1
|
Bi X, Sun L, Yeo MTY, Seaw KM, Leow MKS. Integration of metabolomics and machine learning for precise management and prevention of cardiometabolic risk in Asians. Clin Nutr 2025; 50:146-153. [PMID: 40414052 DOI: 10.1016/j.clnu.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Rapid changes in dietary patterns have led to a rise in cardiometabolic diseases (CMDs) worldwide, highlighting the urgent need for effective dietary strategies to address the health issues. Compared to Caucasians, Asians are more susceptible to CMDs. Understanding the complex factors driving this increased susceptibility is essential for developing targeted interventions and preventive measures for Asian populations. Metabolomics plays a key role in identifying specific metabolic markers and pathways associated with CMDs, providing insights into disease mechanisms and helping to create individualized risk profiles. However, metabolomics faces several challenges, including difficulties in interpreting results across diverse ethnic groups, limitations in study design, variability in analytical platforms, and inconsistencies in data processing methods. Overcoming these challenges requires the adoption of advanced technologies, standardized approaches, and integration of multi-omics data to maximize the utility of metabolomics in clinical settings. As the volume and complexity of metabolomic data continue to increase, machine learning (ML) algorithms have become essential for effective data integration, interpretation, and knowledge extraction. Advanced ML techniques, such as deep learning and network analysis, can reveal hidden patterns, relationships, and metabolic pathways within large datasets, leading to deeper insights into biological systems and disease processes. By combining metabolomics and ML, we can facilitate early detection, enable personalized interventions, and support the development of targeted nutritional strategies, ultimately improving therapeutic outcomes and reducing the socioeconomic burden of CMDs in this region.
Collapse
Affiliation(s)
- Xinyan Bi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore.
| | - Lijuan Sun
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Michelle Ting Yun Yeo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Ker Ming Seaw
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Melvin Khee Shing Leow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore; Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Endocrinology, Tan Tock Seng Hospital, Singapore; Human Potential Translational Research Programme (HPTRP), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Cardiovascular and Metabolic Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
3
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Qin L, Liu R, Jia Z, Xu W, Wang L, Tian H, Lian X, Li W, Qi Y, He H, Wang Z. Multiple low-dose radiation ameliorates type-2 diabetes mellitus via gut microbiota modulation to activate TLR4/MyD88/NF-κB pathway. BMC Endocr Disord 2025; 25:32. [PMID: 39920713 PMCID: PMC11804101 DOI: 10.1186/s12902-025-01861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is the fastest-growing metabolic disease in the world. The gut microbiota is linked to T2DM. Recent studies have showed that the metabolism of gut microbiota can trigger T2DM. Low dose radiation (LDR) has been proved to activate various protective bioeffects on diabetes. However, the underlying mechanisms remain unclear. METHODS In this study, T2DM model was established using high fat diet combined with streptozocin (STZ) injection in C57BL/6 mice, and then exposed to multiple 75 mGy LDR every other day for one month. The changes of blood glucose levels, body weight, and the damage of pancreas were measured. In addition, 16 S rDNA amplicon sequencing was used to detect gut microbiota alteration. Metabolic profiling was carried out using the liquid mass spectrometry system, followed by the combinative analysis of gut microbiota alteration. Furthermore, the inflammatory factors and related pathways were detected. RESULTS We found that LDR attenuate blood glucose levels and the weights of body in T2DM mice, and reduce pancreas impairment. In addition, in the gut, LDR regulated the relative abundance of Bacilli, Desulfobacterota, Verrucomicrobiota, and Proteobacteria. The non-target metabolomics analysis found that LDR significantly improve the metabolic abnormalities in T2DM, which is closely related to the gut microbiota abundance. Furthermore, the inflammatory effects activated by TLR4/MyD88/NF-κB pathways in T2DM were ameliorated by LDR. CONCLUSION These results suggest that LDR may exert a beneficial role in T2DM by modulating gut microbiota and metabolites, especially in TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Lijing Qin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Rongrong Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhen Jia
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Li Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Hongyuan Tian
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinru Lian
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Wen Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yali Qi
- Jilin Medical University, Jilin, Jilin, 132013, People's Republic of China
| | - Huan He
