1
|
Hemmaphan S, Bordeerat NK. Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074307. [PMID: 35409986 PMCID: PMC8998702 DOI: 10.3390/ijerph19074307] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
Exposure to lead (Pb) continues to be a significant worldwide problem. Pb is a highly poisonous heavy metal affecting several organ systems in the body. Although Pb has been shown to be genotoxic to experimental animals and humans, the underlying mechanisms are still not understood. An indirect mechanism related to the inhibition of DNA repair systems by Pb has been suggested. Heavy metals can interfere with the activities of several proteins and gene expressions. Recent studies gathered in this review article demonstrated an altered expression of DNA repair genes due to Pb toxicity. However, their findings are conflicting. Furthermore, the interaction of Pb and epigenetic mechanisms regulating gene expression may have a crucial role in the inhibition of DNA repair systems. Therefore, additional studies are needed to evaluate these findings and to obtain a complete picture of the genotoxic properties of Pb and the underlying mechanisms that may have a crucial role in carcinogenesis.
Collapse
Affiliation(s)
- Sirirak Hemmaphan
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit 12121, Thailand;
| | - Narisa K. Bordeerat
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit 12121, Thailand
- Correspondence: ; Tel.: +66-81-912-2694
| |
Collapse
|
2
|
Xing M, Jin X, Wang J, Shi Q, Cai J, Xu S. The Antagonistic Effect of Selenium on Lead-Induced Immune Dysfunction via Recovery of Cytokine and Heat Shock Protein Expression in Chicken Neutrophils. Biol Trace Elem Res 2018; 185:162-169. [PMID: 29264824 DOI: 10.1007/s12011-017-1200-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022]
Abstract
Lead (Pb) is a ubiquitous and toxic heavy metal and it can damage the immune system in humans and animals. Many researchers have reported that Selenium (Se) could possess various pharmacological effects in mammals. However, few studies have been carried out to investigate the protective role of Se in birds, especially in chickens. In this study, we investigated the protective effects of Se against Pb-induced inflammatory responses and the expression of heat shock proteins (HSPs) in peripheral blood neutrophils. One hundred eighty Hy-Line brown chickens were randomly divided into the control group (Con group), Se supplementation group (+Se group), Pb supplementation group (+Pb group), and the Se and Pb compound group (Se+Pb group). On the 90th day of the experiment, the peripheral blood was collected to extract neutrophils, and then, the levels of HSPs and cytokines were examined. The results showed that, after Pb treatment, the levels of IL-(1β, 1R, 4, 8, 10, and 12β), TGF-β4, and HSP (27, 40, 60, 70, and 90) mRNA were significantly increased and levels of IL-2 and IFN-γ mRNA were decreased compared with those in the control group. Compared with the control group, the protein levels of HSP60 and HSP70 were also increased in the Pb treatment group. Co-administration of Se (1 mg/kg/day) and Pb resulted in a reversal of the Pb-induced cytokine changes in neutrophils accompanied by a significant decrease in HSPs. Our study demonstrated that Pb could decrease the immune function via changing the expression of cytokines and HSPs in chicken neutrophils, but Se could relieve the toxic effect induced by Pb.
Collapse
Affiliation(s)
- Mengyuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinliang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, 256600, People's Republic of China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Ag Seleci D, Seleci M, Stahl F, Scheper T. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Adv 2017. [DOI: 10.1039/c7ra05071b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of nanoscale drug delivery systems, which can mediate efficient tumor targeting together with high cellular internalization, is crucial for glioma treatment.
