1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Rashidian A, Pitkänen S, Maltarollo VG, Schoppmeier U, Shevchenko E, Medarametla P, Poso A, Küblbeck J, Honkakoski P, Kronenberger T. Look What You Made Me Do: Discerning Feature for Classification of Endocrine-Disrupting Chemical Binding to Steroid Hormone Receptors. J Chem Inf Model 2025; 65:4148-4162. [PMID: 40200431 PMCID: PMC12042260 DOI: 10.1021/acs.jcim.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Exposure to metabolism-disrupting chemicals, which are a specific type of endocrine-disrupting chemical (EDC), is linked to metabolic problems such as dyslipidemia, insulin resistance, and hepatic steatosis. Steroid hormone receptors (SHRs) within the nuclear receptor superfamily are well-known targets for EDCs in reproductive tissues and, to a lesser extent, in liver. In this study, we investigated how five well-established SHR ligands and eight EDCs including pesticides, plasticizers, pharmaceuticals, flame retardants, industrial chemicals, and their metabolites affect estrogen (ERα in reproductive tissues) and glucocorticoid (GR in liver) receptors. We investigated the utility of structural molecular modeling to classify EDC binding to ERα and GR. To this end, we modeled a set of EDC binding to ER and GR using unbiased all-atom long-time scale molecular dynamics (MD) simulations and compared them against known established SHR agonists and antagonists. We systematically evaluated MD-derived variables such as protein-ligand interactions and binding energy, folding secondary structure elements, distances, and angles as relevant parameters. Our findings suggest that the well-established H12 folding and conformational angles can be discerning features for binding of EDCs to SHRs. Although SHR activation often involves changes in H12 folding and geometry, GR displayed less flexibility in this region, suggesting that protein-ligand interaction and binding energy are more relevant for its classification. We show that MD simulations combined with experimental assays can be a useful tool for studying novel EDCs by providing relevant structural features for their classification.
Collapse
Affiliation(s)
- Azam Rashidian
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
- Interfaculty
Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany; Partner-site Tübingen, German
Center for Infection Research (DZIF), 72076 Tübingen, Germany
| | - Sini Pitkänen
- A.I.
Virtanen
Institute for Molecular Sciences, University
of Eastern Finland, P.O. Box 1627, 70210 Kuopio, Finland
| | - Vinicius Goncalves Maltarollo
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos,
6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Ulrich Schoppmeier
- Interfaculty
Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany; Partner-site Tübingen, German
Center for Infection Research (DZIF), 72076 Tübingen, Germany
| | - Ekaterina Shevchenko
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Prasanthi Medarametla
- School of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, 70211 Kuopio, Finland
| | - Antti Poso
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
- School of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, 70211 Kuopio, Finland
| | - Jenni Küblbeck
- A.I.
Virtanen
Institute for Molecular Sciences, University
of Eastern Finland, P.O. Box 1627, 70210 Kuopio, Finland
| | - Paavo Honkakoski
- School of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
- Interfaculty
Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany; Partner-site Tübingen, German
Center for Infection Research (DZIF), 72076 Tübingen, Germany
- School of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
3
|
Beal JR, Bhurke A, Carlson KE, Katzenellenbogen JA, Yu J, Flaws JA, Bagchi IC, Bagchi MK. Phthalates Impair Estrogenic Regulation of HIF2α and Extracellular Vesicle Secretion by Human Endometrial Stromal Cells. Endocrinology 2025; 166:bqaf087. [PMID: 40323777 PMCID: PMC12075775 DOI: 10.1210/endocr/bqaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
High levels of exposure to di(2-ethylhexyl) phthalate (DEHP), a known endocrine disruptor, have been linked to adverse pregnancy outcomes, yet the mechanisms by which it impacts human uterine functions remain unclear. Here we report that exposure of differentiating primary human endometrial stromal cells (HESCs) to an environmentally relevant concentration of DEHP or its primary metabolite, mono(2-ethylhexyl) phthalate, markedly reduces the expression of the estrogen-regulated transcription factor hypoxia-inducible factor 2-α (HIF2α). We also noticed a simultaneous decrease in RAB27B expression, which is crucial for the trafficking and secretion of extracellular vesicles (EVs). EVs enhance communication among various cell types within the pregnant uterus, thereby ensuring reproductive success. We found that estrogen receptor α (ERα) could no longer bind to the HIF2α regulatory region following phthalate treatment, and epigenetic analysis suggested that this may be due to hypermethylation of nearby CpG islands. Further investigation revealed a potential interaction between ERα and the transcription factor specificity protein 1 (Sp1) within the HIF2α regulatory region, which is affected by the inhibition of Sp1 binding to the phthalate-induced hypermethylated DNA. Additionally, our results suggest that the abnormal DNA methylation is likely due to increased expression of the DNA methyltransferase 1 (DNMT1) gene in response to phthalate exposure. Overall, this study provides valuable mechanistic insights into how phthalate-induced differential DNA methylation disrupts estrogenic regulation of the HIF2α gene and, consequently, EV secretion during HESC differentiation. This knowledge is essential for understanding how phthalates may lead to adverse reproductive outcomes by disrupting hormonal regulation of cell-to-cell communication in the uterus.
Collapse
Affiliation(s)
- Jacob R Beal
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Arpita Bhurke
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Jie Yu
- Department of Obstetrics and Gynecology, University at Buffalo, Buffalo, NY 14203, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Rosa LS, Sarhan M, Pimentel AS. Toxic Alerts of Endocrine Disruption Revealed by Explainable Artificial Intelligence. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:321-333. [PMID: 40144324 PMCID: PMC11934200 DOI: 10.1021/envhealth.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 03/28/2025]
Abstract
The local interpretable model-agnostic explanation method was used to unveil substructures (toxic alerts) that cause endocrine disruption in chemical compounds using machine learning models. The random forest classifier was applied to build explainable models with the TOX21 data sets after data curation. Using these models applied to the EDC and EDKB-FDA data sets, the substructures that cause endocrine disruption in chemical compounds were unveiled, providing stable, more specific, and consistent explanations, which are essential for trust and acceptance of the findings, mainly due to the difficulty of finding relevant experimental evidence for different receptors (androgen, estrogen, aryl hydrocarbon, aromatase, and peroxisome proliferator-activated receptors). This approach is significant because of its contribution to the interpretability of explainable machine learning algorithms, particularly in the context of unveiling substructures associated with endocrine disruption in five targets (androgen receptor, estrogen receptor, aryl hydrocarbon receptors, aromatase receptors, and peroxisome proliferator-activated receptors), thereby advancing the relevant field of environmental toxicology, where a careful evaluation of the potential risks of exposure to new compounds is needed. The specific substructures thiophosphate, sulfamate, anilide, carbamate, sulfamide, and thiocyanate are presented as toxic alerts that cause endocrine disruption to better understand their potential risks and adverse effects on human health and the environment.
Collapse
Affiliation(s)
- Lucca
Caiaffa Santos Rosa
- Departamento de Química, Pontifícia Universidade Católica do
Rio de Janeiro, Rio de
Janeiro, RJ 22453-900, Brazil
| | - Mariam Sarhan
- Departamento de Química, Pontifícia Universidade Católica do
Rio de Janeiro, Rio de
Janeiro, RJ 22453-900, Brazil
| | - Andre Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do
Rio de Janeiro, Rio de
Janeiro, RJ 22453-900, Brazil
| |
Collapse
|
5
|
He R, Yang J, Yuan S, Chen L, Ren H, Wu B. A genetically encoded fluorescent whole-cell biosensor for real-time detecting estrogenic activities in water samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136903. [PMID: 39694001 DOI: 10.1016/j.jhazmat.2024.136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Real-time monitoring of estrogenic activity in the aquatic environment is a challenging task. Current biosensors face difficulties due to their limited response speed and environmental tolerance, especially for detecting wastewater, the major source of estrogenic compounds in aquatic environments. To address these difficulties, this study developed a single fluorescent protein (FP) -based whole-cell bacterial biosensor named ER-Light, which was achieved by inserting the sensing domain of the estrogen receptor (ER) into the FP Citrine and expressing it in the periplasm of Escherichia coli. As designed, ER-Light enables the detection of net estrogenic activity in mixtures, represented by estradiol equivalent concentration (EEQ). ER-Light detects EEQ in 40 s with a detection limit of 4.55 × 10-7 μM and a maximum working range of 1.1 × 10-4 μM, demonstrating sufficient response speed, sensitivity, and working range. In addition, the ER-Light can survive and tolerate wastewater effluent. Satisfactory recoveries (91.0 % to 102.1 %) eliminated concerns about the matrix effect of wastewater. EEQs (Not detected-2.9 ×10-5 µM) measured by ER-Light from the effluent of 9 wastewater treatment plants validate its practicality in detecting wastewater. This is the first attempt to integrate ER into FP-based biosensors for environment monitoring. Our findings provide valuable design rules for real-time detection of bioactivity effects in the environment, contributing to the safeguarding of ecological and human health.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Junyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Smaga CR, Bock SL, Johnson JM, Paitz RT, Letter A, Deem V, Brunell A, Parrott BB. Maternal deposition of hormones and contaminants shape the gonadal transcriptome in American alligators. Proc Biol Sci 2025; 292:20242105. [PMID: 39876737 PMCID: PMC11775603 DOI: 10.1098/rspb.2024.2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/16/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
Environmental conditions influence the maternal deposition of hormones into eggs, which is hypothesized to adaptively modify developmental outcomes in offspring. However, most ecosystems harbour environmental contaminants capable of disrupting endocrine signaling, and maternal exposure to these compounds has the potential to further alter offspring traits. Studies rarely examine maternally derived hormones and contaminants along with offspring phenotypes, and we know little about their interrelationships and potential interactions. Here, we measure yolk concentrations of 24 endocrine-disrupting compounds (EDCs) and 28 steroid hormones along with gonadal transcriptomes from two populations of the American alligator (Alligator mississippiensis) that differ in reproductive development and exposure to EDCs. Using a network-based approach, we identify gene expression modules associated with hormones and contaminants independently, in combination, or by potential indirect influences of EDCs on maternal hormone deposition. We find that yolk concentrations of both 17β-oestradiol and etiocholanolone differ across populations and explain substantial variation in gene expression. We further provide evidence for the indirect effect of the pesticide, methoxychlor, on gonadal gene expression through its relationship with 17β-oestradiol. Our results reveal novel pathways by which maternal exposure to environmental contaminants interacts with hormone provisioning to affect offspring sexual development.