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
5
|
Pan B, Pan Y, Huang YS, Yi M, Hu Y, Lian X, Shi HZ, Wang M, Xiang G, Yang WY, Liu Z, Xia F. Efficacy and safety of gut microbiome-targeted treatment in patients with depression: a systematic review and meta-analysis. BMC Psychiatry 2025; 25:64. [PMID: 39838303 PMCID: PMC11753086 DOI: 10.1186/s12888-024-06438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The study aimed to comprehensively analyze and establish a framework for evaluating the efficacy of microbiome-targeted treatment (MTT) for depression. METHODS We searched PubMed, Embase, Cochrane Library, Web of Science, and the Chinese National Knowledge Infrastructure database for randomized controlled trials (RCTs) on MTT in treating depression until October 19, 2023. A meta-analysis was conducted to evaluate the efficacy and safety of MTT. Comprehensive subgroup analyses were undertaken to explore factors influencing MTT's efficacy in treating depression. This study was registered with PROSPERO (CRD42023483649). RESULTS The study selection process identified 51,570 studies, of which 34 met the inclusion criteria. The overall pooled estimates showed that MTT significantly improved depression symptoms (SMD -0.26, 95% CI [-0.32, -0.19], I2 = 54%) with acceptable safety. Subgroup analyses by geography showed that effectiveness was demonstrated in Asia (SMD -0.46, 95% CI [-0.56, -0.36], I2 = 36%), while no evidence of effectiveness was found in Europe (SMD -0.07, 95% CI [-0.19, 0.05], I2 = 55%), America (SMD -0.33, 95% CI [-0.67, 0.02], I2 = 60%), and Oceania (SMD 0.00, 95% CI [-0.18, 0.18], I2 = 0%). Besides, the efficacy was shown in depressed patients without comorbidities (SMD -0.31, 95% CI [-0.40, -0.22], I2 = 0%), whereas effectiveness was poor in those with digestive disorders, such as irritable bowel syndrome (SMD -0.37, 95% CI [-0.89, 0.16], I2 = 74%), chronic diarrhea (SMD -0.34, 95% CI [-0.73, 0.05]), and chronic constipation (SMD -0.23, 95% CI [-0.57, 0.11], I2 = 0%). In perinatal depressed patients, MTT was not effective (SMD 0.16, 95% CI [0.01, 0.31], I2 = 0%). It was found that < 8 weeks (SMD -0.33, 95% CI [-0.45, -0.22], I2 = 0%) and 8-12 weeks (SMD -0.34, 95% CI [-0.44, -0.23], I2 = 57%) MTT were effective, while > 12 weeks (SMD 0.02, 95% CI [-0.12, 0.17], I2 = 68%) MTT was ineffective. CONCLUSIONS Despite the overall effectiveness of MTT in treating depression and its acceptable safety profile, caution is warranted in drawing this conclusion due to limitations posed by the small sample size of included studies and heterogeneity. The efficacy of MTT for depression exhibits variation influenced by geography, patient comorbidities, and duration of administration.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Yiming Pan
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Yu-Song Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd 100, Shanghai, 200080, China
| | - Meng Yi
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
| | - Yuwei Hu
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Xiaoyu Lian
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Hui-Zhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Mingwei Wang
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Guifen Xiang
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd 100, Shanghai, 200080, China.
| | - Zhong Liu
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China.
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Fangfang Xia
- Department of Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
6
|
Moe KT, Tan KSW. Mechanistic Insights on Microbiota-Mediated Development and Progression of Esophageal Cancer. Cancers (Basel) 2024; 16:3305. [PMID: 39409925 PMCID: PMC11475040 DOI: 10.3390/cancers16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide, and its two major types, esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), present a severe global public health problem with an increasing incidence and mortality. Established risk factors include smoking, alcohol consumption, and dietary habits, but recent research has highlighted the substantial role of oral microbiota in EC pathogenesis. This review explores the intricate relationship between the microbiome and esophageal carcinogenesis, focusing on the following eight significant mechanisms: chronic inflammation, microbial dysbiosis, production of carcinogenic metabolites, direct interaction with epithelial cells, epigenetic modifications, interaction with gastroesophageal reflux disease (GERD), metabolic changes, and angiogenesis. Certain harmful bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are specifically implicated in sustaining irritation and tumor progression through pathways including NF-κB and NLRP3 inflammasome. Additionally, the review explores how microbial byproducts, including short-chain fatty acids (SCFAs) and reactive oxygen species (ROS), contribute to DNA harm and disease advancement. Furthermore, the impact of reflux on microbiota composition and its role in esophageal carcinogenesis is evaluated. By combining epidemiological data with mechanistic understanding, this review underscores the potential to target the microbiota-immune system interplay for novel therapeutic and diagnostic strategies to prevent and treat esophageal cancer.
