32
|
Shah T, Schneider JV, Zizka G, Maurin O, Baker W, Forest F, Brewer GE, Savolainen V, Darbyshire I, Larridon I. Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. AMERICAN JOURNAL OF BOTANY 2021; 108:1201-1216. [PMID: 34180046 DOI: 10.1002/ajb2.1682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.
Collapse
Affiliation(s)
- Toral Shah
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - William Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Grace E Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | | | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L., Ledeganckstraat 35, Gent, 9000, Belgium
| |
Collapse
|
33
|
Phylogenomic reconstruction addressing the Peltigeralean backbone (Lecanoromycetes, Ascomycota). FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00476-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Barrientos LS, Streicher JW, Miller EC, Pie MR, Wiens JJ, Crawford AJ. Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1933249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucas S. Barrientos
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Jeffrey W. Streicher
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- Department of Life Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, England, UK
| | - Elizabeth C. Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, 98195-5020, WA, USA
| | - Marcio R. Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| |
Collapse
|
35
|
Calamari ZT. Total Evidence Phylogenetic Analysis Supports New Morphological Synapomorphies for Bovidae (Mammalia, Artiodactyla). AMERICAN MUSEUM NOVITATES 2021. [DOI: 10.1206/3970.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
|
37
|
Toussaint EFA, Gauthier J, Bilat J, Gillett CPDT, Gough HM, Lundkvist H, Blanc M, Muñoz-Ramírez CP, Alvarez N. HyRAD-X Exome Capture Museomics Unravels Giant Ground Beetle Evolution. Genome Biol Evol 2021; 13:6275686. [PMID: 33988685 PMCID: PMC8480185 DOI: 10.1093/gbe/evab112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in phylogenomics contribute toward resolving long-standing evolutionary questions. Notwithstanding, genetic diversity contained within more than a billion biological specimens deposited in natural history museums remains recalcitrant to analysis owing to challenges posed by its intrinsically degraded nature. Yet that tantalizing resource could be critical in overcoming taxon sampling constraints hindering our ability to address major evolutionary questions. We addressed this impediment by developing phyloHyRAD, a new bioinformatic pipeline enabling locus recovery at a broad evolutionary scale from HyRAD-X exome capture of museum specimens of low DNA integrity using a benchtop RAD-derived exome-complexity-reduction probe set developed from high DNA integrity specimens. Our new pipeline can also successfully align raw RNAseq transcriptomic and ultraconserved element reads with the RAD-derived probe catalog. Using this method, we generated a robust timetree for Carabinae beetles, the lack of which had precluded study of macroevolutionary trends pertaining to their biogeography and wing-morphology evolution. We successfully recovered up to 2,945 loci with a mean of 1,788 loci across the exome of specimens of varying age. Coverage was not significantly linked to specimen age, demonstrating the wide exploitability of museum specimens. We also recovered fragmentary mitogenomes compatible with Sanger-sequenced mtDNA. Our phylogenomic timetree revealed a Lower Cretaceous origin for crown group Carabinae, with the extinct Aplothorax Waterhouse, 1841 nested within the genus Calosoma Weber, 1801 demonstrating the junior synonymy of Aplothorax syn. nov., resulting in the new combination Calosoma burchellii (Waterhouse, 1841) comb. nov. This study compellingly illustrates that HyRAD-X and phyloHyRAD efficiently provide genomic-level data sets informative at deep evolutionary scales.