Collapse
Affiliation(s)
- Christopher R. Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Samantha L. Bock
- Kellogg Biological Station, Michigan State University, East Lansing, MI, USA
| | - Josiah M. Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Ryan T. Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Andrew Letter
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Vincent Deem
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Arnold Brunell
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Benjamin B. Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| |
Collapse
|
7
|
Beal JR, Bhurke A, Carlson KE, Katzenellenbogen J, Yu J, Flaws J, Bagchi IC, Bagchi MK. Phthalates Impair Estrogenic Regulation of HIF2α and Extracellular Vesicle Secretion by Human Endometrial Stromal Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628185. [PMID: 39763893 PMCID: PMC11702724 DOI: 10.1101/2024.12.12.628185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a known endocrine-disrupting chemical, is a plasticizer found in many common consumer products. High levels of DEHP exposure have been linked to adverse pregnancy outcomes, yet little is known about how it affects human uterine functions. We previously reported that the estrogen-regulated transcription factor hypoxia-inducible factor 2 alpha (HIF2α) promotes the expression of Rab27b, which controls the trafficking and secretion of extracellular vesicles (EVs). EVs facilitate communication between multiple cell types within the pregnant uterus, ensuring reproductive success. In this study, we report that exposure of differentiating primary human endometrial stromal cells (HESC) to an environmentally relevant concentration (1 μg/mL) of DEHP or its primary metabolite mono(2-ethylhexyl) phthalate (MEHP) markedly reduces the expression of HIF2α . We also observed a concomitant decrease in RAB27B expression, reducing EV secretion from HESC. Interestingly, we found that DEHP or MEHP exposure disrupts estrogenic regulation of the HIF2α/Rab27b signaling pathway. Estrogen receptor alpha (ERα) could no longer bind to the HIF2α regulatory region following phthalate treatment, and epigenetic analysis suggested that this may be due to hypermethylation of nearby CpG islands. Further investigation revealed a potential interaction between ERα and the transcription factor Sp1 within the HIF2α regulatory region, which is affected by the inhibition of Sp1 binding to the phthalate-induced hypermethylated DNA. Additionally, our results suggest that the abnormal DNA methylation is likely due to increased expression of the DNA methyltransferase 1 ( DNMT1 ) gene in response to phthalate exposure. Overall, this study provides valuable mechanistic insights into how phthalate-induced differential DNA methylation disrupts estrogenic regulation of the HIF2α gene and, consequently, EV secretion during HESC differentiation. This knowledge is crucial for our understanding of how phthalates may cause adverse reproductive outcomes by disrupting the hormonal regulation of cell-to-cell communication within the pregnant uterus.
Collapse
|
8
|
Lee H, Park J, Ortiz DM, Park K. Estrogen receptor/androgen receptor transcriptional activation of benzophenone derivatives and integrated approaches to testing and assessment (IATA) for estrogenic effects. Toxicol In Vitro 2024; 100:105914. [PMID: 39094913 DOI: 10.1016/j.tiv.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Estrogen receptor (ER) and androgen receptor (AR) transactivation assays for the benzophenone compounds (BPs) were performed using hERα-HeLa-9903 cells for ER and MMTV/22Rv1_GR-KO cells for AR. Results showed that some BPs, such as BP-1, BP-2, 4OH-BP, 4DHB, and 4-MBP, showed agonistic activity on ER with a higher RPCmax than 1 nM 17-β estradiol. The other BPs (BP, BP-3, BP-6, BP-7, and BP-8) showed low RPCmax in accordance with the OECD Test guideline (TG) 455 criteria, with BP-4 as the only ER-negative. However, the potency of the BPs was at least 1000 times less than the reference chemical, 17-β-estradiol. None of the BPs exhibited agonistic activity on AR except BP-2 which showed a small increase in activity. For further evaluation of the estrogenic effect of BPs based on the integrated approaches to testing and assessment (IATA) approach, existing data on ER binding, steroidogenesis, MCF-7 cell proliferation, and in vivo uterotrophic assays were collected and evaluated. There seemed to be a close association between the in vitro data on BPs, especially ER transcriptional activity, and the in vivo results of increased uterine weight. This case study implied that integrated approaches using in vitro data can be a useful tool for the prediction of in vivo data for estrogenic effects, without the need for additional animal toxicity tests.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Darlene M Ortiz
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea.
| |
Collapse
|
9
|
Katić A, Brčić Karačonji I, Micek V, Želježić D. Endocrine-Disrupting Effects of Transplacental and Translactational Exposure to Tembotrione on Hormone Status in Wistar Rat Offspring at Different Developmental Stages: A Pilot Study. TOXICS 2024; 12:533. [PMID: 39195635 PMCID: PMC11359872 DOI: 10.3390/toxics12080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Green agronomy promotes the implementation of natural and naturally derived substances in crop protection. In the present study, we evaluated the endocrine-disrupting potential of the allelopathic herbicide tembotrione in Wistar rats by studying the hormone status of offspring from the treated dams. Three doses of tembotrione (0.0004, 0.0007, and 4.0 mg/kg b.w./day) have been administered to dams during gestation and/or lactation. In the serum of newborn, weaning, and pubertal female and male offspring, 17β-estradiol and testosterone were determined using enzyme-linked immunosorbent assay. A decrease in 17β-estradiol and testosterone was observed in female and male weaning and pubertal offspring exposed to all doses of tembotrione during gestation and lactation. In weaning offspring exposed only during lactation, 17β-estradiol dropped significantly after exposure to the two lower doses and testosterone after exposure to the lowest dose of tembotrione. The greatest effect was observed at the lowest dose of tembotrione. In newborns, we observed increased 17β-estradiol after exposure to two lower doses of tembotrione and significantly increased testosterone after exposure to the lowest dose. The highest dose of tembotrione decreased 17β-estradiol significantly in newborn females. The obtained results suggest that tembotrione might be considered a pro-estrogenic or estrogen agonistic compound under the exposure conditions applied in this investigation.