Collapse
Affiliation(s)
- Kyaw Thu Moe
- Biomedical Sciences, Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Health Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive, Singapore 117545, Singapore
| |
Collapse
|
7
|
Han AL, Ryu MS, Yang HJ, Jeong DY, Choi KH. Evaluation of Menopausal Syndrome Relief and Anti-Obesity Efficacy of the Korean Fermented Food Doenjang: A Randomized, Double-Blind Clinical Trial. Nutrients 2024; 16:1194. [PMID: 38674884 PMCID: PMC11054397 DOI: 10.3390/nu16081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Foods that help improve menopausal syndrome are being studied worldwide. Doenjang is a traditional Korean fermented soybean food with potential health benefits for menopausal women. In this clinical trial using Doenjang, we aimed to compare the effectiveness of traditional Doenjang and commercial Doenjang in menopausal women. Furthermore, we compared whether Doenjang has a better effect if the number of beneficial microbes is higher. The analyses included the following groups: traditional Doenjang containing either a high dose (HDC; n = 18) or low dose (LDC; n = 18) of beneficial microbes and commercial Doenjang (CD; n = 20). The Kupperman index and hematological changes were examined before and after the use of Doenjang pills. The effects of Doenjang on obesity and body composition were studied before and after ingestion. Lastly, the microorganisms and short-chain fatty acid changes in the stool were compared. The Kupperman index decreased after Doenjang consumption in all three groups, with the greatest decrease in the LDC group. Only the groups that took traditional Doenjang pills exhibited reduced LDL cholesterol. No changes in obesity and inflammation-related indicators were observed. The number of Firmicutes, associated with obesity, decreased in the CD group but the numbers of Bacteroidetes increased in the HDC and CD groups. Thus, traditional Doenjang is more effective in alleviating menopausal syndrome than commercial Doenjang. Further research on the anti-obesity effect or changes in microbiomes and short-chain fatty acids in feces is needed.
Collapse
Affiliation(s)
- A Lum Han
- Department of Family Medicine, Wonkwang University Hospital, Iksan 54538, Republic of Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea; (M.S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea; (M.S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea; (M.S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Keum Ha Choi
- Departments of Pathology, Wonkwang University Hospital, Iksan 54538, Republic of Korea;
| |
Collapse
|
8
|
Hashimoto Y, Hamaguchi M, Fukui M. Fermented soybean foods and diabetes. J Diabetes Investig 2023; 14:1329-1340. [PMID: 37799064 PMCID: PMC10688128 DOI: 10.1111/jdi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The number of patients with type 2 diabetes mellitus is increasing, and its prevention and management are important. One of the factors contributing to the increased incidence of type 2 diabetes mellitus is the change in dietary habits, including a Westernized diet. Fermented foods are foods that are transformed by the action of microorganisms to produce beneficial effects in humans and have been consumed for thousands of years. The production and consumption of fermented soy foods, including natto, miso, douchi, cheonggukjang, doenjang, tempeh, and fermented soy milk, are widespread in Asian countries. This review focuses on fermented soybean foods and summarizes their effects on diabetes. Fermentation increases the content of ingredients originally contained in soybeans and adds new ingredients that are not present in the original soybeans. Recent studies have revealed that fermented soybean food modifies the gut microbiota-related metabolites by modifying dysbiosis. Furthermore, it has been reported that fermented soybean foods have antioxidant, anti-inflammatory, and anti-diabetic effects. In recent years, fermented foods, including fermented soybeans, have shown various beneficial effects. Therefore, it is necessary to continue focusing on the benefits and mechanisms of action of fermented foods.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
9
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
Chiang H, Hughes M, Chang W. The role of microbiota in esophageal squamous cell carcinoma: A review of the literature. Thorac Cancer 2023; 14:2821-2829. [PMID: 37675608 PMCID: PMC10542467 DOI: 10.1111/1759-7714.15096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) exhibits high incidence with poor prognosis. Alcohol drinking, cigarette smoking, and betel nut chewing are well-known risk factors. Dysbiosis, an imbalance of the microbiota residing in a local environment, is known to be associated with human diseases, especially cancer. This article reviews the current evidence of esophageal microbiota in ESCC carcinogenesis, including initiation, progression, and drug resistance. Articles involving the esophageal microbiota, diagnosis, treatment, and the progression of esophageal cancer were acquired using a comprehensive literature search in PubMed in recent 10 years. Based on 16S rRNA sequencing of human samples, cell, and animal studies, current evidence suggests dysbiosis of the esophagus promotes ESCC progression and chemotherapy resistance, leading to a poor prognosis. Smoking and drinking are associated with esophageal dysbiosis. Specific bacteria have been reported to promote carcinogenesis, involving either progression or drug resistance in ESCC, for example Porphyromonas gingivalis and Fusobacterium nucleatum. These bacteria promote ESCC cell proliferation and migration via the TLR4/NF-κB and IL-6/STAT3 pathways. F. nucleatum induces cisplatin resistance via the enrichment of immunosuppressive myeloid-derived suppressor cells (MDSCs). Correcting the dysbiosis and reducing the abundance of specific esophageal pathogens may help in suppressing cancer progression. In conclusion, esophageal dysbiosis is associated with ESCC progression and chemoresistance. Screening the oral and esophageal microbiota is a potential diagnostic tool for predicting ESCC development or drug-resistance. Repairing esophageal dysbiosis is a novel treatment for ESCC. Clinical trials with probiotics in addition to current chemotherapy are warranted to study the therapeutic effects.
