1
|
Uetrecht J. DILI prediction in drug development: present and future. Expert Opin Drug Metab Toxicol 2025; 21:665-676. [PMID: 40253704 DOI: 10.1080/17425255.2025.2495955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (iDILI) results in significant patient morbidity and significantly increases the risk of drug development. The current methods to screen for iDILI risk are inadequate. AREAS COVERED The general mechanism of iDILI and the current methods to screen for iDILI are reviewed. Then the potential for new biomarkers is explored. EXPERT OPINION Better biomarkers of iDILI risk should be based on the mechanism of iDILI. In general, it is an adaptive immune response, specifically CD8+ cytotoxic T cells, that is responsible for hepatocyte cell death, not direct toxicity of the drug. Therefore, in vitro cytotoxicity assays represent an artifact not the mechanism of iDILI. Activation of the adaptive immune response leading to iDILI requires an innate immune response, in particular activation of antigen presenting cells. The innate immune response is immediate and unlikely to be idiosyncratic. For example, studies have found that incubation of hepatocytes with drugs causes the release of molecules that activate THP-1-derived macrophages. The response of hepatocytes, the release of damage-associated molecular pattern molecules (DAMPs), especially in extracellular vesicles, and the response of antigen presenting cells (APCs) are likely to provide better biomarkers of iDILI risk.
Collapse
Affiliation(s)
- Jack Uetrecht
- Faculty of Pharmacy, University of Toronto, Toronto, ON, USA
| |
Collapse
|
2
|
Ledbetter V, Auerbach S, Everett LJ, Vallanat B, Lowit A, Akerman G, Gwinn W, Wehmas LC, Hughes MF, Devito M, Corton JC. A new approach methodology to identify tumorigenic chemicals using short-term exposures and transcript profiling. FRONTIERS IN TOXICOLOGY 2024; 6:1422325. [PMID: 39483698 PMCID: PMC11526388 DOI: 10.3389/ftox.2024.1422325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Current methods for cancer risk assessment are resource-intensive and not feasible for most of the thousands of untested chemicals. In earlier studies, we developed a new approach methodology (NAM) to identify liver tumorigens using gene expression biomarkers and associated tumorigenic activation levels (TALs) after short-term exposures in rats. The biomarkers are used to predict the six most common rodent liver cancer molecular initiating events. In the present study, we wished to confirm that our approach could be used to identify liver tumorigens at only one time point/dose and if the approach could be applied to (targeted) RNA-Seq analyses. Male rats were exposed for 4 days by daily gavage to 15 chemicals at doses with known chronic outcomes and liver transcript profiles were generated using Affymetrix arrays. Our approach had 75% or 85% predictive accuracy using TALs derived from the TG-GATES or DrugMatrix studies, respectively. In a dataset generated from the livers of male rats exposed to 16 chemicals at up to 10 doses for 5 days, we found that our NAM coupled with targeted RNA-Seq (TempO-Seq) could be used to identify tumorigenic chemicals with predictive accuracies of up to 91%. Overall, these results demonstrate that our NAM can be applied to both microarray and (targeted) RNA-Seq data generated from short-term rat exposures to identify chemicals, their doses, and mode of action that would induce liver tumors, one of the most common endpoints in rodent bioassays.
Collapse
Affiliation(s)
- Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - Scott Auerbach
- National Institute of Environmental Health Sciences (NIEHS), Division of Translational Toxicology, Durham, NC, United States
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, United States
| | - Gregory Akerman
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, United States
| | - William Gwinn
- National Institute of Environmental Health Sciences (NIEHS), Division of Translational Toxicology, Durham, NC, United States
| | - Leah C. Wehmas
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Michael F. Hughes
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Michael Devito
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
3
|
Boutin R, Lee HF, Guan TL, Nguyen TT, Huang XF, Waller DD, Lu J, Christine Chio II, Michel RP, Sebag M, Tsantrizos YS. Discovery and Evaluation of C6-Substituted Pyrazolopyrimidine-Based Bisphosphonate Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase and Evaluation of Their Antitumor Efficacy in Multiple Myeloma, Pancreatic Ductal Adenocarcinoma, and Colorectal Cancer. J Med Chem 2023; 66:15776-15800. [PMID: 37982711 PMCID: PMC10832233 DOI: 10.1021/acs.jmedchem.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Novel C6-substituted pyrazolo[3,4-d]pyrimidine- and C2-substituted purine-based bisphosphonate (C6-PyraP-BP and C2-Pur-BP, respectively) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) were designed and evaluated for their ability to block the proliferation of multiple myeloma (MM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer (CRC) cells. Pyrazolo[3,4-d]pyrimidine analogs were identified that induce selective intracellular target engagement leading to apoptosis and downregulate the prenylation of Rap-1A in MM, PDAC, and CRC cells. The C6-PyraP-BP inhibitor RB-07-16 was found to exhibit antitumor efficacy in xenograft mouse models of MM and PDAC, significantly reducing tumor growth without substantially increasing liver enzymes or causing significant histopathologic damage, usually associated with hepatotoxicity. RB-07-16 is a metabolically stable compound in cross-species liver microsomes, does not inhibit key CYP 450 enzymes, and exhibits good systemic circulation in rat. Collectively, the current studies provide encouraging support for further optimization of the pyrazolo[3,4-d]pyrimidine-based GGPPS inhibitors as potential human therapeutics for various cancers.