Collapse
Affiliation(s)
| | | | - Julia Bilat
- Natural History Museum of Geneva, Switzerland
| | - Conrad P D T Gillett
- University of Hawai'i Insect Museum, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Harlan M Gough
- Florida Natural History Museum, University of Florida, Gainesville, Florida, USA
| | | | | | - Carlos P Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Chile
| | - Nadir Alvarez
- Natural History Museum of Geneva, Switzerland.,Department of Genetics and Evolution, University of Geneva, Switzerland
| |
Collapse
|
38
|
Silva GSC, Roxo FF, Melo BF, Ochoa LE, Bockmann FA, Sabaj MH, Jerep FC, Foresti F, Benine RC, Oliveira C. Evolutionary history of Heptapteridae catfishes using ultraconserved elements (Teleostei, Siluriformes). ZOOL SCR 2021. [DOI: 10.1111/zsc.12493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Fábio F. Roxo
- Instituto de Biociências Universidade Estadual Paulista Botucatu Brazil
| | - Bruno F. Melo
- Instituto de Biociências Universidade Estadual Paulista Botucatu Brazil
| | - Luz E. Ochoa
- Museu de Zoologia Universidade de São Paulo São Paulo Brazil
| | - Flávio A. Bockmann
- Departamento de Biologia e Programa de Pós‐Graduação em Biologia Comparada Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Mark H. Sabaj
- Department of Ichthyology Academy of Natural Sciences of Drexel University Philadelphia PA USA
| | - Fernando C. Jerep
- Museu de Zoologia Centro de Ciências Biológicas Universidade Estadual de Londrina Londrina Brazil
| | - Fausto Foresti
- Instituto de Biociências Universidade Estadual Paulista Botucatu Brazil
| | - Ricardo C. Benine
- Instituto de Biociências Universidade Estadual Paulista Botucatu Brazil
| | - Claudio Oliveira
- Instituto de Biociências Universidade Estadual Paulista Botucatu Brazil
| |
Collapse
|
39
|
Kulkarni S, Kallal RJ, Wood H, Dimitrov D, Giribet G, Hormiga G. Interrogating Genomic-Scale Data to Resolve Recalcitrant Nodes in the Spider Tree of Life. Mol Biol Evol 2021; 38:891-903. [PMID: 32986823 PMCID: PMC7947752 DOI: 10.1093/molbev/msaa251] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genome-scale data sets are converging on robust, stable phylogenetic hypotheses for many lineages; however, some nodes have shown disagreement across classes of data. We use spiders (Araneae) as a system to identify the causes of incongruence in phylogenetic signal between three classes of data: exons (as in phylotranscriptomics), noncoding regions (included in ultraconserved elements [UCE] analyses), and a combination of both (as in UCE analyses). Gene orthologs, coded as amino acids and nucleotides (with and without third codon positions), were generated by querying published transcriptomes for UCEs, recovering 1,931 UCE loci (codingUCEs). We expected that congeners represented in the codingUCE and UCEs data would form clades in the presence of phylogenetic signal. Noncoding regions derived from UCE sequences were recovered to test the stability of relationships. Phylogenetic relationships resulting from all analyses were largely congruent. All nucleotide data sets from transcriptomes, UCEs, or a combination of both recovered similar topologies in contrast with results from transcriptomes analyzed as amino acids. Most relationships inferred from low-occupancy data sets, containing several hundreds of loci, were congruent across Araneae, as opposed to high occupancy data matrices with fewer loci, which showed more variation. Furthermore, we found that low-occupancy data sets analyzed as nucleotides (as is typical of UCE data sets) can result in more congruent relationships than high occupancy data sets analyzed as amino acids (as in phylotranscriptomics). Thus, omitting data, through amino acid translation or via retention of only high occupancy loci, may have a deleterious effect in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, Washington, DC
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Robert J Kallal
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Hannah Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC
| |
Collapse
|
40
|
Percequillo AR, Prado JRD, Abreu EF, Dalapicolla J, Pavan AC, de Almeida Chiquito E, Brennand P, Steppan SJ, Lemmon AR, Lemmon EM, Wilkinson M. Tempo and mode of evolution of oryzomyine rodents (Rodentia, Cricetidae, Sigmodontinae): A phylogenomic approach. Mol Phylogenet Evol 2021; 159:107120. [PMID: 33610650 DOI: 10.1016/j.ympev.2021.107120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