Collapse
Affiliation(s)
- Hsueh‐Chien Chiang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Michael Hughes
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and Regeneration (iWRR), College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Wei‐Lun Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
11
|
Nani A, Tehami W. Targeting inflammasome pathway by polyphenols as a strategy for pancreatitis, gastrointestinal and liver diseases management: an updated review. Front Nutr 2023; 10:1157572. [PMID: 37743919 PMCID: PMC10513047 DOI: 10.3389/fnut.2023.1157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Obesity, pancreatitis, cardiovascular, gastrointestinal (GI), and liver diseases have all been linked to the Western lifestyle, characterized by increased unhealthy food consumption and decreased physical activity. Besides obesity and pancreatitis, many GI and liver diseases are associated with inflammation. Inflammasomes are multi-protein complexes that mediate acute and restorative inflammatory pathways. However, many aberrations in inflammasome activity originate from shifts in dietary habits. Evidence reveals that dietary polyphenols effectively modulate inflammasome-associated dysfunctions. With a focus on pancreatitis, GI, and liver disorders, this review set out to provide the most relevant evidence for the therapeutic impact of polyphenols via the regulation of the inflammasome pathway. Overall, flavonoid and non-flavonoid polyphenols maintain intestinal eubiosis, downregulate NLRP3 inflammasome canonical pathway, and restore redox status via upregulating Nrf2/HO-1 signaling. These effects at the level of the intestine, the liver, and the pancreas are associated with decreased systemic levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Abdelhafid Nani
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria
| | | |
Collapse
|
12
|
Khoo XH, Chong CW, Talha AM, Philip K, Teh CSJ, Isa AM, Wong MS, Chew DCH, Wong Z, Jusoh NS, Maksum NMM, Mokhtar NM, Majid HA, Ali RAR, Lee YY, Mahadeva S. The impact of diet and ethnicity on gut microbiota variation in irritable bowel syndrome: A multi-center study. J Gastroenterol Hepatol 2023; 38:1259-1268. [PMID: 36908030 DOI: 10.1111/jgh.16174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND AND AIM The gut microbiota in irritable bowel syndrome (IBS) is known to vary with diet. We aim to (i) analyze the gut microbiota composition of IBS patients from a multi-ethnic population and (ii) explore the impact of a low FODMAP diet on gastrointestinal symptoms and gut microbiota composition among IBS patients. METHODS A multi-center study of multi-ethnic Asian patients with IBS was conducted in two phases: (i) an initial cross-sectional gut microbiota composition study of IBS patients and healthy controls, followed by (ii) a single-arm 6-week dietary interventional study of the IBS patients alone, exploring clinical and gut microbiota changes. RESULTS A total of 34 adult IBS patients (IBS sub-types of IBS-D 44.1%, IBS-C 32.4%, and IBS-M 23.5%) and 15 healthy controls were recruited. A greater abundance of Parabacteroides species with lower levels of bacterial fermenters and short-chain fatty acids producers were found among IBS patients compared with healthy controls. Age and ethnicity were found to be associated with gut microbiota composition. Following a low FODMAP dietary intervention, symptom and quality of life improvement were observed in 24 (70.6%) IBS patients. Symptom improvement was associated with adherence to the low FODMAP diet (46.7% poor adherence vs 92.9% good adherence, P = 0.014), and gut microbiota patterns, particularly with a greater abundance of Bifidobacterium longum, Anaerotignum propionicum, and Blautia species post-intervention. CONCLUSION Gut microbiota variation in multi-ethnic IBS patients may be related to dietary intake and may be helpful to identify patients who are likely to respond to a low FODMAP diet.