Collapse
Affiliation(s)
- Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
| | - Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Tan Trieu Nguyen
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Xian Fang Huang
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Daniel D Waller
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jordan Lu
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - René P Michel
- Department of Pathology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| |
Collapse
|
4
|
Kattar SD, Gulati A, Margrey KA, Keylor MH, Ardolino M, Yan X, Johnson R, Palte RL, McMinn SE, Nogle L, Su J, Xiao D, Piesvaux J, Lee S, Hegde LG, Woodhouse JD, Faltus R, Moy LY, Xiong T, Ciaccio PJ, Pearson K, Patel M, Otte KM, Leyns CEG, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Fuller PH. Discovery of MK-1468: A Potent, Kinome-Selective, Brain-Penetrant Amidoisoquinoline LRRK2 Inhibitor for the Potential Treatment of Parkinson's Disease. J Med Chem 2023; 66:14912-14927. [PMID: 37861679 DOI: 10.1021/acs.jmedchem.3c01486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.
Collapse
Affiliation(s)
- Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kaila A Margrey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dong Xiao
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Susi Lee
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kara Pearson
- Merck & Co., Inc., 770 Sumneytown Pike., West Point, Pennsylvania 19486, United States
| | - Mayankbhai Patel
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cheryl E G Leyns
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Russomanno G, Sison-Young R, Livoti LA, Coghlan H, Jenkins RE, Kunnen SJ, Fisher CP, Reddyhoff D, Gardner I, Rehman AH, Fenwick SW, Jones AR, Vermeil De Conchard G, Simonin G, Bertheux H, Weaver RJ, Johnson RL, Liguori MJ, Clausznitzer D, Stevens JL, Goldring CE, Copple IM. A systems approach reveals species differences in hepatic stress response capacity. Toxicol Sci 2023; 196:112-125. [PMID: 37647630 PMCID: PMC10614045 DOI: 10.1093/toxsci/kfad085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
To minimize the occurrence of unexpected toxicities in early phase preclinical studies of new drugs, it is vital to understand fundamental similarities and differences between preclinical species and humans. Species differences in sensitivity to acetaminophen (APAP) liver injury have been related to differences in the fraction of the drug that is bioactivated to the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). We have used physiologically based pharmacokinetic modeling to identify oral doses of APAP (300 and 1000 mg/kg in mice and rats, respectively) yielding similar hepatic burdens of NAPQI to enable the comparison of temporal liver tissue responses under conditions of equivalent chemical insult. Despite pharmacokinetic and biochemical verification of the equivalent NAPQI insult, serum biomarker and tissue histopathology analyses revealed that mice still exhibited a greater degree of liver injury than rats. Transcriptomic and proteomic analyses highlighted the stronger activation of stress response pathways (including the Nrf2 oxidative stress response and autophagy) in the livers of rats, indicative of a more robust transcriptional adaptation to the equivalent insult. Components of these pathways were also found to be expressed at a higher basal level in the livers of rats compared with both mice and humans. Our findings exemplify a systems approach to understanding differential species sensitivity to hepatotoxicity. Multiomics analysis indicated that rats possess a greater basal and adaptive capacity for hepatic stress responses than mice and humans, with important implications for species selection and human translation in the safety testing of new drug candidates associated with reactive metabolite formation.
Collapse
Affiliation(s)
- Giusy Russomanno
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Rowena Sison-Young
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Lucia A Livoti
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Hannah Coghlan
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Rosalind E Jenkins
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
- CDSS Bioanalytical Facility, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Steven J Kunnen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2311 EZ, The Netherlands
| | | | | | - Iain Gardner
- Simcyp Division, Certara UK, Sheffield, S1 2BJ, UK
| | - Adeeb H Rehman
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
- Department of Hepatobiliary Surgery, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, L9 7AL, UK
| | - Stephen W Fenwick
- Department of Hepatobiliary Surgery, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, L9 7AL, UK
| | - Andrew R Jones
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Gilles Simonin
- Translational Medicine, Non Clinical Safety, Biologie Servier, Gidy, 45520, France
| | - Helene Bertheux
- Translational Medicine, Non Clinical Safety, Biologie Servier, Gidy, 45520, France
| | - Richard J Weaver
- Institut de R&D Servier Paris-Saclay, Gif sur Yvette, 91190, France
| | | | | | | | - James L Stevens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2311 EZ, The Netherlands
| | - Christopher E Goldring
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| |
Collapse
|
6
|
Pandiri AR, Auerbach SS, Stevens JL, Blomme EAG. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver. Toxicol Pathol 2023; 51:470-481. [PMID: 38288963 PMCID: PMC11014763 DOI: 10.1177/01926233241227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.