The tribe Oryzomyini is an impressive group of rodents, comprising 30 extant genera and an estimated 147 species. Recent remarkable advances in the understanding of the diversity, taxonomy and systematics of the tribe have mostly derived from analyses of single or few genetic markers. However, the evolutionary history and biogeography of Oryzomyini, its origin and diversification across the Neotropics, remain unrevealed. Here we use a multi-locus dataset (over 400 loci) obtained through anchored phylogenomics to provide a genome-wide phylogenetic hypothesis for Oryzomyini and to investigate the tempo and mode of its evolution. Species tree and supermatrix analyses produced topologies with strong support for most branches, with all genera confirmed as monophyletic, a result that previous studies failed to obtain. Our analyses also corroborated the monophyly and phylogenetic relationship of three main clades of Oryzomyini (B, C and D). The origin of the tribe is estimated to be in the Miocene (8.93-5.38 million years ago). The cladogenetic events leading to the four main clades occurred during the late Miocene and early Pliocene and most speciation events in the Pleistocene. Geographic range estimates suggested an east of Andes origin for the ancestor of oryzomyines, most likely in the Boreal Brazilian region, which includes the north bank of Rio Amazonas and the Guiana Shield. Oryzomyini rodents are an autochthonous South America radiation, that colonized areas and dominions of this continent mainly by dispersal events. The evolutionary history of the tribe is deeply associated with the Andean cordillera and the landscape history of Amazon basin.
Collapse
Affiliation(s)
- Alexandre Reis Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil; Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Joyce Rodrigues do Prado
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Edson Fiedler Abreu
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Jeronymo Dalapicolla
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil; Instituto Tecnológico Vale, Desenvolvimento Sustentável, 66055-090 Belém, PA, Brazil.
| | - Ana Carolina Pavan
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Elisandra de Almeida Chiquito
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil; Laboratório de Mastozoologia e Biogeografia, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil.
| | - Pamella Brennand
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
| | - Scott J Steppan
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Alan R Lemmon
- Department of Scientific Computing, 400 Dirac Science Library, Florida State University, Tallahassee, FL 32306, USA.
| | - Emily Moriarty Lemmon
- Department of Scientific Computing, 400 Dirac Science Library, Florida State University, Tallahassee, FL 32306, USA.
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| |
Collapse
|
41
|
Psonis N, Antoniou A, Karameta E, Darriba D, Stamatakis A, Lymberakis P, Poulakakis N. The wall lizards of the Balkan peninsula: Tackling questions at the interface of phylogenomics and population genomics. Mol Phylogenet Evol 2021; 159:107121. [PMID: 33609707 DOI: 10.1016/j.ympev.2021.107121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Wall lizards of the genus Podarcis (Sauria, Lacertidae) are the predominant reptile group in southern Europe, including 24 recognized species. Mitochondrial DNA data have shown that, with the exception of P. muralis, the Podarcis species distributed in the Balkan peninsula form a species group that is further sub-divided into two subgroups: the one of "P. tauricus" consisting of P. tauricus, P. milensis, P. gaigeae, and P. melisellensis, and the other of "P. erhardii" comprising P. erhardii, P. levendis, P. cretensis, and P. peloponnesiacus. In an attempt to explore the Balkan Podarcis phylogenomic relationships, assess the levels of genetic structure and to re-evaluate the number of extant species, we employed phylogenomic and admixture approaches on ddRADseq (double digested Restriction site Associated DNA sequencing) genomic data. With this efficient Next Generation Sequencing approach, we were able to obtain a large number of genomic loci randomly distributed throughout the genome and use them to resolve the previously obscure phylogenetic relationships among the different Podarcis species distributed in the Balkans. The obtained phylogenomic relationships support the monophyly of both aforementioned subgroups and revealed several divergent lineages within each subgroup, stressing the need for taxonomic re-evaluation of Podarcis' species in Balkans. The phylogenomic trees and the species delimitation analyses confirmed all recently recognized species (P. levendis, P. cretensis, and P. ionicus) and showed the presence of at least two more species, one in P. erhardii and the other in P. peloponnesiacus.