Collapse
Affiliation(s)
- Anja Katić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
| | - Irena Brčić Karačonji
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia;
| | - Davor Želježić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
| |
Collapse
|
10
|
Nelms MD, Antonijevic T, Ring C, Harris DL, Bever RJ, Lynn SG, Williams D, Chappell G, Boyles R, Borghoff S, Edwards SW, Markey K. Chemistry domain of applicability evaluation against existing estrogen receptor high-throughput assay-based activity models. FRONTIERS IN TOXICOLOGY 2024; 6:1346767. [PMID: 38694816 PMCID: PMC11061348 DOI: 10.3389/ftox.2024.1346767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction The U. S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP) Tier 1 assays are used to screen for potential endocrine system-disrupting chemicals. A model integrating data from 16 high-throughput screening assays to predict estrogen receptor (ER) agonism has been proposed as an alternative to some low-throughput Tier 1 assays. Later work demonstrated that as few as four assays could replicate the ER agonism predictions from the full model with 98% sensitivity and 92% specificity. The current study utilized chemical clustering to illustrate the coverage of the EDSP Universe of Chemicals (UoC) tested in the existing ER pathway models and to investigate the utility of chemical clustering to evaluate the screening approach using an existing 4-assay model as a test case. Although the full original assay battery is no longer available, the demonstrated contribution of chemical clustering is broadly applicable to assay sets, chemical inventories, and models, and the data analysis used can also be applied to future evaluation of minimal assay models for consideration in screening. Methods Chemical structures were collected for 6,947 substances via the CompTox Chemicals Dashboard from the over 10,000 UoC and grouped based on structural similarity, generating 826 chemical clusters. Of the 1,812 substances run in the original ER model, 1,730 substances had a single, clearly defined structure. The ER model chemicals with a clearly defined structure that were not present in the EDSP UoC were assigned to chemical clusters using a k-nearest neighbors approach, resulting in 557 EDSP UoC clusters containing at least one ER model chemical. Results and Discussion Performance of an existing 4-assay model in comparison with the existing full ER agonist model was analyzed as related to chemical clustering. This was a case study, and a similar analysis can be performed with any subset model in which the same chemicals (or subset of chemicals) are screened. Of the 365 clusters containing >1 ER model chemical, 321 did not have any chemicals predicted to be agonists by the full ER agonist model. The best 4-assay subset ER agonist model disagreed with the full ER agonist model by predicting agonist activity for 122 chemicals from 91 of the 321 clusters. There were 44 clusters with at least two chemicals and at least one agonist based upon the full ER agonist model, which allowed accuracy predictions on a per-cluster basis. The accuracy of the best 4-assay subset ER agonist model ranged from 50% to 100% across these 44 clusters, with 32 clusters having accuracy ≥90%. Overall, the best 4-assay subset ER agonist model resulted in 122 false-positive and only 2 false-negative predictions compared with the full ER agonist model. Most false positives (89) were active in only two of the four assays, whereas all but 11 true positive chemicals were active in at least three assays. False positive chemicals also tended to have lower area under the curve (AUC) values, with 110 out of 122 false positives having an AUC value below 0.214, which is lower than 75% of the positives as predicted by the full ER agonist model. Many false positives demonstrated borderline activity. The median AUC value for the 122 false positives from the best 4-assay subset ER agonist model was 0.138, whereas the threshold for an active prediction is 0.1. Conclusion Our results show that the existing 4-assay model performs well across a range of structurally diverse chemicals. Although this is a descriptive analysis of previous results, several concepts can be applied to any screening model used in the future. First, the clustering of the chemicals provides a means of ensuring that future screening evaluations consider the broad chemical space represented by the EDSP UoC. The clusters can also assist in prioritizing future chemicals for screening in specific clusters based on the activity of known chemicals in those clusters. The clustering approach can be useful in providing a framework to evaluate which portions of the EDSP UoC chemical space are reliably covered by in silico and in vitro approaches and where predictions from either method alone or both methods combined are most reliable. The lessons learned from this case study can be easily applied to future evaluations of model applicability and screening to evaluate future datasets.
Collapse
Affiliation(s)
- Mark D. Nelms
- RTI International, Research Triangle Park, NC, United States
| | | | | | - Danni L. Harris
- RTI International, Research Triangle Park, NC, United States
| | - Ronnie Joe Bever
- U. S. Environmental Protection Agency, Washington, DC, United States
| | - Scott G. Lynn
- U. S. Environmental Protection Agency, Washington, DC, United States
| | - David Williams
- RTI International, Research Triangle Park, NC, United States
| | | | - Rebecca Boyles
- RTI International, Research Triangle Park, NC, United States
| | - Susan Borghoff
- ToxStrategies, Research Triangle Park, NC, United States
| | | | - Kristan Markey
- U. S. Environmental Protection Agency, Washington, DC, United States
| |
Collapse
|
11
|
Ahmed RYS, Tanoue R, Chen X, Kawai YK, Kubota A. Assessment of developmental toxicity and the potential mode of action underlying single and binary exposure to estrogenic endocrine disrupting chemicals in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109821. [PMID: 38128895 DOI: 10.1016/j.cbpc.2023.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The current study investigated the effect of single and binary exposure to distinct xenoestrogens, including diethylstilbestrol (DES) and zearalenone (ZEN), on zebrafish embryos subjected to continuous exposure for 4 days starting from 4 h post fertilization. Noteworthy impact on cumulative mortality, hatchability, spinal and tail curvature, pericardial edema, and reduction in blood circulation were observed in DES-treated embryos, with lower incidence and intensity shown for ZEN at the same nominal concentration (3 μM). An interactive effect was seen for the combined exposure to DES and ZEN, in which deformities and circulatory failure mediated by DES were mitigated by co-treatment with low concentrations of ZEN. Similarly, ZEN-induced spinal and tail curvature, pericardial edema, and blood flow reduction declined dramatically following DES co-exposure at low concentrations. A significant counteracting effect has been observed against DES- and ZEN-induced developmental anomalies following co-treatment with an estrogen receptor (ER) antagonist, fulvestrant (FUL). The assessment of the aromatase gene (CYP19A1b) showed that DES strongly upregulated mRNA expression of CYP19A1b with a lower EC50 (1.1 × 10-3 nM) than a natural estrogen, 17β-estradiol (2.5 nM). Similarly, ZEN induced CYP19A1b mRNA expression with an EC50 of 57 nM. Exposure to 10 or 20 μM FUL inhibited the expression of CYP19A1b induced by a single treatment of DES or ZEN. Overall, the competitive action against ER could be the main mechanism underlying the developmental toxicity induced by DES and ZEN.
Collapse
Affiliation(s)
- Rehab Youssef Salama Ahmed
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Poultry Diseases, Veterinary Medicine, Aswan University, Aswan 097-81528, Egypt
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Xing Chen
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Akira Kubota
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
12
|
Barton BE, Erickson JA, Allred SI, Jeffries JM, Stephens KK, Hunter MI, Woodall KA, Winuthayanon W. Reversible female contraceptives: historical, current, and future perspectives†. Biol Reprod 2024; 110:14-32. [PMID: 37941453 PMCID: PMC10790348 DOI: 10.1093/biolre/ioad154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
Contraception is a practice with extensive and complicated social and scientific histories. From cycle tracking, to the very first prescription contraceptive pill, to now having over-the-counter contraceptives on demand, family planning is an aspect of healthcare that has undergone and will continue to undergo several transformations through time. This review provides a comprehensive overview of current reversible hormonal and non-hormonal birth control methods as well as their mechanism of action, safety, and effectiveness specifically for individuals who can become pregnant. Additionally, we discuss the latest Food and Drug Administration (FDA)-approved hormonal method containing estetrol and drospirenone that has not yet been used worldwide as well as the first FDA-approved hormonal over-the-counter progestin-only pills. We also review available data on novel hormonal delivery through microchip, microneedle, and the latest FDA-approved non-hormonal methods such as vaginal pH regulators. Finally, this review will assist in advancing female contraceptive method development by underlining constructive directions for future pursuits. Information was gathered from the NCBI and Google Scholars databases using English and included publications from 1900 to present. Search terms included contraceptive names as well as efficacy, safety, and mechanism of action. In summary, we suggest that investigators consider the side effects and acceptability together with the efficacy of contraceptive candidate towards their development.
Collapse
Affiliation(s)
- Brooke E Barton
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeffery A Erickson
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Stephanie I Allred
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jenna M Jeffries
- College of Art & Science, Washington State University, Pullman, WA, USA
| | - Kalli K Stephens
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mark I Hunter
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kirby A Woodall
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Kim JY, Park Y, Lee SH, Park E, Lee H. Comparative study on estrogen receptor alpha dimerization and transcriptional activity of parabens. Toxicol Res 2024; 40:153-161. [PMID: 38223674 PMCID: PMC10786792 DOI: 10.1007/s43188-023-00212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 01/16/2024] Open
Abstract
Parabens are used as preservatives in various household products, including oral products, cosmetics, and hair/body washes. In recent years, the widespread use of parabens has raised concerns due to the potential health risks associated with their estrogenic effects. In the present study, we evaluated and compared the estrogenic activity of parabens using two cell-based in vitro tests: (1) bioluminescence resonance energy transfer (BRET)-based estrogen receptor alpha (ERα) dimerization using HEK293 cells that were stably transfected with ERα-fused NanoLuc luciferase (Nluc) and HaloTag (HT) expression vector, and (2) stably transfected transcriptional activation (STTA) assays using ERα-HeLa9903 cells. The following parabens were tested using the BRET-based ERα dimerization assay and showed estrogenic activity (PC20 values): methyl paraben (MP, 5.98 × 10-5 M), ethyl paraben (EP, 3.29 × 10-5 M), propylparaben (PP, 3.09 × 10-5 M), butyl paraben (BP, 2.58 × 10-5 M), isopropyl paraben (IsoPP, 1.37 × 10-5 M), and isobutyl paraben (IsoBP, 1.43 × 10-5 M). Except MP, all other parabens tested using the STTA assay also showed estrogenic activity: EP, 7.57 × 10-6 M; PP, 1.18 × 10-6 M; BP, 3.02 × 10-7 M; IsoPP, 3.58 × 10-7 M; and IsoBP, 1.80 × 10-7 M. Overall, EP, PP, BP, IsoPP, and IsoBP tested positive for estrogenic activity using both assays. These findings demonstrate that most parabens, albeit not all, induce ERα dimerization and possess estrogenic activity.