Collapse
Affiliation(s)
- Arun R Pandiri
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Scott S Auerbach
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | |
Collapse
|
7
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
8
|
Identifying multiscale translational safety biomarkers using a network-based systems approach. iScience 2023; 26:106094. [PMID: 36895646 PMCID: PMC9988559 DOI: 10.1016/j.isci.2023.106094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/30/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Animal testing is the current standard for drug and chemicals safety assessment, but hazards translation to human is uncertain. Human in vitro models can address the species translation but might not replicate in vivo complexity. Herein, we propose a network-based method addressing these translational multiscale problems that derives in vivo liver injury biomarkers applicable to in vitro human early safety screening. We applied weighted correlation network analysis (WGCNA) to a large rat liver transcriptomic dataset to obtain co-regulated gene clusters (modules). We identified modules statistically associated with liver pathologies, including a module enriched for ATF4-regulated genes as associated with the occurrence of hepatocellular single-cell necrosis, and as preserved in human liver in vitro models. Within the module, we identified TRIB3 and MTHFD2 as a novel candidate stress biomarkers, and developed and used BAC-eGFPHepG2 reporters in a compound screening, identifying compounds showing ATF4-dependent stress response and potential early safety signals.
Collapse
|
9
|
Candito DA, Simov V, Gulati A, Kattar S, Chau RW, Lapointe BT, Methot JL, DeMong DE, Graham TH, Kurukulasuriya R, Keylor MH, Tong L, Morriello GJ, Acton JJ, Pio B, Liu W, Scott JD, Ardolino MJ, Martinot TA, Maddess ML, Yan X, Gunaydin H, Palte RL, McMinn SE, Nogle L, Yu H, Minnihan EC, Lesburg CA, Liu P, Su J, Hegde LG, Moy LY, Woodhouse JD, Faltus R, Xiong T, Ciaccio P, Piesvaux JA, Otte KM, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Neelamkavil S, Wood HB, Fuller PH, Ellis JM. Discovery and Optimization of Potent, Selective, and Brain-Penetrant 1-Heteroaryl-1 H-Indazole LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2022; 65:16801-16817. [PMID: 36475697 DOI: 10.1021/acs.jmedchem.2c01605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.
Collapse
Affiliation(s)
- David A Candito
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Solomon Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ryan W Chau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Blair T Lapointe
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Joey L Methot
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Duane E DeMong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Thomas H Graham
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ravi Kurukulasuriya
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ling Tong
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Gregori J Morriello
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - John J Acton
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Barbara Pio
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Weiguo Liu
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Jack D Scott
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Michael J Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Theodore A Martinot
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Matthew L Maddess
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Hakan Gunaydin
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Hongshi Yu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ellen C Minnihan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Charles A Lesburg
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ping Liu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Jing Su
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Paul Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Jennifer A Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Santhosh Neelamkavil
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Harold B Wood
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - J Michael Ellis
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| |
Collapse
|
10
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
11
|
Corton JC, Mitchell CA, Auerbach S, Bushel P, Ellinger-Ziegelbauer H, Escobar PA, Froetschl R, Harrill AH, Johnson K, Klaunig JE, Pandiri AR, Podtelezhnikov AA, Rager JE, Tanis KQ, van der Laan JW, Vespa A, Yauk CL, Pettit SD, Sistare FD. A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicol Sci 2022; 188:4-16. [PMID: 35404422 PMCID: PMC9238304 DOI: 10.1093/toxsci/kfac041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Constance A Mitchell
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Scott Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Pierre Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | - Patricia A Escobar
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Roland Froetschl
- BfArM-Bundesinstitut für Arzneimittel und Medizinprodukte, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Alison H Harrill
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Arun R Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Julia E Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keith Q Tanis
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht, The Netherlands
| | - Alisa Vespa
- Therapeutic Products Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Syril D Pettit
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Frank D Sistare
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
13
|
Lee HF, Lacbay CM, Boutin R, Matralis AN, Park J, Waller DD, Guan TL, Sebag M, Tsantrizos YS. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J Med Chem 2022; 65:2471-2496. [PMID: 35077178 DOI: 10.1021/acs.jmedchem.1c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Collapse
Affiliation(s)
- Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Daniel D Waller
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
