1
|
Gardin TN, Requia WJ. The effect of wildfire smoke exposure on student performance: A nationwide study across two decades (2000-2020) and over 40 million students in Brazil. Neurotoxicology 2025; 108:143-149. [PMID: 40122216 DOI: 10.1016/j.neuro.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The impact of wildfire smoke exposure on public health has been extensively studied, yet its potential consequences on academic performance remain relatively unexplored, particularly in the context of fire-prone regions, such as Brazil. We conducted a nationwide study of more than 40 million high school students in Brazil who took the National High School Exam (ENEM) between 2000 and 2020. We used mixed-effects regression models with state-specific random intercepts to examine the associations between the wildfire events and academic performance among Brazilian students. We accounted for multiple covariates, including socioeconomic status, spatiotemporal factors, air pollutants, and weather variables. We also explored the effect modification by exam subject (general subjects and essay), school management (private and public schools), location (urban and rural schools), and time period. Our findings suggest that increased wildfire events are associated with lower academic performance in both essay and general subjects. After adjustments for the covariates, the primary analysis results indicate a negative impact of wildfires on essay writing, with an estimated coefficient of -0.09 (95 % CI: -0.13; -0.05) with 100 wildfire records increase. Similarly, an increase of 100 wildfire records per year corresponded to a decrease of 0.10 (95 % CI: 0.06; 0.11) points for general subjects. This effect on academic performance was associated with a reduction of 0.33 % (95 %CI: 0.31 %; 0.34 %) in essay and 0.54 % (95 %CI: 0.52 %; 0.56 %) in general subjects. Our findings highlight the need for further attention to the influence of wildfire smoke exposure on student academic performance, suggesting that even small associations at the individual level could have broader implications for public health and education policies.
Collapse
Affiliation(s)
- Thiago N Gardin
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
2
|
Scieszka D, Hulse J, Gu H, Barkley-Levenson A, Barr E, Garcia M, Begay JG, Herbert G, McCormick M, Brigman J, Ottens A, Bleske B, Bhaskar K, Campen MJ. Neurometabolomic impacts of wood smoke and protective benefits of anti-aging therapeutics in aged female C57BL/6J mice. RESEARCH SQUARE 2025:rs.3.rs-5936676. [PMID: 40166007 PMCID: PMC11957201 DOI: 10.21203/rs.3.rs-5936676/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Wildland fires have become progressively more extensive over the past 30 years in the United States, routinely generating smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact of biomass-derived smoke on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. Methods Mice were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 448 μg particulate matter (PM)/m3 per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib + quercetin; DQ); or both RNMN with DQ (RNDQ). Results Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD + within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by behavioral changes, including increased immobility in a forced swim test, and neuroinflammatory markers that persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. Discussion Taken together, these findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Further examination is necessary to determine the age-specific and species-determinant response pathways and duration before complete resolution occurs.
Collapse
Affiliation(s)
| | | | | | | | - Ed Barr
- University of New Mexico College of Pharmacy
| | | | | | - Guy Herbert
- University of New Mexico College of Pharmacy
| | | | | | | | | | | | | |
Collapse
|
3
|
Qin SJ, Zeng QG, Zeng HX, Meng WJ, Wu QZ, Lv Y, Dai J, Dong GH, Zeng XW. Novel perspective on particulate matter and Alzheimer's disease: Insights from adverse outcome pathway framework. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125601. [PMID: 39756567 DOI: 10.1016/j.envpol.2024.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, that accounts for 50-75% of all dementia cases. Evidence demonstrates the link between particulate matter (PM) exposure and AD. However, there are still considerable research gaps. This review aims to clarify the mechanism between PM and AD from different levels (subcellular/cellular/system/population) by using an adverse outcome pathway (AOP) framework. We applied a chemical-phenotype interaction network-based workflow to integrate diverse genes and phenotypes. The interactions among PM, genes, phenotypes, and AD were retrieved from the Comparative Toxicogenomics Database (CTD), DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), which are publicly available databases. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a predictive PM-Gene-Phenotype-AD AOP network. According to the Organization for Economic Co-operation and Development handbook (OECD), a verified AOP network was assessed and applied to determine the effects of PM on AD. PM could increase APP and GSK3B, increase apoptosis, impair cognition and memory, and ultimately lead to AD. Overall, chemical-phenotype interactions are expressed in a formal structured notation using controlled terms for chemicals, phenotypes, taxons, and anatomical descriptors. To our knowledge, this is the first AOP framework focusing on the underlying mechanism of exposure to PM on AD. Our network-based approach not only fills mechanism gaps in PM and AD but sheds light on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lv
- Department of Neurology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jian Dai
- Department of Clinical Psychology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Sacks JD, Migliaccio CT, Reid CE, Montrose L. Shifting the Conversation on Wildland Fire Smoke Exposures: More Smoke Within and Across Years Requires a New Approach to Inform Public Health Action. ACS ES&T AIR 2025; 2:122-129. [PMID: 40182508 PMCID: PMC11964113 DOI: 10.1021/acsestair.4c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
With the increase in acres burned from wildfire over the last few decades, wildfire smoke is an increasing global public health threat. To date, wildfire smoke research, risk communication, and public health action has focused on short-term (or daily) smoke exposures. However, the patterns of wildfire smoke exposure are transitioning to include longer duration and repeated exposures occurring within and across years. Epidemiologic and experimental studies represent important lines of evidence that have informed risk communication and public health actions for short-term smoke exposures; however, they have yet to provide the science needed to refine public health approaches to include other dynamic exposure durations such as repeated, episodic, or cumulative. This commentary provides an overview of methodological approaches used and recent findings from epidemiologic and experimental studies that examined longer duration, repeated smoke exposures. Based on the current science, we recommend that future epidemiologic and experimental studies of wildfire smoke examine multiple exposure metrics to capture the duration, frequency, and intensity of exposures. Such studies would improve the science produced to best support the needs of the public as we strive to further protect public health in a world projected to have more smoke.