Collapse
Affiliation(s)
- Nikolaos Psonis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece.
| | - Aglaia Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, Irakleio, P.O. Box 2214, 71003 Crete, Greece
| | - Emmanouela Karameta
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece
| | - Diego Darriba
- Universidade da Coruña, CITIC, Computer Architecture Group, Campus de Elviña, 15071 A Coruña, Spain
| | - Alexandros Stamatakis
- The Exelixis Lab, Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Postfach 6980, 76128 Karlsruhe, Germany
| | - Petros Lymberakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece
| | - Nikos Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece
| |
Collapse
|
42
|
Neumann JS, Desalle R, Narechania A, Schierwater B, Tessler M. Morphological Characters Can Strongly Influence Early Animal Relationships Inferred from Phylogenomic Data Sets. Syst Biol 2021; 70:360-375. [PMID: 32462193 PMCID: PMC7875439 DOI: 10.1093/sysbio/syaa038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom: the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets ($\sim $45,000-400,000 characters in size with $\sim $15-100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data sets ($\sim $15-275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their "equivalent" under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2-10$\times $ in both likelihood and parsimony can in some cases "flip" which phylum is inferred to be the SOM. This typically results in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater taxon sampling improves phylogenetic stability, with some of the larger molecular data sets ($>$200,000 characters and up to $\sim $100 taxa) showing node stability even with $\geqq100\times $ upweighting of morphological data. Accordingly, our analyses have three strong messages. 1) The assumption that genomic data will automatically "swamp out" morphological data is not always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon sampling is increased. 3) The patterns of "flipping points" (i.e., the weighting of morphological data it takes to change the inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology; Phylogenomics; Weighting.].
Collapse
Affiliation(s)
- Johannes S Neumann
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Rob Desalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Bernd Schierwater
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- ITZ, Division of Ecology and Evolution, Tierärztliche Hochschule Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Michael Tessler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
43
|
Schneider JV, Paule J, Jungcurt T, Cardoso D, Amorim AM, Berberich T, Zizka G. Resolving Recalcitrant Clades in the Pantropical Ochnaceae: Insights From Comparative Phylogenomics of Plastome and Nuclear Genomic Data Derived From Targeted Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:638650. [PMID: 33613613 PMCID: PMC7890083 DOI: 10.3389/fpls.2021.638650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 05/13/2023]
Abstract
Plastid DNA sequence data have been traditionally widely used in plant phylogenetics because of the high copy number of plastids, their uniparental inheritance, and the blend of coding and non-coding regions with divergent substitution rates that allow the reconstruction of phylogenetic relationships at different taxonomic ranks. In the present study, we evaluate the utility of the plastome for the reconstruction of phylogenetic relationships in the pantropical plant family Ochnaceae (Malpighiales). We used the off-target sequence read fraction of a targeted sequencing study (targeting nuclear loci only) to recover more than 100 kb of the plastid genome from the majority of the more than 200 species of Ochnaceae and all but two genera using de novo and reference-based assembly strategies. Most of the recalcitrant nodes in the family's backbone were resolved by our plastome-based phylogenetic inference, corroborating the most recent classification system of Ochnaceae and findings from a phylogenomic study based on nuclear loci. Nonetheless, the phylogenetic relationships within the major clades of tribe Ochnineae, which comprise about two thirds of the family's species diversity, received mostly low support. Generally, the phylogenetic resolution was lowest at the infrageneric level. Overall there was little phylogenetic conflict compared to a recent analysis of nuclear loci. Effects of taxon sampling were invoked as the most likely reason for some of the few well-supported discords. Our study demonstrates the utility of the off-target fraction of a target enrichment study for assembling near-complete plastid genomes for a large proportion of samples.