14
|
Chen X, Roberts R, Tong W, Liu Z. Tox-GAN: An AI Approach Alternative to Animal Studies-a Case Study with Toxicogenomics. Toxicol Sci 2021; 186:242-259. [PMID: 34971401 DOI: 10.1093/toxsci/kfab157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal studies are a critical component in biomedical research, pharmaceutical product development, and regulatory submissions. There is a worldwide effort in toxicology towards "reducing, refining and replacing" (3Rs) animal use. Here, we proposed a deep generative adversarial network (GAN)-based framework capable of deriving new animal results from existing animal studies without additional experiments. To prove the concept, we employed this Tox-GAN framework to generate both gene activities and expression profiles for multiple doses and treatment durations in toxicogenomics (TGx). Using the pre-existing rat liver TGx data from the Open TG-GATEs, we generated Tox-GAN transcriptomic profiles with high similarity (0.997 ± 0.002 in intensity and 0.740 ± 0.082 in fold change) to the corresponding real gene expression profiles. Consequently, Tox-GAN showed an outstanding performance in two critical TGx applications, gaining a molecular understanding of underlying toxicological mechanisms and gene expression-based biomarker development. For the former, over 87% agreement in Gene Ontology was found between Tox-GAN results and real gene expression data. For the latter, the concordance of biomarkers between real and generated data was high in both predictive performance and biomarker genes. We also demonstrated that the Tox-GAN models constructed with TG-GATEs data were capable of generating transcriptomic profiles reported in DrugMatrix. Finally, we demonstrated potential utility for Tox-GAN in aiding chemical-based read-across. To the best of our knowledge, the proposed Tox-GAN model is novel in its ability to generate in vivo transcriptomic profiles at different treatment conditions from chemical structures. Overall, Tox-GAN holds great promise for generating high-quality toxicogenomic profiles without animal experimentation.
Collapse
Affiliation(s)
- Xi Chen
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Ruth Roberts
- ApconiX Ltd, Alderley Edge SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Zhichao Liu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| |
Collapse
|
15
|
Keylor MH, Gulati A, Kattar SD, Johnson RE, Chau RW, Margrey KA, Ardolino MJ, Zarate C, Poremba KE, Simov V, Morriello GJ, Acton JJ, Pio B, Yan X, Palte RL, McMinn SE, Nogle L, Lesburg CA, Adpressa D, Lin S, Neelamkavil S, Liu P, Su J, Hegde LG, Woodhouse JD, Faltus R, Xiong T, Ciaccio PJ, Piesvaux J, Otte KM, Wood HB, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Fuller PH. Structure-Guided Discovery of Aminoquinazolines as Brain-Penetrant and Selective LRRK2 Inhibitors. J Med Chem 2021; 65:838-856. [PMID: 34967623 DOI: 10.1021/acs.jmedchem.1c01968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.
Collapse
Affiliation(s)
- Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca E Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan W Chau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kaila A Margrey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael J Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cayetana Zarate
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kelsey E Poremba
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gregori J Morriello
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John J Acton
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Barbara Pio
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Charles A Lesburg
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Donovon Adpressa
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Shishi Lin
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Santhosh Neelamkavil
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ping Liu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Harold B Wood
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
The human hepatocyte TXG-MAPr: gene co-expression network modules to support mechanism-based risk assessment. Arch Toxicol 2021; 95:3745-3775. [PMID: 34626214 PMCID: PMC8536636 DOI: 10.1007/s00204-021-03141-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023]
Abstract
Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of mechanisms-revealing data, but interpretative analysis tools specific for the testing systems (e.g. hepatocytes) are lacking. In this study, we present the TXG-MAPr webtool (available at https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/ ), an R-Shiny-based implementation of weighted gene co-expression network analysis (WGCNA) obtained from the Primary Human Hepatocytes (PHH) TG-GATEs dataset. The 398 gene co-expression networks (modules) were annotated with functional information (pathway enrichment, transcription factor) to reveal their mechanistic interpretation. Several well-known stress response pathways were captured in the modules, were perturbed by specific stressors and showed preservation in rat systems (rat primary hepatocytes and rat in vivo liver), with the exception of DNA damage and oxidative stress responses. A subset of 87 well-annotated and preserved modules was used to evaluate mechanisms of toxicity of endoplasmic reticulum (ER) stress and oxidative stress inducers, including cyclosporine A, tunicamycin and acetaminophen. In addition, module responses can be calculated from external datasets obtained with different hepatocyte cells and platforms, including targeted RNA-seq data, therefore, imputing biological responses from a limited gene set. As another application, donors' sensitivity towards tunicamycin was investigated with the TXG-MAPr, identifying higher basal level of intrinsic immune response in donors with pre-existing liver pathology. In conclusion, we demonstrated that gene co-expression analysis coupled to an interactive visualization environment, the TXG-MAPr, is a promising approach to achieve mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data.