Collapse
Affiliation(s)
- Xin-Hui Khoo
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun-Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Abdul Malik Talha
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Koshy Philip
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Malaysia
| | - Cindy Shuan-Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adib Mat Isa
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- GI Function and Motility Unit, Hospital Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mung Seong Wong
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- GI Function and Motility Unit, Hospital Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Deborah Chia-Hsin Chew
- Department of Medicine, Faculty of Medicine, Gastroenterology and Hepatology Unit, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zhiqin Wong
- Department of Medicine, Faculty of Medicine, Gastroenterology and Hepatology Unit, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Syarahani Jusoh
- Department of Dietetics, Hospital Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Faculty of Medicine, GUT Research Group, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hazreen Abdul Majid
- Department of Social and Preventive Medicine. Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Malaysia
| | - Raja Affendi Raja Ali
- Department of Medicine, Faculty of Medicine, Gastroenterology and Hepatology Unit, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yeong-Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- GI Function and Motility Unit, Hospital Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sanjiv Mahadeva
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Kim Y, Kim GT, Kang J. Microbial Composition and Stool Short Chain Fatty Acid Levels in Fibromyalgia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3183. [PMID: 36833885 PMCID: PMC9961406 DOI: 10.3390/ijerph20043183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The present study aimed to evaluate microbial diversity, taxonomic profiles, and fecal short chain fatty acid (SCFA) in female patients with fibromyalgia syndrome (FMS). METHODS Forty participants (19 patients with FMS and 21 controls) were included in the study, and the diagnosis of FMS was made based on the revised American College of Rheumatology criteria. DNA extraction from fecal samples and 16S rRNA gene sequencing were conducted to estimate microbial composition. To compare alpha diversity, the Shannon index accounting for both evenness and richness, Pielou's evenness, and Faith's phylogenetic diversity (PD) were calculated. Unweighted and weighted UniFrac distances, Jaccard distance, and Bray-Curtis dissimilarity were used to calculate beta diversity. Furthermore, stool metabolites were analyzed using gas chromatography-mass spectrometry, and a generalized regression model was used to compare the SCFA of stools between FMS and healthy controls. RESULTS Compared with the control, patients with FMS had lower observed OTU (p = 0.048), Shannon's index (p = 0.044), and evenness (p < 0.001). Although patients with FMS had a lower PD than did controls, statistical significance was not reached. We observed significant differences in unweighted (p = 0.007), weighted UniFrac-based diversity (p < 0.005), Jaccard distance (p < 0.001), and Bray-Curtis dissimilarity (p < 0.001) between the two groups. Although the FMS groups showed lower propionate levels compared with those of the control group, only marginal significance was observed (0.82 [0.051] mg/g in FMS vs. 1.16 [0.077] mg/g in the control group, p = 0.069). CONCLUSIONS The diversity of the microbiome in the FMS group was lower than that in the control group, and the reduced stool propionate levels could be associated with the decreased abundance of propionate-producing bacteria.
Collapse
Affiliation(s)
- Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan 49267, Republic of Korea
| |
Collapse
|
14
|
Guo P, Lei M, Hu S, Xu Z, Zhou Y, Zhou P, Huang R. Long-term LDR exposure may induce cognitive impairments: A possible association through targeting gut microbiota-gut-brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114351. [PMID: 36508818 DOI: 10.1016/j.ecoenv.2022.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental and occupational low-dose radiation (LDR) exposure may be harmful for health but the previous reports regarding effect of LDR on cognition are contradictory. Here we investigated the effect of long-term LDR exposure on cognition. In this study, male Balb/c mice' cognitive functions were tested at 15 weeks after being exposed to 0.5 Gy LDR in 10 fractions at each dose of 0.05 Gy. The results demonstrated that long-term LDR exposure increases escape latency and the time spent in finding exits in mice compared with non LDR exposure. Meanwhile, the inflammation-related proteins including NFκB and p38 also increased. Lipopolysaccharide (LPS) increased and short-chain fatty acid (SCFA) levels decreased following long term LDR exposure. Treatment with microbiota-derived LPS and SCFAs reversed these effects in mice. Furthermore, the gut barrier integrity was damaged in a time-dependent manner with the decreased expression of intestinal epithelial-related biomarkers such as ZO-1 and occludin. Mechanistically, long after exposure to LDR, increased LPS levels may cause cognitive impairment through the regulation of Akt/mTOR signaling in the mouse hippocampus. These findings provide new insight into the clinical applications of LDR and suggest that the gut microbiota-plasma LPS and SCFAs-brain axis may underlie long-term LDR-induced cognition effects.