Collapse
Affiliation(s)
- Didem Ag Seleci
- Institute of Technical Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| | - Muharrem Seleci
- Institute of Technical Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| | - Frank Stahl
- Institute of Technical Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| | - Thomas Scheper
- Institute of Technical Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| |
Collapse
|
4
|
Jayakumar AR, Tong XY, Curtis KM, Ruiz-Cordero R, Shamaladevi N, Abuzamel M, Johnstone J, Gaidosh G, Rama Rao KV, Norenberg MD. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies. J Neurochem 2014; 131:333-47. [PMID: 25040426 PMCID: PMC4364553 DOI: 10.1111/jnc.12810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/16/2014] [Accepted: 06/22/2014] [Indexed: 12/23/2022]
Abstract
Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over-expressed, reversed (by approx 75%) the reduction in synaptic proteins. NF-kB = nuclear factor kappa B; PSD95 = post-synaptic density protein 95; ONS = oxidative/nitrative stress.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang Y, Xu S, Liu J, Zhang Y, Guo TL. Regulation of lead toxicity by heat shock protein 90 (daf-21) is affected by temperature in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:317-322. [PMID: 24726945 DOI: 10.1016/j.ecoenv.2014.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
In the nematode Caenorhabditis elegans, stress resistance can be regulated by dauer formation (daf) genes. In the present study, regulation of heavy metal lead (Pb) toxicity by the 90-kDa heat shock proteins (Hsp90; daf-21) was investigated in both wild-type C. elegans and daf-21/Hsp90 mutants by focusing on the effects of varied temperatures below (15°C) or above (25 and 30°C) the presumptive optimum growth temperature (20°C). More acute toxicity of Pb, indicated by the 24-h median lethal concentrations (LC50), was observed in wild-type adults than in the daf-21 mutant adults at 15, 20 and 25°C; however, the daf-21 mutant adults showed more sensitivity at 30°C. Enhanced Pb sensitivity (e.g., decrease LC50) in both types of C. elegans was observed with both increased and decreased temperatures when compared to that at 20°C. Additional examined endpoints included time course of toxicity at LC50s, pharyngeal pumping, reproduction, life span, and Hsp90 expression. Collective results showed that temperatures both above and below 20°C exacerbated Pb toxicity, and that the protein level of daf-21/Hsp90 was one of the most sensitive indicators of Pb toxicity in wild-type C. elegans, while pharyngeal pumping was more Pb sensitive in daf-21 mutants. Therefore, the expression of daf-21/Hsp90 has apparent utility for the prediction and assessment of Pb-induced toxicity in nematodes. Further, the stress responses related to Hsp90 expression in C. elegans may have considerable potential as sensitive biomarkers for the monitoring of environmental Pb contamination.
Collapse
Affiliation(s)
- Yunbiao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382, USA
| | - Songbai Xu
- Department of Neurosurgery, First Hospital, Jilin University, Changchun 130021, China
| | - Jing Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanhui Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382, USA.
| |
Collapse
|
6
|
Hu Q, Gao X, Gu G, Kang T, Tu Y, Liu Z, Song Q, Yao L, Pang Z, Jiang X, Chen H, Chen J. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel. Biomaterials 2013; 34:5640-50. [PMID: 23639530 DOI: 10.1016/j.biomaterials.2013.04.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023]
Abstract
By taking advantage of the excessively upregulated expression of neuropilin (NRP) on the surface of both glioma cells and endothelial cells of angiogenic blood vessels, the ligand of NRP with high affinity - tLyp-1 peptide, which also contains a CendR motif ((R/K)XX(R/K)), was functionalized to the surface of PEG-PLA nanoparticles (tLyp-1-NP) to mediate its tumor homing, vascular extravasation and deep penetration into the glioma parenchyma. The tLyp-1-NP was prepared via a maleimide-thiol coupling reaction with uniformly spherical shape under TEM and particle size of 111.30 ± 15.64 nm. tLyp-1-NP exhibited enhanced cellular uptake in both human umbilical vein endothelial cells and Rat C6 glioma cells, increased cytotoxicity of the loaded PTX, and improved penetration and growth inhibition in avascular C6 glioma spheroids. Selective accumulation and deep penetration of tLyp-1-NP at the glioma site was confirmed by in vivo imaging and glioma distribution analysis. The longest survival was achieved by those mice bearing intracranial C6 glioma treated with PTX-loaded tLyp-1-NP. The findings here strongly indicate that tLyp-1 peptide-functionalized nanoparticulate DDS could significantly improve the efficacy of paclitaxel glioma therapy.