Collapse
|
17
|
Vachal P, Duffy JL, Campeau LC, Amin RP, Mitra K, Murphy BA, Shao PP, Sinclair PJ, Ye F, Katipally R, Lu Z, Ondeyka D, Chen YH, Zhao K, Sun W, Tyagarajan S, Bao J, Wang SP, Cote J, Lipardi C, Metzger D, Leung D, Hartmann G, Wollenberg GK, Liu J, Tan L, Xu Y, Chen Q, Liu G, Blaustein RO, Johns DG. Invention of MK-8262, a Cholesteryl Ester Transfer Protein (CETP) Inhibitor Backup to Anacetrapib with Best-in-Class Properties. J Med Chem 2021; 64:13215-13258. [PMID: 34375108 DOI: 10.1021/acs.jmedchem.1c00959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesteryl ester transfer protein (CETP) represents one of the key regulators of the homeostasis of lipid particles, including high-density lipoprotein (HDL) and low-density lipoprotein (LDL) particles. Epidemiological evidence correlates increased HDL and decreased LDL to coronary heart disease (CHD) risk reduction. This relationship is consistent with a clinical outcomes trial of a CETP inhibitor (anacetrapib) combined with standard of care (statin), which led to a 9% additional risk reduction compared to standard of care alone. We discuss here the discovery of MK-8262, a CETP inhibitor with the potential for being the best-in-class molecule. Novel in vitro and in vivo paradigms were integrated to drug discovery to guide optimization informed by a critical understanding of key clinical adverse effect profiles. We present preclinical and clinical evidence of MK-8262 safety and efficacy by means of HDL increase and LDL reduction as biomarkers for reduced CHD risk.
Collapse
Affiliation(s)
- Petr Vachal
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Joseph L Duffy
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Louis-Charles Campeau
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Rupesh P Amin
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Kaushik Mitra
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Beth Ann Murphy
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Pengcheng P Shao
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Peter J Sinclair
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Feng Ye
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Revathi Katipally
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Zhijian Lu
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Debra Ondeyka
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Yi-Heng Chen
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Kake Zhao
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Wanying Sun
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Sriram Tyagarajan
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Jianming Bao
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Sheng-Ping Wang
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Josee Cote
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Concetta Lipardi
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Daniel Metzger
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Dennis Leung
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Georgy Hartmann
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Gordon K Wollenberg
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Jian Liu
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Lushi Tan
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Yingju Xu
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Qinghao Chen
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Guiquan Liu
- WuXi AppTec, 90 Delin Rd., Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Robert O Blaustein
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| | - Douglas G Johns
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
18
|
Lee F, Shah I, Soong YT, Xing J, Ng IC, Tasnim F, Yu H. Reproducibility and robustness of high-throughput S1500+ transcriptomics on primary rat hepatocytes for chemical-induced hepatotoxicity assessment. Curr Res Toxicol 2021; 2:282-295. [PMID: 34467220 PMCID: PMC8384775 DOI: 10.1016/j.crtox.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/06/2022] Open
Abstract
TempO-Seq assays of rat hepatocytes in collagen sandwich are highly reproducible. Gene expression analysis shows S1500+ is representative of the whole transcriptome. Connectivity mapping shows consistency between TempO-Seq and Affymetrix data. Gene set enrichment shows consistency between S1500+ and the whole transcriptome. Gene set enrichment using hallmark gene sets informs hepatotoxicity.
Cell-based in vitro models coupled with high-throughput transcriptomics (HTTr) are increasingly utilized as alternative methods to animal-based toxicity testing. Here, using a panel of 14 chemicals with different risks of human drug-induced liver injury (DILI) and two dosing concentrations, we evaluated an HTTr platform comprised of collagen sandwich primary rat hepatocyte culture and the TempO-Seq surrogate S1500+ (ST) assay. First, the HTTr platform was found to exhibit high reproducibility between technical and biological replicates (r greater than 0.85). Connectivity mapping analysis further demonstrated a high level of inter-platform reproducibility between TempO-Seq data and Affymetrix GeneChip data from the Open TG-GATES project. Second, the TempO-Seq ST assay was shown to be a robust surrogate to the whole transcriptome (WT) assay in capturing chemical-induced changes in gene expression, as evident from correlation analysis, PCA and unsupervised hierarchical clustering. Gene set enrichment analysis (GSEA) using the Hallmark gene set collection also demonstrated consistency in enrichment scores between ST and WT assays. Lastly, unsupervised hierarchical clustering of hallmark enrichment scores broadly divided the samples into hepatotoxic, intermediate, and non-hepatotoxic groups. Xenobiotic metabolism, bile acid metabolism, apoptosis, p53 pathway, and coagulation were found to be the key hallmarks driving the clustering. Taken together, our results established the reproducibility and performance of collagen sandwich culture in combination with TempO-Seq S1500+ assay, and demonstrated the utility of GSEA using the hallmark gene set collection to identify potential hepatotoxicants for further validation.