Collapse
Affiliation(s)
- Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - MingJun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| | - Sai Hu
- Department of Radiology, Xiangya Hospital, CSU, Changsha 410008, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Zi Xu
- Central South University, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| |
Collapse
|
15
|
Ju Z, Guo P, Xiang J, Lei R, Ren G, Zhou M, Yang X, Zhou P, Huang R. Low-dose radiation exaggerates HFD-induced metabolic dysfunction by gut microbiota through PA-PYCR1 axis. Commun Biol 2022; 5:945. [PMID: 36088469 PMCID: PMC9464247 DOI: 10.1038/s42003-022-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCo-exposure of High-fat-diet (HFD) behavior and environmental low-dose radiation (LDR) is common among majority occupational workers, but the synergism of this co-exposure in metabolic health is poorly understood. This study aimed to investigate the impact of gut microbiota and its metabolites on the regulation of HFD accompanied by LDR-associated with metabolic dysfunction and insulin resistance. Here, we reported that Parasutterella was markedly elevated in the gut microbiota of mice in co-exposure of HFD and LDR, accompanied by increased pyrrolidinecarboxylic acid (PA) level in both intestine and plasma. Transplantation of fecal microbiota from mice with co-exposure HFD and LDR with metabolic dysfunction resulted in increased disruption of metabolic dysfunction, insulin resistance and increased PYCR1 (Pyrroline-5-carboxylate reductase 1) expression. Mechanistically, intestinal barrier was damaged more serious in mice with co-exposure of HFD and LDR, leading high PA level in plasma, activating PYCR1 expression to inhibit insulin Akt/mTOR (AKT kinase-transforming protein/Serine threonine-protein kinase) signaling pathway to aggravate HFD-induced metabolic impairments. This study suggests a new avenue for interventions against western diet companied with low dose radiation exposure-driven metabolic impairments.
Collapse
|
16
|
Huang R. Gut Microbiota: A Key Regulator in the Effects of Environmental Hazards on Modulates Insulin Resistance. Front Cell Infect Microbiol 2022; 11:800432. [PMID: 35111696 PMCID: PMC8801599 DOI: 10.3389/fcimb.2021.800432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is a hallmark of Alzheimer’s disease (AD), type II diabetes (T2D), and Parkinson’s disease (PD). Emerging evidence indicates that these disorders are typically characterized by alterations in the gut microbiota composition, diversity, and their metabolites. Currently, it is understood that environmental hazards including ionizing radiation, toxic heavy metals, pesticides, particle matter, and polycyclic aromatic hydrocarbons are capable of interacting with gut microbiota and have a non-beneficial health effect. Based on the current study, we propose the hypothesis of “gut microenvironment baseline drift”. According to this “baseline drift” theory, gut microbiota is a temporarily combined cluster of species sharing the same environmental stresses for a short period, which would change quickly under the influence of different environmental factors. This indicates that the microbial species in the gut do not have a long-term relationship; any split, division, or recombination may occur in different environments. Nonetheless, the “baseline drift” theory considers the critical role of the response of the whole gut microbiome. Undoubtedly, this hypothesis implies that the gut microbiota response is not merely a “cross junction” switch; in contrast, the human health or disease is a result of a rich palette of gut-microbiota-driven multiple-pathway responses. In summary, environmental factors, including hazardous and normal factors, are critical to the biological impact of the gut microbiota responses and the dual effect of the gut microbiota on the regulation of biological functions. Novel appreciation of the role of gut microbiota and environmental hazards in the insulin resistance would shed new light on insulin resistance and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
|
17
|
THERDTATHA P, SHINODA A, NAKAYAMA J. Crisis of the Asian gut: associations among diet, microbiota, and metabolic diseases. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:83-93. [PMID: 35854695 PMCID: PMC9246424 DOI: 10.12938/bmfh.2021-085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The increase of lifestyle-related diseases in Asia has recently become remarkably
serious. This has been associated with a change in dietary habits that may alter the
complex gut microbiota and its metabolic function in Asian people. Notably, the
penetration of modern Western diets into Asia, which has been accompanied by an increase
in fat content and decrease in plant-derived dietary fiber, is restructuring the Asian gut
microbiome. In this review, we introduce the current status of obesity and diabetes in
Asia and discuss the links of changes in dietary style with gut microbiota alterations
which may predispose Asian people to metabolic diseases.