Collapse
Affiliation(s)
- Jong-Yeon Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326 Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326 Republic of Korea
| | - Eun‐Jung Park
- Department of Food and Nutrition, Gachon University, Seongnam, Gyeonggi‐do 13120 Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hae‐Jeung Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
- Department of Food and Nutrition, Gachon University, Seongnam, Gyeonggi‐do 13120 Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, 13120 Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea
- Gachon University Gil Medical Center, Incheon, 21565 Republic of Korea
| |
Collapse
|
14
|
Kolanczyk RC, Denny JS, Sheedy BR, Olson VV, Serrano JA, Tapper MA. Increased Endocrine Activity of Xenobiotic Chemicals as Mediated by Metabolic Activation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2747-2757. [PMID: 37712519 PMCID: PMC12068233 DOI: 10.1002/etc.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
The US Environmental Protection Agency (USEPA) is faced with long lists of chemicals that require hazard assessment. The present study is part of a larger effort to develop in vitro assays and quantitative structure-activity relationships applicable to untested chemicals on USEPA inventories through study of estrogen receptor (ER) binding and estrogen-mediated gene expression in fish. The present effort investigates metabolic activation of chemicals resulting in increased estrogenicity. Phenolphthalin (PLIN) was shown not to bind rainbow trout (Oncorhynchus mykiss) ER (rtER) in a competitive binding assay, but vitellogenin (Vtg) expression was induced in trout liver slices exposed to 10-4 and 10-3.7 M PLIN. Phenolphthalein (PLEIN), a metabolite of PLIN, was subsequently determined to be formed when slices were exposed to PLIN. It binds rtER with a relative binding affinity to 17β-estradiol of 0.020%. Slices exposed to PLEIN expressed Vtg messenger RNA (mRNA) at 10-4.3 , 10-4 , and 10-3.7 M, with no detectable PLIN present. Thus, Vtg expression noted in PLIN slice exposures was explained by metabolism to PLEIN in trout liver slices. A second model chemical, 4,4'-methylenedianiline (MDA), was not shown to bind rtER but did induce Vtg mRNA production in tissue slices at 10-4.3 , 10-4 , and 10-3.7 M in amounts nearly equal to reference estradiol induction, thus indicating metabolic activation of MDA. A series of experiments were performed to identify a potential metabolite responsible for the observed increase in activity. Potential metabolites hydroxylamine-MDA, nitroso-MDA, azo-MDA, and azoxy-MDA were not observed. However, acetylated MDA was observed and tested in both ER-binding and tissue slice Vtg induction assays. Environ Toxicol Chem 2023;42:2747-2757. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Richard C. Kolanczyk
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804
| | - Jeffery S. Denny
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804 [RETIRED]
| | - Barbara R. Sheedy
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804 [RETIRED]
| | - Victoria V. Olson
- The College of Saint Scholastica, Department of Biology, 1200 Kenwood Avenue, Duluth, MN 55811
| | - Jose A. Serrano
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804
| | - Mark A. Tapper
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804
| |
Collapse
|
15
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
16
|
Bates CA, Haber LT, Moore MM, Schoeny R, Maier A. Development of a framework for risk assessment of dietary carcinogens. Food Chem Toxicol 2023; 180:114022. [PMID: 37716495 DOI: 10.1016/j.fct.2023.114022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Although there are a number of guidance documents and frameworks for evaluation of carcinogenicity, none of the current methods fully reflects the state of the science. Common limitations include the absence of dose-response assessment and not considering the impact of differing exposure patterns (e.g., intermittent, high peaks vs. lower, continuous exposures). To address these issues, we have developed a framework for risk assessment of dietary carcinogens. This framework includes an enhanced approach for weight of evidence (WOE) evaluation for genetic toxicology data, with a focus on evaluating studies based on the most recent testing guidance to determine whether a chemical is a mutagen. Included alongside our framework is a discussion of resources for evaluating tissue dose and the temporal pattern of internal dose, taking into account the chemical's toxicokinetics. The framework then integrates the mode of action (MOA) and associated dose metric category with the exposure data to identify the appropriate approach(es) to low-dose extrapolation and level of concern associated with the exposure scenario. This framework provides risk managers with additional flexibility in risk management and risk communication options, beyond the binary choice of linear low-dose extrapolation vs. application of uncertainty factors.
Collapse
Affiliation(s)
| | - Lynne T Haber
- Risk Science Center, University of Cincinnati College of Medicine, USA
| | | | | | | |
Collapse
|
17
|
Hidalgo-Lopez E, Noachtar I, Pletzer B. Hormonal contraceptive exposure relates to changes in resting state functional connectivity of anterior cingulate cortex and amygdala. Front Endocrinol (Lausanne) 2023; 14:1131995. [PMID: 37522123 PMCID: PMC10374315 DOI: 10.3389/fendo.2023.1131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Hormonal contraceptives (HCs), nowadays one of the most used contraceptive methods, downregulate endogenous ovarian hormones, which have multiple plastic effects in the adult brain. HCs usually contain a synthetic estrogen, ethinyl-estradiol, and a synthetic progestin, which can be classified as androgenic or anti-androgenic, depending on their interaction with androgen receptors. Both the anterior cingulate cortex (ACC) and the amygdala express steroid receptors and have shown differential functionality depending on the hormonal status of the participant and the use of HC. In this work, we investigated for the first time the relationship between ACC and amygdala resting state functional connectivity (rs-FC) and HC use duration, while controlling for progestin androgenicity. Methods A total of 231 healthy young women participated in five different magnetic resonance imaging studies and were included in the final analysis. The relation between HC use duration and (i) gray matter volume, (ii) fractional amplitude of low-frequency fluctuations, and (iii) seed-based connectivity during resting state in the amygdalae and ACC was investigated in this large sample of women. Results In general, rs-FC of the amygdalae with frontal areas, and between the ACC and temporoparietal areas, decreased the longer the HC exposure and independently of the progestin's androgenicity. The type of HC's progestin did show a differential effect in the gray matter volume of left ACC and the connectivity between bilateral ACC and the right inferior frontal gyrus.
Collapse
Affiliation(s)
- Esmeralda Hidalgo-Lopez
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Isabel Noachtar
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
18
|
Voltan G, Mazzeo P, Regazzo D, Scaroni C, Ceccato F. Role of Estrogen and Estrogen Receptor in GH-Secreting Adenomas. Int J Mol Sci 2023; 24:9920. [PMID: 37373068 DOI: 10.3390/ijms24129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Acromegaly is a rare disease with several systemic complications that may lead to increased overall morbidity and mortality. Despite several available treatments, ranging from transsphenoidal resection of GH-producing adenomas to different medical therapies, complete hormonal control is not achieved in some cases. Some decades ago, estrogens were first used to treat acromegaly, resulting in a significant decrease in IGF1 levels. However, due to the consequent side effects of the high dose utilized, this treatment was later abandoned. The evidence that estrogens are able to blunt GH activity also derives from the evidence that women with GH deficiency taking oral estro-progestins pills need higher doses of GH replacement therapy. In recent years, the role of estrogens and Selective Estrogens Receptor Modulators (SERMs) in acromegaly treatment has been re-evaluated, especially considering poor control of the disease under first- and second-line medical treatment. In this review, we analyze the state of the art concerning the impact of estrogen and SERMs on the GH/IGF1 axis, focusing on molecular pathways and the possible implications for acromegaly treatment.
Collapse
Affiliation(s)
- Giacomo Voltan
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Pierluigi Mazzeo
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Daniela Regazzo
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Carla Scaroni
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Filippo Ceccato
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| |
Collapse
|
19
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS JOURNAL 2023; 31:57-92. [DOI: 10.1016/j.nfs.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Reis R, Dhawle R, Du Pasquier D, Tindall AJ, Frontistis Z, Mantzavinos D, de Witte P, Cabooter D. Electrochemical degradation of 17α-ethinylestradiol: Transformation products, degradation pathways and in vivo assessment of estrogenic activity. ENVIRONMENT INTERNATIONAL 2023; 176:107992. [PMID: 37244003 DOI: 10.1016/j.envint.2023.107992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.