Collapse
Affiliation(s)
- Fan Lee
- Innovations in Food & Chemical Safety Program (IFCS), Institute of Bioengineering and Bioimaging (IBB), Agency for Science Technology and Research, Singapore
| | - Imran Shah
- Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Yun Ting Soong
- Innovations in Food & Chemical Safety Program (IFCS), Institute of Bioengineering and Bioimaging (IBB), Agency for Science Technology and Research, Singapore
| | - Jiangwa Xing
- Innovations in Food & Chemical Safety Program (IFCS), Institute of Bioengineering and Bioimaging (IBB), Agency for Science Technology and Research, Singapore
| | - Inn Chuan Ng
- Department of Physiology and Mechanobiology Institute, National University of Singapore, Singapore
| | - Farah Tasnim
- Innovations in Food & Chemical Safety Program (IFCS), Institute of Bioengineering and Bioimaging (IBB), Agency for Science Technology and Research, Singapore
| | - Hanry Yu
- Innovations in Food & Chemical Safety Program (IFCS), Institute of Bioengineering and Bioimaging (IBB), Agency for Science Technology and Research, Singapore.,Department of Physiology and Mechanobiology Institute, National University of Singapore, Singapore.,Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
19
|
Mosedale M, Cai Y, Eaddy JS, Kirby PJ, Wolenski FS, Dragan Y, Valdar W. Human-relevant mechanisms and risk factors for TAK-875-Induced liver injury identified via a gene pathway-based approach in Collaborative Cross mice. Toxicology 2021; 461:152902. [PMID: 34418498 PMCID: PMC8936092 DOI: 10.1016/j.tox.2021.152902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Development of TAK-875 was discontinued when a small number of serious drug-induced liver injury (DILI) cases were observed in Phase 3 clinical trials. Subsequent studies have identified hepatocellular oxidative stress, mitochondrial dysfunction, altered bile acid homeostasis, and immune response as mechanisms of TAK-875 DILI and the contribution of genetic risk factors in oxidative response and mitochondrial pathways to the toxicity susceptibility observed in patients. We tested the hypothesis that a novel preclinical approach based on gene pathway analysis in the livers of Collaborative Cross mice could be used to identify human-relevant mechanisms of toxicity and genetic risk factors at the level of the hepatocyte as reported in a human genome-wide association study. Eight (8) male mice (4 matched pairs) from each of 45 Collaborative Cross lines were treated with a single oral (gavage) dose of either vehicle or 600 mg/kg TAK-875. As expected, liver injury was not detected histologically and few changes in plasma biomarkers of hepatotoxicity were observed. However, gene expression profiling in the liver identified hundreds of transcripts responsive to TAK-875 treatment across all strains reflecting alterations in immune response and bile acid homeostasis and the interaction of treatment and strain reflecting oxidative stress and mitochondrial dysfunction. Fold-change expression values were then used to develop pathway-based phenotypes for genetic mapping which identified candidate risk factor genes for TAK-875 toxicity susceptibility at the level of the hepatocyte. Taken together, these findings support our hypothesis that a gene pathway-based approach using Collaborative Cross mice could inform sensitive strains, human-relevant mechanisms of toxicity, and genetic risk factors for TAK-875 DILI. This novel preclinical approach may be helpful in understanding, predicting, and ultimately preventing clinical DILI for other drugs.
Collapse
Affiliation(s)
- Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, United States.
| | - Yanwei Cai
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| | - J Scott Eaddy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, United States.
| | - Patrick J Kirby
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - Francis S Wolenski
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - Yvonne Dragan
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
20
|
Shah I, Antonijevic T, Chambers B, Harrill J, Thomas R. Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes. Toxicol Sci 2021; 183:285-301. [PMID: 34289070 DOI: 10.1093/toxsci/kfab091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using in vitro data to estimate point of departure (POD) values is an essential component of new approach methodologies (NAM)-based chemical risk assessments. In this case study, we evaluated a NAM for hepatotoxicity based on rat primary hepatocytes, high-content imaging (HCI), and toxicokinetic modeling. First, we treated rat primary hepatocytes with 10 concentrations (0.2 to 100 µM) of 51 chemicals that produced hepatotoxicity in repeat-dose subchronic and chronic exposures. Second, we used HCI to measure endoplasmic reticulum stress, mitochondrial function, lysosomal mass, steatosis, apoptosis, DNA texture, nuclear size, and cell number at 24, 48, and 72 h and calculated concentrations at 50% maximal activity (AC50). Third, we estimated administered equivalent doses (AEDs) from AC50 values using toxicokinetic modeling. AEDs using physiologically-based toxicokinetic models were 4.1-fold (SD 6.3) and 8.1-fold (SD 15.5) lower than subchronic and chronic lowest observed adverse effect levels (LOAELs), respectively. In contrast, AEDs from ToxCast and Tox21 assays were 89.8-fold (SD 149.5) and 168-fold (SD 323.7) lower than subchronic and chronic LOAELs. Individual HCI end-points also estimated AEDs for specific hepatic lesions that were lower than in vivo PODs. Lastly, AEDs were similar for different in vitro exposure durations, but steady-state toxicokinetic models produced 7.6-fold lower estimates than dynamic physiologically-based ones. Our findings suggest that NAMs from diverse cell types provide conservative estimates of PODs. In contrast, NAMs based on the same species and cell type as the adverse outcome may produce estimates closer to the traditional in vivo PODs.