Collapse
Affiliation(s)
- Julio V. Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Entomology III, Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Tanja Jungcurt
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - André Márcio Amorim
- Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
- Herbário André Maurício Vieira de Carvalho, CEPEC, CEPLAC, Itabuna, Brazil
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Lab-Center, Frankfurt am Main, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Georg Zizka, ;
| |
Collapse
|
44
|
Legried B, Molloy EK, Warnow T, Roch S. Polynomial-Time Statistical Estimation of Species Trees Under Gene Duplication and Loss. J Comput Biol 2020; 28:452-468. [DOI: 10.1089/cmb.2020.0424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Brandon Legried
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin K. Molloy
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, USA
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sébastien Roch
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Brown RM. Target-capture phylogenomics provide insights on gene and species tree discordances in Old World treefrogs (Anura: Rhacophoridae). Proc Biol Sci 2020; 287:20202102. [PMID: 33290680 PMCID: PMC7739936 DOI: 10.1098/rspb.2020.2102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 11/12/2022] Open
Abstract
Genome-scale data have greatly facilitated the resolution of recalcitrant nodes that Sanger-based datasets have been unable to resolve. However, phylogenomic studies continue to use traditional methods such as bootstrapping to estimate branch support; and high bootstrap values are still interpreted as providing strong support for the correct topology. Furthermore, relatively little attention has been given to assessing discordances between gene and species trees, and the underlying processes that produce phylogenetic conflict. We generated novel genomic datasets to characterize and determine the causes of discordance in Old World treefrogs (Family: Rhacophoridae)-a group that is fraught with conflicting and poorly supported topologies among major clades. Additionally, a suite of data filtering strategies and analytical methods were applied to assess their impact on phylogenetic inference. We showed that incomplete lineage sorting was detected at all nodes that exhibited high levels of discordance. Those nodes were also associated with extremely short internal branches. We also clearly demonstrate that bootstrap values do not reflect uncertainty or confidence for the correct topology and, hence, should not be used as a measure of branch support in phylogenomic datasets. Overall, we showed that phylogenetic discordances in Old World treefrogs resulted from incomplete lineage sorting and that species tree inference can be improved using a multi-faceted, total-evidence approach, which uses the most amount of data and considers results from different analytical methods and datasets.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Carl R. Hutter
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L. Wood
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - L. Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Rafe M. Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
46
|
Phylogenomics of the Neotropical fish family Serrasalmidae with a novel intrafamilial classification (Teleostei: Characiformes). Mol Phylogenet Evol 2020; 153:106945. [DOI: 10.1016/j.ympev.2020.106945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
|
47
|
Scarpetta SG. Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian. Sci Rep 2020; 10:15734. [PMID: 32978416 PMCID: PMC7519069 DOI: 10.1038/s41598-020-72509-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
Fossil identifications made in a phylogenetic framework are beholden to specific tree hypotheses. Without phylogenetic consensus, the systematic provenance of any given fossil can be volatile. Paleobiogeographic and divergence time hypotheses are contingent on the accurate systematic placement of fossils. Thus, fossil diagnoses should consider multiple topologies when phylogenetic resolution or clear apomorphies are lacking. However, such analyses are infrequently performed. Pleurodonta (Squamata: Iguania) is an ancient and frequently-studied lizard clade for which phylogenetic resolution is notoriously elusive. I describe a skull fossil of a new pleurodontan lizard taxon from the Eocene deposits of the Willwood Formation, Wyoming, and use the new taxon as a case-study to explore the effects of phylogenetic uncertainty on fossil identification. The relationships of the new taxon differ considerably among analyses, and resulting interpretations are correspondingly disparate. These results illustrate generalizable and severe issues with fossil interpretations made without consideration of alternative phylogenetic hypotheses.