Collapse
Affiliation(s)
- Rafael Reis
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Rebecca Dhawle
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - David Du Pasquier
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Andrew J Tindall
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece; School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Deirdre Cabooter
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
22
|
Carstensen L, Zippel R, Fiskal R, Börnick H, Schmalz V, Schubert S, Schaffer M, Jungmann D, Stolte S. Trace analysis of benzophenone-type UV filters in water and their effects on human estrogen and androgen receptors. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131617. [PMID: 37224711 DOI: 10.1016/j.jhazmat.2023.131617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
To carry out risk assessments of benzophenone-type UV filters (BPs), fast and accurate analytical methods are crucial to determine and monitor levels in the environment. This study presents an LC-MS/MS method that requires minimal sample preparation and yet can identify 10 different BPs in environmental samples such as surface or wastewater resulting in a LOQ range from 2 to 1060 ng/L. The method suitability was tested through environmental monitoring, which showed that, BP-4 is the most abundant derivative found in the surface waters of Germany, India, South Africa and Vietnam. BP-4 levels correlate with the WWTP effluent fraction of the respective river for selected samples in Germany. Peak values of 171 ng/L for 4-hydroxybenzophenone (4-OH-BP), as measured in Vietnamese surface water, already exceed the PNEC value of 80 ng/L, elevating 4-OH-BP to the status of a new pollutant that needs more frequent monitoring. Moreover, this study reveals that during biodegradation of benzophenone in river water, the transformation product 4-OH-BP is formed which contain structural alerts for estrogenic activity. By using yeast-based reporter gene assays, this study provides bio-equivalents of 9 BPs, 4-OH-BP, 2,3,4-tri-OH-BP, 4-cresol and benzoate and complements the existing structure-activities relationships of BPs and their degradation products.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Rene Zippel
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ron Fiskal
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Viktor Schmalz
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Hydrobiology, Technische Universität, 01069 Dresden, Germany; Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mario Schaffer
- Lower Saxony Water Management, Coastal Defence, and Nature Conservation Agency, 31135 Hildesheim, Germany
| | - Dirk Jungmann
- Institute of Hydrobiology, Technische Universität, 01069 Dresden, Germany; University of the Free State, Centre for Environmental Management, Faculty of Natural and Agricultural Sciences, Bloemfontein 9300, Republic of South Africa
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
23
|
Gravelsins L, Zhao S, Einstein G. Hormonal contraception and cognition: Considering the influence of endogenous ovarian hormones and genes for clinical translation. Front Neuroendocrinol 2023; 70:101067. [PMID: 37084896 DOI: 10.1016/j.yfrne.2023.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
Despite the well-known influence of ovarian hormones on the brain and widespread use of hormonal contraception (HC) since the 1960s, our knowledge of HC's cognitive effects remains limited. To date, the cognitive findings have been inconsistent. In order to establish what might make HC studies more consistent, we surveyed the literature on HCs and cognition to determine whether studies considered HC formulation, phase, pharmacokinetics, duration, and gene interactions, and assessed whether oversight of these factors might contribute to variable findings. We found that synthetic HC hormones exert dose-dependent effects, the day of oral contraceptive (Pill) ingestion is critical for understanding cognitive changes, and gene-cognition relationships differ in women taking the Pill likely due to suppressed endogenous hormones. When these factors were overlooked, results were not consistent. We close with recommendations for research more likely to yield consistent findings and be therefore, translatable.
Collapse
Affiliation(s)
- Laura Gravelsins
- University of Toronto, Address: 100 Saint George Street, Canada, Toronto, Ontario M5S 3G3.
| | - Sophia Zhao
- University of Toronto, Address: 100 Saint George Street, Canada, Toronto, Ontario M5S 3G3
| | - Gillian Einstein
- University of Toronto, Address: 100 Saint George Street, Canada, Toronto, Ontario M5S 3G3; Rotman Research Institute, Address: 3560 Bathurst St, Canada, North York, Ontario M6A 2E1; Linköping University, Address: SE-581 83 Linköping, Sweden
| |
Collapse
|
24
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
25
|
Rouge M, Drouault M, Hanoux V, Delalande C, Bouraïma-Lelong H. Ex vivo effects of 17β-estradiol on the prepubertal rat testis. Reprod Toxicol 2023; 118:108363. [PMID: 36931579 DOI: 10.1016/j.reprotox.2023.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Although it is well established that testis produces estrogens, their precise effect is not fully documented, particularly during the prepubertal period. In a previous in vivo study, we demonstrated that an exposure of prepubertal rats (15-30 days post-partum (dpp)) to 17β-estradiol (E2) delays the establishment of spermatogenesis. In order to characterize the mechanisms of action and the direct targets of E2 on the immature testis, we developed an organotypic culture model of testicular explants obtained from prepubertal rats (15, 20 and 25 dpp). To determine the involvement of nuclear estrogen receptors (ERs) in the effect of E2, particularly that of ESR1 which is the major ER expressed in the prepubertal testis, a pre-treatment with the full antagonist of this type of ERs (ICI 182.780) was performed. Histological analyses, gene expression studies and hormonal assays were conducted to investigate the effects of E2 on steroidogenesis- and spermatogenesis-related endpoints. Testicular explants from 15 dpp rats were unresponsive to E2 exposure while E2 effects were observed in those obtained from 20 and 25 dpp rats. An E2 exposure of testicular explants obtained from 20 dpp rats seemed to accelerate the establishment of spermatogenesis, whereas an E2 exposure of 25 dpp testicular explants induced a delay of this process. These effects could be related to the E2-induced modulation of steroidogenesis, and involved both ESR1-dependent and -independent mechanisms of action. Overall, this ex vivo study demonstrated differential age- and concentration-related effects of E2 on the testis during the prepubertal period.
Collapse
Affiliation(s)
- Marion Rouge
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France
| | | | | | | | | |
Collapse
|
26
|
Mustieles V, Balogh RK, Axelstad M, Montazeri P, Márquez S, Vrijheid M, Draskau MK, Taxvig C, Peinado FM, Berman T, Frederiksen H, Fernández MF, Marie Vinggaard A, Andersson AM. Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 173:107739. [PMID: 36805158 DOI: 10.1016/j.envint.2023.107739] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Benzophenone-3 (BP-3) and its major metabolite benzophenone-1 (BP-1) are widely used as UV filters in sunscreens and cosmetics to prevent sunburn and skin damage, or as stabilizers to prevent photodegradation in many commercial products. As a result, their presence is ubiquitous in the environment, wildlife and humans. Based on endocrine disruption concerns, international regulatory agencies are performing a closer evaluation. OBJECTIVE AND METHODS This work aimed to comprehensively review the available human relevant evidence for safety issues in MEDLINE/PubMed in order to create a structured database of studies, as well as to conduct an integrative analysis as part of the Human Biomonitoring for Europe (HBM4EU) Initiative. RESULTS A total of 1,635 titles and abstracts were screened and 254 references were evaluated and tabulated in detail, and classified in different categories: i) exposure sources and predictors; ii) human biomonitoring (HBM) exposure levels to perform a meta-analysis; iii) toxicokinetic data in both experimental animals and humans; iv) in vitro and in vivo rodent toxicity studies; and v) human data on effect biomarkers and health outcomes. Our integrative analysis showed that internal peak BP-3 concentrations achieved after a single whole-body application of a commercially available sunscreen (4% w/w) may overlap with concentrations eliciting endocrine disrupting effects in vitro, and with internal concentrations causing in vivo adverse female reproductive effects in rodents that were supported by still limited human data. The adverse effects in rodents included prolonged estrous cycle, altered uterine estrogen receptor gene expression, endometrium hyperplasia and altered proliferation and histology of the mammary gland, while human data indicated menstrual cycle hormonal alterations and increased risk of uterine fibroids and endometriosis. Among the modes of action reported (estrogenic, anti-androgenic, thyroid, etc.), BP-3 and especially BP-1 showed estrogenic activity at human-relevant concentrations, in agreement with the observed alterations in female reproductive endpoints. The meta-analysis of HBM studies identified a higher concern for North Americans, showing urinary BP-3 concentrations on average 10 and 20 times higher than European and Asian populations, respectively. DISCUSSION AND CONCLUSIONS Our work supports that these benzophenones present endocrine disrupting properties, endorsing recent European regulatory efforts to limit human exposure. The reproducible and comprehensive database generated may constitute a point of departure in future risk assessments to support regulatory initiatives. Meanwhile, individuals should not refrain from sunscreen use. Commercially available formulations using inorganic UV filters that are practically not absorbed into systemic circulation may be recommended to susceptible populations.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Ria K Balogh
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Parisa Montazeri
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Márquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martine Vrijheid
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Monica K Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francisco M Peinado
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem 9101002, Israel
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
27
|
Ma QG, Wan YP, Liu ZH, Dang Z. Simultaneous trace determination of three natural estrogens and their sulfate and glucuronide conjugates in municipal waste and river water samples with UPLC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27357-27371. [PMID: 36378384 DOI: 10.1007/s11356-022-24120-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Analytical method for three natural estrogens (NEs) and their sulfate and glucuronide conjugates in waste and river waters using solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) has been available, but problems including poor recovery exist. In order to solve these, some optimizations have been performed in this work. For sample preparation, both rinse and elution solutions were optimized, in which 6 mL of MeOH/water (1:9, v/v), MeOH/Ace/water (10:2:88, v/v/v), and MeOH/NH4OH/water (10:2:88, v/v/v) were determined as the rinse solution, while 6 mL of 2.0% NH4OH/MeOH was determined as the elution solution for conjugated NEs (C-NEs). For mobile phase, addition of NH4F could obviously enhance the signal response of the nine target compounds, and the optimized addition concentration was 0.5 mmol/L. The developed efficient method was validated and showed excellent linearity for each target compound (R2 > 0.998), low limit of quantifications (LOQs, 0.07-1.29 ng/L) in four different water matrices, and excellent recovery efficiencies of 81.0-116.1% in influent, effluent, ultra-pure, and river water samples with low relative standard deviations (RSDs, 0.6-13.6%). The optimized method was successfully applied to influent, effluent, and Pearl River water, among which three NEs were all detected, while five C-NEs were found in the influent, three C-NEs were detected in the effluent, and two C-NEs were found in the Pearl River water, indicating the wide distribution of NEs and C-NEs in different water environments. This work provided a reliable and efficient analytical method for simultaneous trace determination of NEs and C-NEs, which had satisfactory absolute recoveries with low RSDs, low LOQs, and time-saving for both analysis and nitrogen drying.