Collapse
Affiliation(s)
- Phatthanaphong THERDTATHA
- Department of Innovative Science and Technology for Bio-industry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akari SHINODA
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiro NAKAYAMA
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
19
|
Du G, Huang H, Zhu Q, Ying L. Effects of cat ownership on the gut microbiota of owners. PLoS One 2021; 16:e0253133. [PMID: 34133453 PMCID: PMC8208556 DOI: 10.1371/journal.pone.0253133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Pet ownership is an essential environmental exposure that might influence the health of the owner. This study’s primary objectives were to explore the effects of cat ownership on the gut microbial diversity and composition of owners. Raw data from the American Gut Project were obtained from the SRA database. A total of 214 Caucasian individuals (111 female) with cats and 214 individuals (111 female) without cats were used in the following analysis. OTU number showed significant alteration in the Cat group and Female_cat group, compared with that of the no cat (NC) group and Female_ NC group, respectively. Compared with the NC group, the microbial phylum Proteobacteria was significantly decreased in the Cat group. The microbial families Alcaligenaceae and Pasteurellaceae were significantly reduced, while Enterobacteriaceae and Pseudomonadaceae were significantly increased in the Cat group. Fifty metabolic pathways were predicted to be significantly changed in the Cat group. Twenty-one and 13 metabolic pathways were predicted to be significantly changed in the female_cat and male_cat groups, respectively. Moreover, the microbial phylum Cyanobacteria was significantly decreased, while the families Alcaligenaceae, Pseudomonadaceae and Enterobacteriaceae were significantly changed in the normal weight cat group. In addition, 41 and 7 metabolic pathways were predicted to be significantly changed in the normal-weight cat and overweight cat groups, respectively. Therefore, this study demonstrated that cat ownership could influence owners’ gut microbiota composition and function, especially in the female group and normal-weight group.
Collapse
Affiliation(s)
- Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- The Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
- * E-mail: (GKD); (YL)
| | - Hairong Huang
- School of Public Health, Hainan Medical University, Haikou, China
| | - Qiwei Zhu
- The Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Li Ying
- Haikou Customs, Haikou, China
- * E-mail: (GKD); (YL)
| |
Collapse
|
20
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
21
|
Jiang Y, Zhang N, Zhou Y, Zhou Z, Bai Y, Strappe P, Blanchard C. Manipulations of glucose/lipid metabolism and gut microbiota of resistant starch encapsulated Ganoderma lucidum spores in T2DM rats. Food Sci Biotechnol 2021; 30:755-764. [PMID: 34123471 PMCID: PMC8144259 DOI: 10.1007/s10068-021-00908-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/27/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our team previously demonstrated that Ganoderma lucidum spores (GLS) and resistant starch (RS) had hypoglycemic effects separately on type 2 diabetic mellitus (T2DM) rats. This work was to explore the effects of administering encapsulated GLS within RS (referred to as EGLS) in the T2DM rats, which were induced by streptozotocin (STZ). The EGLS was orally administered to rats for 28 days. The parameters of glycometabolism and lipometabolism were evaluated, and fecal microbiota composition was investigated. The results showed that EGLS significantly enhanced glycometabolism and lipometabolism parameters in T2DM rats, which might be associate with the enhancement of the glucose and lipid metabolism, insulin secretion, and glycogen synthesis and reduced lipogenesis. Furthermore, the intervention of EGLS also reduced the Proteobacteria community and improved dysfunctional gut microbiota. This study indicated EGLS may be a potential candidate for dietary intervention to modulate diabetes.
Collapse
Affiliation(s)
- Yumei Jiang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Na Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
| | - Yawen Zhou
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing, 210095 China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Yu Bai
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
| | - Padraig Strappe
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Chris Blanchard
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| |
Collapse
|