Collapse
Affiliation(s)
- Simon G Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
48
|
Scarpetta SG. Combined-evidence analyses of ultraconserved elements and morphological data: an empirical example in iguanian lizards. Biol Lett 2020; 16:20200356. [PMID: 32842896 PMCID: PMC7480163 DOI: 10.1098/rsbl.2020.0356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
Genomic datasets generated by next-generation sequencing are increasingly prevalent in phylogenetics, but morphological data are required to phylogenetically place fossils, corroborate molecular hypotheses and date phylogenies. Combined-evidence analyses provide an integrative assessment of tree topology. However, no attempt has been made to simultaneously analyse next-generation genomic datasets and morphological data, and the future of morphology in the context of genomic data is uncertain. I conducted combined-evidence analyses that include genomic and morphological datasets, specifically, with ultraconserved elements and two morphological matrices. In unweighted maximum-likelihood and Bayesian combined-evidence analyses, morphological signal was dwarfed by the ultraconserved elements, and some node support values were reduced relative to ultraconserved element-only analyses. Increasing the weight of morphological characters allowed those data to influence the tree, but weighting subjectivity should be considered in future analyses. More attempts should be made to simultaneously analyse genomic and morphological datasets.
Collapse
Affiliation(s)
- Simon G. Scarpetta
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
49
|
de Abreu-Jr EF, Pavan SE, Tsuchiya MTN, Wilson DE, Percequillo AR, Maldonado JE. Museomics of tree squirrels: a dense taxon sampling of mitogenomes reveals hidden diversity, phenotypic convergence, and the need of a taxonomic overhaul. BMC Evol Biol 2020; 20:77. [PMID: 32590930 PMCID: PMC7320592 DOI: 10.1186/s12862-020-01639-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tree squirrels (Sciuridae, Sciurini), in particular the highly diverse Neotropical lineages, are amongst the most rapidly diversifying branches of the mammal tree of life but also some of the least known. Negligence of this group by systematists is likely a product of the difficulties in assessing morphological informative traits and of the scarcity or unavailability of fresh tissue samples for DNA sequencing. The highly discrepant taxonomic arrangements are a consequence of the lack of phylogenies and the exclusive phenotypic-based classifications, which can be misleading in a group with conservative morphology. Here we used high-throughput sequencing and an unprecedented sampling of museum specimens to provide the first comprehensive phylogeny of tree squirrels, with a special emphasis on Neotropical taxa. RESULTS We obtained complete or partial mitochondrial genomes from 232 historical and modern samples, representing 40 of the 43 currently recognized species of Sciurini. Our phylogenetic analyses-performed with datasets differing on levels of missing data and taxa under distinct analytical methods-strongly support the monophyly of Sciurini and consistently recovered 12 major clades within the tribe. We found evidence that the diversity of Neotropical tree squirrels is underestimated, with at least six lineages that represent taxa to be named or revalidated. Ancestral state reconstructions of number of upper premolars and number of mammae indicated that alternative conditions of both characters must have evolved multiple times throughout the evolutionary history of tree squirrels. CONCLUSIONS Complete mitogenomes were obtained from museum specimens as old as 120 years, reinforcing the potential of historical samples for phylogenetic inferences of elusive lineages of the tree of life. None of the taxonomic arrangements ever proposed for tree squirrels fully corresponded to our phylogenetic reconstruction, with only a few of the currently recognized genera recovered as monophyletic. By investigating the evolution of two morphological traits widely employed in the taxonomy of the group, we revealed that their homoplastic nature can help explain the incongruence between phylogenetic results and the classification schemes presented so far. Based on our phylogenetic results we suggest a tentative supraspecific taxonomic arrangement for Sciurini, employing 13 generic names used in previous taxonomic classifications.
Collapse
Affiliation(s)
- Edson Fiedler de Abreu-Jr
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418900, Brazil.
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA.
| | - Silvia E Pavan
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA.
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, PA, 66077530, Brazil.
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, 20560, USA
| | - Don E Wilson
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Alexandre R Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418900, Brazil
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA
- Department of Biology and Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
50
|
Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley, Western Australia. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|