Collapse
Affiliation(s)
- Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
28
|
Eze CT, Otitoloju AA, Eze OO, Ugochukwu TE, Onodugo C, Ali AM, Lyche JL, Karlsen OA, Goksøyr A. West African e-waste-soil assessed with a battery of cell-based bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159068. [PMID: 36179844 DOI: 10.1016/j.scitotenv.2022.159068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Soil samples randomly taken from major e-waste sites in West Africa (Nigeria, Benin and Ghana) were examined for an extensive range of organic contaminants. Cytotoxicity measurements and assessment of activation of xeno-sensing receptors from fish (Atlantic cod) were employed as a battery of in vitro biological assays to explore the quality and toxicity profile of West African e-waste soil. The concentrations of the measured contaminants of emerging concerns (CECs) and persistent organic pollutants (POPs) in the e-waste soil differs significantly from the reference soil with chemical profiles typically dominated by legacy polybrominated diphenyl ethers (PBDEs) (405.8 μgkg-1) and emerging organophosphate ester flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) (404 μgkg-1), in addition to the short chain perfluorobutane sulfonate (PFBS) (275.3 μgkg-1) and perfluorobutanoate (PFBA) (16 μgkg-1). The study revealed that perfluorooctanoic acid (PFOA) occurred only in e-waste soil from Ghana and ranged from 2.6 to 5.0 μgkg-1. Overall, non-polar e-waste soil-derived extracts had a stronger effect on COS-7 cell viability than the polar extracts and elutriates. The highest receptor activation was observed with single polar and non-polar extracts from the Nigeria and Benin sites, indicating hotspots with Er-, PPARa- and Ahr-agonist activities. Thus, the results obtained with our battery of in vitro biological assays underscored these e-waste sites as remarkably polluted spots with complex toxicity profiles of great concern for human and environmental health.
Collapse
Affiliation(s)
- Chukwuebuka ThankGod Eze
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria; Department of Zoology, University of Lagos, Akoka-Yaba, Lagos State, Nigeria; Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | | | | | | | - Chinemelum Onodugo
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Aasim Musa Ali
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O 1870 Nordnes, NO-5817 Bergen, Norway
| | - Jan Ludvig Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Hampson E. Oral contraceptives in the central nervous system: Basic pharmacology, methodological considerations, and current state of the field. Front Neuroendocrinol 2023; 68:101040. [PMID: 36243109 DOI: 10.1016/j.yfrne.2022.101040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Millions of women around the world use combined oral contraceptives (OCs), yet surprisingly little is known about their central nervous system (CNS) effects. This article provides a short overview of the basic pharmacology of OCs, emphasizing features that may be relevant to understanding their effects in the CNS. Historical and recent findings from studies of cognitive function, mood, and negative affect (depressive changes under OC use) are then reviewed. We also present data from an archival dataset from our own laboratory in which we explore dysphoric changes in women using four generations of contraceptive progestins. Current data in the field are consistent with a modest effect of OC use on CNS variables, but conclusions based on current findings must be made very cautiously because of multiple methodological issues in many published studies to date, and inconsistencies in the findings. Directions for future research over the next 10 years are suggested. (150 words).
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
30
|
Muthukumaravel K, Kanagavalli V, Pradhoshini KP, Vasanthi N, Santhanabharathi B, Alam L, Musthafa MS, Faggio C. Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109492. [PMID: 36283648 DOI: 10.1016/j.cbpc.2022.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
Collapse
Affiliation(s)
- Kannayiram Muthukumaravel
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, Tamil Nadu 614 701, India
| | | | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Natarajan Vasanthi
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, Tamil Nadu 614 701, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 S.Agata-Messina, Italy.
| |
Collapse
|
31
|
Franssen D, Johansson HKL, Lopez-Rodriguez D, Lavergne A, Terwagne Q, Boberg J, Christiansen S, Svingen T, Parent AS. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1140886. [PMID: 37077353 PMCID: PMC10108553 DOI: 10.3389/fendo.2023.1140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. DESIGN Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d). RESULTS Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. CONCLUSION nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- *Correspondence: Delphine Franssen,
| | | | | | - Arnaud Lavergne
- GIGA-Bioinformatics, GIGA Institute, Université de Liège, Liège, Belgium
| | - Quentin Terwagne
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liege, Liege, Belgium
| |
Collapse
|
32
|
The role of ovarian hormones in the pathophysiology of perimenopausal sleep disturbances: A systematic review. Sleep Med Rev 2022; 66:101710. [PMID: 36356400 DOI: 10.1016/j.smrv.2022.101710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Sleep disturbance is a common clinical concern throughout the menopausal transition. However, the pathophysiology and causes of these sleep disturbances remain poorly understood, making it challenging to provide appropriate therapy. Our goal was to i) review the literature about the influence of ovarian hormones on sleep in perimenopausal women, ii) summarize the potential underlying pathophysiology of menopausal sleep disturbances and iii) evaluate the implications of these findings for the therapeutic approach to sleep disturbances in the context of menopause. A systematic literature search using the databases Embase, MEDLINE and Cochrane Library was conducted. Keywords relating to ovarian hormones, sleep disturbances and menopause were used. Ultimately, 86 studies were included. Study Quality Assessment Tools of the National Institutes of Health were used for quality assessment. Results from good-quality studies demonstrated that the postmenopausal decline in estrogen and progesterone contributes to sleep disturbances in women and that timely treatment with estrogen and/or progesterone therapy improved overall sleep quality. Direct and indirect effects of both hormones acting in the central nervous system and periphery, as well as via secondary effects (e.g. reduction in vasomotor symptoms), can contribute to improvements in sleep. To strengthen external validity, studies examining neurobiological pathways are needed.
Collapse
|
33
|
Jung W, Seok SH, Shin S, Ryu SH, Kim KB, Shin BS, Kim TH. Toxicokinetics, Percutaneous Absorption and Tissue Distribution of Benzophenone-3, an UV Filtering Agent, in Rats. TOXICS 2022; 10:672. [PMID: 36355963 PMCID: PMC9697188 DOI: 10.3390/toxics10110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate in vitro skin permeation and deposition, in vivo toxicokinetics, percutaneous absorption and tissue distribution of benzophenone-3 (BP-3) in rats. Four transdermal formulations containing BP-3 were prepared and evaluated for in vitro skin permeation and deposition of BP-3 using Franz diffusion cells. A gel formulation was used in subsequent in vivo percutaneous absorption due to its high in vitro skin permeation and deposition. Compared to intravenous (i.v.) injection, the prolonged terminal t1/2 (3.1 ± 1.6 h for i.v. injection and 18.3 ± 5.8 h for topical application) was observed indicating occurrence of flip-flop kinetics after topical application. The bioavailability of BP-3 after topical application was 6.9 ± 1.8%. The tissue-to-plasma partition coefficient (kp) for testis, considered a toxic target for BP-3, was less than 1.. Overall, findings of this study may be useful for risk assessment of BP-3.
Collapse
Affiliation(s)
- Woohyung Jung
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Korea
| | - Su Hyun Seok
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi, Korea
| | - Soyoung Shin
- College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Korea
| | - Sung Ha Ryu
- College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Korea
- R&D Center, GL Pharm Tech Corp., Seongnam-si 13202, Gyeonggi, Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi, Korea
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Korea
| |
Collapse
|
34
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
35
|
Biobased diglycidyl ether diphenolates: Effect of the ester moiety on fragrance oil microencapsulation by interfacial polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Carstensen L, Beil S, Börnick H, Stolte S. Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128495. [PMID: 35739676 DOI: 10.1016/j.jhazmat.2022.128495] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-type UV filters (BPs) represent a very diverse group of chemicals that are used across a range of industrial sectors around the world. They are found within different environmental compartments (e.g. surface water, groundwater, wastewater, sediments and biota) at concentrations ranging from ng/L to mg/L. Some are known as endocrine disruptors and are currently within the scope of international regulations. A structural alert for high potential of endocrine disrupting activity was assigned to 11 BP derivatives. Due to the widespread use, distribution and disruptive effects of some BPs, knowledge of their elimination pathways is required. This review demonstrates that biodegradation and photolytic decomposition are the major elimination processes for BP-type UV filters in the environment. Under aerobic conditions, transformation pathways have only been reported for BP, BP-3 and BP-4, which are also the most common derivatives. Primary biodegradation mainly results in the formation of hydroxylated BPs, which exhibit a structure-related increase in endocrine activity when compared to their parent substances. By combining 76 literature-based transformation products (TPs) with in silico results relating to their receptor activity, it is demonstrated that 32 TPs may retain activity and that further knowledge of the degradation of BPs in the environment is needed.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
37
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. Update to RIFM fragrance ingredient safety assessment, eugenol, CAS Registry Number 97-53-0. Food Chem Toxicol 2022; 163 Suppl 1:113027. [PMID: 35439588 DOI: 10.1016/j.fct.2022.113027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel for Fragrance Safety, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
38
|
Wang X, Amason AC, Lei Y, Gabbard R, Wieland JA, Gross RA. Bio-based alternative for encapsulating fragrance oils in epoxy resin microcapsules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
McLean MK, Geary TW, Zezeski AL, Smith MF, Spencer TE, Pohler KG, Reese ST, Perry GA. Impact of preovulatory estradiol concentrations on subsequent luteal function in beef cattle. Syst Biol Reprod Med 2022; 68:286-297. [PMID: 35394393 DOI: 10.1080/19396368.2022.2038717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been hypothesized that circulating concentrations of estradiol during the preovulatory period, can impact subsequent progesterone concentrations. Ovulation was synchronized in nonlactating beef cows (n = 53). Cows that exhibited estrus before gonadotrophin-releasing hormone (GnRH)-induced ovulation (d 0) had greater (p<.01) peak concentrations of estradiol compared with cows that did not express estrus (11.5 ± 0.8 vs. 6.2 ± 0.6 pg/mL), respectively, but there was no difference in ovulatory follicle size (p= .80) or interval from GnRH2 to ovulation (p=.23). Circulating concentrations of progesterone during luteal formation (d 3-7; p=.70 and p=.77) or mid-luteal phase (d 8-14; p=.39 and p=.12) were not affected by elevated periovulatory estradiol or an interaction with day. To investigate the direct influence of estradiol on luteal function, ovulation (d 0) was synchronized in nonlactating beef cows and cows were allocated to three groups (control, n = 5; vehicle injection, n = 4; or an estradiol antagonist (Fulvestrant; ICI 182,780), n = 4. Intrafollicular injection of vehicle (100 µL) or an estradiol antagonist (25 μg Fulvestrant in 100 µL) into the largest follicle occurred on d -2. Concentrations of estradiol increased (p<.0001) from d -2 to 0 but did not differ among groups (p>.50). Furthermore, plasma concentrations of progesterone on d 0 through 20 were not affected by treatment (p=.86). These results indicate that elevated preovulatory estradiol before ovulation was not required to prepare granulosa cells for luteinization or subsequent luteal progesterone secretion but did tend to impact luteal lifespan.