Collapse
Affiliation(s)
- Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Todor Antonijevic
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.,Oak Ridge Institute for Science and Education (ORISE), USA
| | - Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Russell Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Kang W, Podtelezhnikov AA, Tanis KQ, Pacchione S, Su M, Bleicher KB, Wang Z, Laws GM, Griffiths TG, Kuhls MC, Chen Q, Knemeyer I, Marsh DJ, Mitra K, Lebron J, Sistare FD. Development and Application of a Transcriptomic Signature of Bioactivation in an Advanced In Vitro Liver Model to Reduce Drug-induced Liver Injury Risk Early in the Pharmaceutical Pipeline. Toxicol Sci 2021; 177:121-139. [PMID: 32559289 DOI: 10.1093/toxsci/kfaa094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early risk assessment of drug-induced liver injury (DILI) potential for drug candidates remains a major challenge for pharmaceutical development. We have previously developed a set of rat liver transcriptional biomarkers in short-term toxicity studies to inform the potential of drug candidates to generate a high burden of chemically reactive metabolites that presents higher risk for human DILI. Here, we describe translation of those NRF1-/NRF2-mediated liver tissue biomarkers to an in vitro assay using an advanced micropatterned coculture system (HEPATOPAC) with primary hepatocytes from male Wistar Han rats. A 9-day, resource-sparing and higher throughput approach designed to identify new chemical entities with lower reactive metabolite-forming potential was qualified for internal decision making using 93 DILI-positive and -negative drugs. This assay provides 81% sensitivity and 90% specificity in detecting hepatotoxicants when a positive test outcome is defined as the bioactivation signature score of a test drug exceeding the threshold value at an in vitro test concentration that falls within 3-fold of the estimated maximum drug concentration at the human liver inlet following highest recommended clinical dose administrations. Using paired examples of compounds from distinct chemical series and close structural analogs, we demonstrate that this assay can differentiate drugs with lower DILI risk. The utility of this in vitro transcriptomic approach was also examined using human HEPATOPAC from a single donor, yielding 68% sensitivity and 86% specificity when the aforementioned criteria are applied to the same 93-drug test set. Routine use of the rat model has been adopted with deployment of the human model as warranted on a case-by-case basis. This in vitro transcriptomic signature-based strategy can be used early in drug discovery to derisk DILI potential from chemically reactive metabolites by guiding structure-activity relationship hypotheses and candidate selection.
Collapse
Affiliation(s)
- Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Ming Su
- Safety Assessment & Laboratory Animal Resources
| | | | - Zhibin Wang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Qing Chen
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Ian Knemeyer
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | | | | | - Jose Lebron
- Safety Assessment & Laboratory Animal Resources
| | | |
Collapse
|
22
|
Copple IM, Park BK, Goldring CE. Gene Signatures Reduce the Stress of Preclinical Drug Hepatotoxicity Screening. Hepatology 2021; 74:513-515. [PMID: 33544908 DOI: 10.1002/hep.31736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ian M Copple
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher E Goldring
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Khojasteh SC, Argikar UA, Driscoll JP, Heck CJS, King L, Jackson KD, Jian W, Kalgutkar AS, Miller GP, Kramlinger V, Rietjens IMCM, Teitelbaum AM, Wang K, Wei C. Novel advances in biotransformation and bioactivation research - 2020 year in review. Drug Metab Rev 2021; 53:384-433. [PMID: 33910427 PMCID: PMC8826528 DOI: 10.1080/03602532.2021.1916028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This annual review is the sixth of its kind since 2016 (see references). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation and bioactivation. These fields are constantly evolving with new molecular structures and discoveries of corresponding pathways for metabolism that impact relevant drug development with respect to efficacy and safety. Based on the selected articles, we created three sections: (1) drug design, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation and safety (Table 1). Unlike in years past, more biotransformation experts have joined and contributed to this effort while striving to maintain a balance of authors from academic and industry settings.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia, Inc., South San Francisco, CA, USA
| | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Lloyd King
- Department of DMPK, UCB Biopharma, Slough, UK
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Wenying Jian
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, PA, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Valerie Kramlinger
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | | | - Aaron M Teitelbaum
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Kai Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, San Diego, CA, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, USA