Collapse
Affiliation(s)
- Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cabell L, Ferguson C, Luginbill D, Kern M, Weingart A, Audesirk G. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead. Toxicol Appl Pharmacol 2004; 198:49-60. [PMID: 15207648 DOI: 10.1016/j.taap.2004.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/01/2004] [Indexed: 01/23/2023]
Abstract
We examined the effects of exposure to inorganic lead (Pb2+) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 microM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb2+ exposure (100 nM to 100 microM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb2+ exposure (100 nM to 10 microM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb2+ at concentrations up to 100 microM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb2+ and many other stresses, including heat, nitric oxide, H2O2, and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb2+ induces HO-1 synthesis in astrocytes.
Collapse
Affiliation(s)
- Leigh Cabell
- Biology Department, University of Colorado at Denver, Denver, CO 80217-3364, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zurich MG, Eskes C, Honegger P, Bérode M, Monnet-Tschudi F. Maturation-dependent neurotoxicity of lead acetate in vitro: implication of glial reactions. J Neurosci Res 2002; 70:108-16. [PMID: 12237869 DOI: 10.1002/jnr.10367] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite a wealth of data on the neurotoxic effects of lead at the cellular and molecular levels, the reasons for its development-dependent neurotoxicity are still unclear. Here, the maturation-dependent effects of lead acetate were analyzed in immature and differentiated brain cells cultured in aggregates. Markers of general cytotoxicity as well as cell-type-specific markers of glial and neuronal cells showed that immature brain cells were more sensitive to lead than the differentiated counterparts, demonstrating that the development-dependent neurotoxicity of lead can be reproduced in aggregating brain cell cultures. After 10 days of treatment, astrocytes were found to be more affected by lead acetate than neurons in immature cultures, and microglial cells were strongly activated. Eleven days after cessation of the treatment, lead acetate caused a partial loss of astrocytes and an intense reactivity of the remaining ones. Furthermore, microglial cells expressed a macrophagic phenotype, and the loss of activity of neuron-specific enzymes was aggravated. In differentiated cultures, no reactive gliosis was found. It is hypothetized that the intense glial reactions (microgliosis and astrogliosis) observed in immature cultures contribute to the development-dependent neurotoxicity of lead.
Collapse
|
9
|
Ji W, Wright MB, Cai L, Flament A, Lindpaintner K. Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics 2002; 3:12. [PMID: 12033988 PMCID: PMC115870 DOI: 10.1186/1471-2164-3-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Accepted: 05/20/2002] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Suppression Subtractive Hybridization PCR (SSH PCR) is a sophisticated cDNA subtraction method to enrich and isolate differentially expressed genes. Despite its popularity, the method has not been thoroughly studied for its practical efficacy and potential limitations. RESULTS To determine the factors that influence the efficacy of SSH PCR, a theoretical model, under the assumption that cDNA hybridization follows the ideal second kinetic order, is proposed. The theoretical model suggests that the critical factor influencing the efficacy of SSH PCR is the concentration ratio (R) of a target gene between two cDNA preparations. It preferentially enriches "all or nothing" differentially expressed genes, of which R is infinite, and strongly favors the genes with large R. The theoretical predictions were validated by our experiments. In addition, the experiments revealed some practical limitations that are not obvious from the theoretical model. For effective enrichment of differentially expressed genes, it requires fractional concentration of a target gene to be more than 0.01% and concentration ratio to be more than 5 folds between two cDNA preparations. CONCLUSION Our research demonstrated theoretical and practical limitations of SSH PCR, which could be useful for its experimental design and interpretation.
Collapse
Affiliation(s)
- Wan Ji
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Roche Genetics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Matthew B Wright
- Department of Vascular and Metabolic Diseases, F. Hoffmann-La Roche, Basel, Switzerland
| | - Li Cai
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Roche Genetics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Angel Flament
- Department of Vascular and Metabolic Diseases, F. Hoffmann-La Roche, Basel, Switzerland
| | - Klaus Lindpaintner
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Roche Genetics, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|