Collapse
Affiliation(s)
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Lab, Miles City, MT, USA
| | - Abby L Zezeski
- USDA-ARS, Fort Keogh Livestock and Range Research Lab, Miles City, MT, USA
| | | | | | - Ky G Pohler
- Texas A&M University, College Station, TX, USA
| | | | - George A Perry
- Texas A&M AgriLife Research and Extension Center, Overton, TX, USA
| |
Collapse
|
40
|
Sun H, Huang K, Zhang X, Ren H, Ye L. Stable isotope probing reveals specific assimilating bacteria of refractory organic compounds in activated sludge. WATER RESEARCH 2022; 212:118105. [PMID: 35074670 DOI: 10.1016/j.watres.2022.118105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Activated sludge in wastewater treatment bioreactors contains diverse bacteria, while little is known about the community structure of bacteria responsible for degradation of refractory organic compounds (ROCs). In this study, 10 ROCs frequently detected in sewage were investigated, and the potential bacteria degrading these ROCs were analyzed by DNA stable isotope probing and high-throughput sequencing. The results showed that the bacterial communities responsible for degradation of different ROCs were largely different. A total of 84 bacterial genera were found to be involved in degrading at least one of the 10 ROCs, however, only six genera (Acinetobacter, Bacteroides, Bosea, Brevundimonas, Lactobacillus and Pseudomonas) were common to all 10 ROCs. This suggests that different ROCs may have specific assimilating bacteria in the activated sludge. Our results also showed that these ROC-degrading bacteria are difficult to isolate by conventional methods and that most of them have relatively low relative abundance in municipal wastewater treatment bioreactors. Development of new technologies to increase the abundance and activity of these bacteria may significantly improve the removal efficiency of ROCs from wastewater.
Collapse
Affiliation(s)
- Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Katti PA, Goundadkar BB. Waves of follicle development, growth and degeneration in adult ovary of zebrafish (Danio rerio) on chronic exposure to environmental estrogens in laboratory. Reprod Toxicol 2022; 110:31-38. [PMID: 35331892 DOI: 10.1016/j.reprotox.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Patterns of quantitative production of follicles, their growth, and degeneration in the adult ovary of zebrafish (Danio rerio) in response to long-term (80 days) exposure to environmental estrogens (EE) in the laboratory, were studied. Experimentally naive female D. rerio procured from fish farm were acclimated to the laboratory (natural temperature, 26 ± 1° C, photoperiod, 11.30 L:12.30 D) for two weeks and divided into 10 groups. Each group (n = 20) was housed in a separate glass aquarium containing 10 L of conditioned water (physico-chemical parameters maintained within the permissible range prescribed for zebrafish) along with either 5 ng or 10 ng/L of 17α-ethynylestradiol (EE2) or diethylstilbestrol (DES) or bisphenol A (BPA) or estradiol 17-β (positive control) or water with no chemical (negative control). All experimental fish were fed twice daily on commercial pellets (ad libitum) supplemented with Artemia nauplius, the exposure was semi-static and chemical residues in media samples were determined by ultra-performance liquid chromatography (UPLC). Exposure of fish to estrogens increased (p < 0.05) (i) body mass and gonadosomatic indices (GSI) in E2, EE2 and DES groups (ii) previtellogenic and vitellogenic follicles in E2 and EE2 groups (iii) atretic follicles (AF) in DES and BPA groups compared to controls and (iv) decrease in total oocyte volumes (V = 4/3. π. r3) compared to those of E2 group. These results suggest that the chronic exposure of fish to EE (at environmentally relevant concentrations) has a profound influence on ovarian follicular dynamics and the effects of individual EE are discrete on the ovary.
Collapse
Affiliation(s)
- Pancharatna A Katti
- Department of Zoology, Karnatak University, Dharwad 580003, Karnataka, India.
| | - Basavaraj B Goundadkar
- Department of Zoology, Govindram Seksaria Science College, Belagavi 590006, Karnataka, India.
| |
Collapse
|
42
|
Uyar R, Yurdakok-Dikmen B, Turgut Y, Filazi A. Diethylhexyl Phthalate and Bisphenol A Promote Vincristine and Tamoxifen Resistance in Vitro. Chem Res Toxicol 2022; 35:538-546. [PMID: 35263089 DOI: 10.1021/acs.chemrestox.2c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental estrogen active compounds are strong determinants of estrogen receptor (ER)-positive breast cancers, and increased evidence indicates their contribution to chemotherapy resistance. In the current study, the efficacy of vincristine and tamoxifen, with the presence of diethylhexyl phthalate (DEHP) and bisphenol A (BPA) and the possible involvement of estrogen and estrogen receptor-related mechanisms, was evaluated in an ER+ mammary tumor cancer cell line, MCF-7. Chemotherapeutics tamoxifen as an estrogen receptor modulator and vincristine as an antimitotic compound were selected for evaluation against the presence of common endocrine disrupters. BPA and DEHP preincubation at their proliferative concentrations for 4 h was found to decrease the cytotoxicity of vincristine. mRNA and protein expression of ESR1 and ESR 2 were decreased by vincristine, while this decrease was reversed by DEHP and BPA. Both BPA and DEHP were able to interfere with the cytotoxic activity of vincristine against MCF-7 cells through ESR1 and ESR2. This study provides in vitro toxicological evidence for vincristine resistance and its relation to estrogen active environmental pollutants in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Recep Uyar
- Institute of Health Sciences, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| | - Begum Yurdakok-Dikmen
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| | - Yagmur Turgut
- Institute of Health Sciences, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| | - Ayhan Filazi
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, 06110 Ankara, Turkey
| |
Collapse
|
43
|
Estrogenic Action in Stress-Induced Neuroendocrine Regulation of Energy Homeostasis. Cells 2022; 11:cells11050879. [PMID: 35269500 PMCID: PMC8909319 DOI: 10.3390/cells11050879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Estrogens are among important contributing factors to many sex differences in neuroendocrine regulation of energy homeostasis induced by stress. Research in this field is warranted since chronic stress-related psychiatric and metabolic disturbances continue to be top health concerns, and sex differences are witnessed in these aspects. For example, chronic stress disrupts energy homeostasis, leading to negative consequences in the regulation of emotion and metabolism. Females are known to be more vulnerable to the psychological consequences of stress, such as depression and anxiety, whereas males are more vulnerable to the metabolic consequences of stress. Sex differences that exist in the susceptibility to various stress-induced disorders have led researchers to hypothesize that gonadal hormones are regulatory factors that should be considered in stress studies. Further, estrogens are heavily recognized for their protective effects on metabolic dysregulation, such as anti-obesogenic and glucose-sensing effects. Perturbations to energy homeostasis using laboratory rodents, such as physiological stress or over-/under- feeding dietary regimen prevalent in today’s society, offer hints to the underlying mechanisms of estrogenic actions. Metabolic effects of estrogens primarily work through estrogen receptor α (ERα), which is differentially expressed between the sexes in hypothalamic nuclei regulating energy metabolism and in extrahypothalamic limbic regions that are not typically associated with energy homeostasis. In this review, we discuss estrogenic actions implicated in stress-induced sex-distinct metabolic disorders.