| |
Collapse
|
24
|
Ren X, Meng T, Ren X, Li X, Lu L. Fasudil alleviates acetaminophen-induced liver injury via targeting Rhoa/ROCK signal pathway. J Toxicol Sci 2021; 46:255-262. [PMID: 34078832 DOI: 10.2131/jts.46.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fasudil is an inhibitor of Rhoa/ROCK signaling, which is involved in anti-inflammatory and anti-injury effects. The purpose of this study was to explore the effects of Fasudil on acetaminophen (APAP)-induced liver injury and reveal its potential molecular mechanism. In this study, C57BL/6 J mice were divided into different groups and treated with APAP and specified dose of Fasudil. HE staining was used to detect the changes of liver pathological tissues induced by APAP. ELISA assay was performed to detected the level of related factors. Western blot was used to detect the expressions of Rhoa, ROCK1, ROCK2. CD86 and CD6 were determined by RT-PCR and immunohistochemical staining detected the difference in CD86 expression. Rhoa/ROCK expression was increased in APAP-induced liver injury, and Fasudil targeted the expression of Rhoa/ROCK. Fasudil inhibits APAP-induced hepatic pathological changes and liver function injury. Fasudil inhibits the release of APAP-induced systemic inflammatory factors in liver tissue. Fasudil inhibits the activity of antioxidant enzymes, lipid peroxidation and macrophage infiltration induced by APAP in liver tissues. Fasudil alleviates APAP-induced liver injury via targeting Rhoa/ROCK signal pathway, indicating the possibility for clinical use of Fasudil in APAP-induced liver injury.
Collapse
Affiliation(s)
| | - Tong Meng
- Department of Orthodontics, Linyi People's Hospital, China
| | - Xingbin Ren
- Department of Clinical Laboratory, Linyi People's Hospital, China
| | - Xiaoyu Li
- Department of gastroenterology, The Affiliated Hospital of Qingdao University, China
| | - Lin Lu
- Qingdao University, China
- Department of gastroenterology, Linyi People's Hospital, China
| |
Collapse
|
25
|
Hafey MJ, Houle R, Tanis KQ, Knemeyer I, Shang J, Chen Q, Baudy A, Monroe J, Sistare FD, Evers R. A Two-Tiered In Vitro Approach to De-Risk Drug Candidates for Potential Bile Salt Export Pump Inhibition Liabilities in Drug Discovery. Drug Metab Dispos 2020; 48:1147-1160. [PMID: 32943412 DOI: 10.1124/dmd.120.000086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 μM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5μM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.
Collapse
Affiliation(s)
- Michael J Hafey
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Robert Houle
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Keith Q Tanis
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Ian Knemeyer
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Jackie Shang
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Qing Chen
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Andreas Baudy
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - James Monroe
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Frank D Sistare
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Raymond Evers
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
26
|
Smith B, Rowe J, Watkins PB, Ashina M, Woodhead JL, Sistare FD, Goadsby PJ. Mechanistic Investigations Support Liver Safety of Ubrogepant. Toxicol Sci 2020; 177:84-93. [PMID: 32579200 PMCID: PMC8312697 DOI: 10.1093/toxsci/kfaa093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated therapeutic efficacy for the treatment of migraine. However, previously investigated CGRP receptor antagonists, telcagepant and MK-3207, were discontinued during clinical development because of concerns about drug-induced liver injury. A subsequent effort to identify novel CGRP receptor antagonists less likely to cause hepatotoxicity led to the development of ubrogepant. The selection of ubrogepant, following a series of mechanistic studies conducted with MK-3207 and telcagepant, was focused on key structural modifications suggesting that ubrogepant was less prone to forming reactive metabolites than previous compounds. The potential for each drug to cause liver toxicity was subsequently assessed using a quantitative systems toxicology approach (DILIsym) that incorporates quantitative assessments of mitochondrial dysfunction, disruption of bile acid homeostasis, and oxidative stress, along with estimates of dose-dependent drug exposure to and within liver cells. DILIsym successfully modeled liver toxicity for telcagepant and MK-3207 at the dosing regimens used in clinical trials. In contrast, DILIsym predicted no hepatotoxicity during treatment with ubrogepant, even at daily doses up to 1000 mg (10-fold higher than the approved clinical dose of 100 mg). These predictions are consistent with clinical trial experience showing that ubrogepant has lower potential to cause hepatotoxicity than has been observed with telcagepant and MK-3207.
Collapse
Affiliation(s)
| | | | - Paul B Watkins
- Eshelman School of Pharmacy and Institute for Drug Safety Sciences, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Faculty of Health and Medical
Sciences, University of Copenhagen, København, Denmark
| | | | | | - Peter J Goadsby
- NIHR-Wellcome Trust King’s Clinical Research Facility, SLaM Biomedical Research
Centre, King’s College London, London, UK
| |
Collapse
|