Collapse
|
44
|
He S, Xiao H, Luo S, Li X, Zhang JD, Ren XM, Yang Y, Xie XD, Zhou YY, Yin YL, Luo L, Cao LY. Benzotriazole Ultraviolet Stabilizers Promote Breast Cancer Cell Proliferation via Activating Estrogen-Related Receptors α and γ at Human-Relevant Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2466-2475. [PMID: 35099937 DOI: 10.1021/acs.est.1c03446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are ubiquitous emerging pollutants that have been reported to show estrogenic disruption effects through interaction with the classic estrogen receptors (ERs) in the fashion of low activity. The present study aims at revealing the potential disruption mechanism via estrogen-related receptors α and γ (ERRα and ERRγ) pathways. By the competitive binding assay, we first found that BUVSs bond to ERRγ ligand binding domain (ERRγ-LBD) with Kd ranging from 0.66 to 19.27 μM. According to the results of reporter gene assays, the transcriptional activities of ERRα and ERRγ were promoted by most tested BUVSs with the lowest observed effective concentrations (LOEC) from 10 to 100 nM, which are in the range of human exposure levels. At 1 μM, most tested BUVSs showed higher agonistic activity toward ERRγ than ERRα. The most effective two BUVSs promoted the MCF-7 proliferation dependent on ERRα and ERRγ with a LOEC of 100 nM. The molecular dynamics simulation showed that most studied BUVSs had lower binding free energy with ERRγ than with ERRα. The structure-activity relationship analysis revealed that molecular polarizability, electron-donating ability, ionization potential, and softness were the main structural factors impacting the binding of BUVSs with ERRγ. Overall, our results provide novel insights into the estrogenic disruption effects of BUVSs.
Collapse
Affiliation(s)
- Sen He
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Xin Li
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Xiao-Min Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Xian-De Xie
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Yao-Yu Zhou
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, 1 Nongda Road, Furong District, Changsha 410128, China
| |
Collapse
|
45
|
Černá T, Ezechiáš M, Semerád J, Grasserová A, Cajthaml T. Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127108. [PMID: 34523467 DOI: 10.1016/j.jhazmat.2021.127108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Mixture toxicity, including agonistic and antagonistic effects, is an unrevealed environmental problem. Estrogenic endocrine disruptors are known to cause adverse effects for aquatic biota, but causative chemicals and their contributions to the total activity in sewage sludge remain unknown. Therefore, advanced analytical methods, a yeast bioassay and mixture toxicity models were concurrently applied for the characterization of 8 selected sludges with delectable estrogenic activity (and 3 sludges with no activity as blanks) out of 25 samples from wastewater treatment plants (WWTPs). The first applied full logistic model adequately explained total activity by considering the concentrations of the monitored compounds. The results showed that the activity was primarily caused by natural estrogens in municipal WWTP sludge. Nevertheless, activity in a sample originating from a car-wash facility was dominantly caused by partial agonists - nonylphenols - and only a model enabling prediction of all dose-response curve parameters of the final mixture curve explained these results. Antiestrogenic effects were negligible, and effect-directed analysis identified the causative chemicals.
Collapse
Affiliation(s)
- Tereza Černá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Martin Ezechiáš
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic.
| |
Collapse
|
46
|
Liu H, Lin X, Xu D, Li J, Fang J, Li J, Meng L, Zeng X, Li Y, Huang J, Guo Z, Zhang X. Radioiodinated Ethinylestradiol Derivatives for Estrogen Receptor Targeting Breast Cancer Imaging. ACS Med Chem Lett 2022; 13:203-210. [PMID: 35178176 PMCID: PMC8842134 DOI: 10.1021/acsmedchemlett.1c00559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Two novel PEGylated ethinylestradiol (PEG = poly(ethylene glycol)) estrogen receptor (ER) targeting probes [131I]EITE and [131I]MITE were synthesized and evaluated. Both probes had a nanomolar binding affinity to the ER receptor (36.47 nM for [131I]EITE and 61.83 nM for [131I]MITE). They showed high uptake in ER-positive MCF-7 cells and tumors, which could be significantly blocked by a coinjection of excess estradiol. Their ER specificities were further demonstrated by the low uptake in ER-negative MDA-MB-231 cells and tumors. The maximum tumor-to-muscle (T/M) ratios reach to 6.59 for [131I]EITE at 1 h postinjection (p.i.) and to 3.69 for [131I]MITE at 2 h p.i. in MCF-7 tumors. Among these two probes, [131I]EITE showed a faster tumor accumulation and a higher T/M ratio indicating it could be a better candidate for the potential diagnosis of ER-positive breast cancers.
Collapse
Affiliation(s)
- Huanhuan Liu
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoru Lin
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Duo Xu
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jingchao Li
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingxin Meng
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinying Zeng
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Yesen Li
- The
First Affiliated Hospital, Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- The
First Affiliated Hospital, Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China,
| | - Xianzhong Zhang
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China,
| |
Collapse
|
47
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
48
|
Qi SY, Xu XL, Ma WZ, Deng SL, Lian ZX, Yu K. Effects of Organochlorine Pesticide Residues in Maternal Body on Infants. Front Endocrinol (Lausanne) 2022; 13:890307. [PMID: 35757428 PMCID: PMC9218079 DOI: 10.3389/fendo.2022.890307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
There are many organochlorine pollutants in the environment, which can be directly or indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause damage to the lactation capacity of the mammary gland. In addition, because breast milk contains a lot of nutrients, it is the most important food source for new-born babies. If mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine contaminants can accumulate in breast milk fat and be passed to the infant through breast milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk to estimate the health risks of these contaminants to breastfed infants. In addition, toxic substances in the mother can also be passed to the fetus through the placenta, which is also something we need to pay attention to. This article introduces several types of OCPs, such as dichlorodiphenyltrichloroethane (DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and hexachlorobenzene (HCB), mainly expounds their effects on women's lactation ability and infant health, and provides reference for maternal and infant health. In addition, some measures and methods for the control of organochlorine pollutants are also described here.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Ling Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| |
Collapse
|
49
|
Arao Y, Korach KS. The physiological role of estrogen receptor functional domains. Essays Biochem 2021; 65:867-875. [PMID: 34028522 PMCID: PMC8611119 DOI: 10.1042/ebc20200167] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
Estrogen receptor (ER) is a member of the nuclear receptor superfamily whose members share conserved domain structures, including a DNA-binding domain (DBD) and ligand-binding domain (LBD). Estrogenic chemicals work as ligands for activation or repression of ER-mediated transcriptional activity derived from two transactivation domains: AF-1 and AF-2. AF-2 is localized in the LBD, and helix 12 of the LBD is essential for controlling AF-2 functionality. The positioning of helix 12 defines the ER alpha (ERα) ligand properties as agonists or antagonists. In contrast, it is still less well defined as to the ligand-dependent regulation of N-terminal AF-1 activity. It has been thought that the action of selective estrogen receptor modulators (SERMs) is mediated by the regulation of a tissue specific AF-1 activity rather than AF-2 activity. However, it is still unclear how SERMs regulate AF-1 activity in a tissue-selective manner. This review presents some recent observations toward information of ERα mediated SERM actions related to the ERα domain functionality, focusing on the following topics. (1) The F-domain, which is connected to helix 12, controls 4-hydroxytamoxifen (4OHT) mediated AF-1 activation associated with the receptor dimerization activity. (2) The zinc-finger property of the DBD for genomic sequence recognition. (3) The novel estrogen responsive genomic DNA element, which contains multiple long-spaced direct-repeats without a palindromic ERE sequence, is differentially recognized by 4OHT and E2 ligand bound ERα transactivation complexes.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH
| |
Collapse
|
50
|
Lee SR, Jeong SH, Heo JH, Jo SL, Ko JW, Kwun HJ, Hong EJ. Dietary Intake of 17α-Ethinylestradiol Promotes HCC Progression in Humanized Male Mice Expressing Sex Hormone-Binding Globulin. Int J Mol Sci 2021; 22:12557. [PMID: 34830439 PMCID: PMC8620028 DOI: 10.3390/ijms222212557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a male-oriented malignancy; its progression is affected by sex hormones. 17α-ethinylestradiol (EE2) is a synthetic estrogen widely used as an oral contraceptive; however, it is unknown whether EE2 regulates sex hormone action in HCC. We investigated whether EE2 influences HCC risk in male androgenic environments, using mice expressing human sex hormone-binding globulin (SHBG). Two-week-old male mice were injected with diethyl-nitrosamine (DEN, 25 mg/kg) and fed an EE2 diet for 10 weeks from 30 weeks of age. Development and characteristics of liver cancer were evaluated in 40-week-old mice via molecular and histological analyses. Although EE2 did not increase HCC progression in wild-type mice, SHBG mice exhibited remarkably higher HCC risk when fed EE2. The livers of EE2-treated SHBG mice exhibited substantially increased pro-inflammatory necrosis with high plasma levels of ALT and HMGB1, and intrahepatic injury and fibers. Additionally, increased androgen response and androgen-mediated proliferation in the livers of EE2-treated SHBG mice and EE2-exposed hepatocytes under SHBG conditions were observed. As a competitor of SHBG-androgen binding, EE2 could bind with SHBG and increase the bioavailability of androgen. Our results revealed that EE2 is a novel risk factor in androgen-dominant men, predisposing them to HCC risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (S.H.J.); (J.H.H.); (S.L.J.); (J.-W.K.); (H.-J.K.)
| |
Collapse
|