Collapse
Affiliation(s)
- Jason D. Sacks
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, United States
| | - Christopher T. Migliaccio
- Center for Environmental Health Sciences, Department of Biomedical Sciences, University of Montana, Missoula, MT, 59812, United States
| | - Colleen E. Reid
- Geography Department and Institute of Behavioral Science, University of Colorado, Boulder, Colorado, 80309, United States
| | - Luke Montrose
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, 80523, United States
| |
Collapse
|
5
|
Wu Y, Xu R, Li S, Wen B, Southey MC, Dugue PA, Hopper JL, Abramson MJ, Li S, Guo Y. Association between wildfire-related PM 2.5 and epigenetic aging: A twin and family study in Australia. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136486. [PMID: 39566450 DOI: 10.1016/j.jhazmat.2024.136486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Wildfire-related PM2.5 has been associated with various adverse health outcomes, but its association with epigenetic aging remains unclear. This study examined the association between wildfire-related PM2.5 exposure and epigenetic aging using DNA methylation data from a twin and family study. With a within-sibship analysis, we found that each 1 µg/m3 increase in annual wildfire-related PM2.5 was associated with a 0.25-year (95 % CI: 0.04, 0.47) increase in GrimAge1 acceleration and a 0.36-year (95 % CI: 0.12, 0.59) increase in GrimAge2 acceleration. Subgroup analyses found that participants aged ≥ 60 years, those with a history of current or former smoking and alcohol consumption, and those living in rural regions exhibited more pronounced epigenetic age acceleration. These findings suggest that wildfire smoke could accelerate biological aging, particularly in vulnerable populations, posing a significant challenge to healthy aging.
Collapse
Affiliation(s)
- Yao Wu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Rongbin Xu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Shanshan Li
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Bo Wen
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne 3010, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 3004 VIC, Australia
| | - Pierre-Antoine Dugue
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, 3004 VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3800, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, VIC, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, VIC, Australia.
| | - Yuming Guo
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia.
| |
Collapse
|
6
|
Glover S, Illyuk J, Hill C, McGuinness B, McKnight AJ, Hunter RF. A systematic review of associations between the environment, DNA methylation, and cognition. ENVIRONMENTAL EPIGENETICS 2024; 11:dvae027. [PMID: 39882510 PMCID: PMC11776599 DOI: 10.1093/eep/dvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
The increasing prevalence of neurodegenerative diseases poses a significant public health challenge, prompting a growing focus on addressing modifiable risk factors of disease (e.g. physical inactivity, mental illness, and air pollution). The environment is a significant contributor of risk factors which are known to impact the brain and contribute to disease risk (e.g. air pollution, noise pollution, green and blue spaces). Epigenetics can offer insights into how various environmental exposures impact the body to contribute to cognitive outcomes. In this systematic review, we examined studies which have associated an environmental exposure to a type of epigenetic modification, DNA methylation, and a cognitive outcome. We searched four databases with keywords "environmental exposures," "epigenetics," and "cognition." We yielded 6886 studies that we screened by title/abstract followed by full text. We included 14 studies which focused on four categories of environmental exposure: air pollution (n = 3), proximity to roads (n = 1), heavy metals (n = 6), and pesticides (n = 4). Overall, n = 10/14 studies provided evidence that DNA methylation is statistically significant in the association between the environment and a cognitive outcome. Furthermore, we identified that n = 5/14 studies performed a type of biological pathway analysis to determine the presence of biological pathways between their environmental exposure and cognitive outcome. Our findings underscore the need for methodological improvements and considerations in future studies, including investigation of other environmental exposures considering tissue-specificity of methylation profiles and stratifying analysis by sex, ethnicity and socioeconomic determinants of disease. This review demonstrates that further investigation is warranted, the findings of which may be of use in the development of preventative measures and risk management strategies for neurodegenerative disease.
Collapse
Affiliation(s)
- Sophie Glover
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Jacob Illyuk
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Claire Hill
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Bernadette McGuinness
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Amy Jayne McKnight
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Ruth F Hunter
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| |
Collapse
|
7
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
8
|
Trembley JH, Barach P, Tomáška JM, Poole JT, Ginex PK, Miller RF, Lindheimer JB, Szema AM, Gandy K, Siddharthan T, Kirkness JP, Nixon JP, Torres RL, Klein MA, Nurkiewicz TR, Butterick TA. Current understanding of the impact of United States military airborne hazards and burn pit exposures on respiratory health. Part Fibre Toxicol 2024; 21:43. [PMID: 39434148 PMCID: PMC11492460 DOI: 10.1186/s12989-024-00606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Millions of United States (U.S.) troops deployed to the Middle East and Southwest Asia were exposed to toxic airborne hazards and/or open-air burn pits. Burn pit emissions contain particulate matter combined with toxic gasses and heavy metals. Ongoing research has demonstrated that exposures to the airborne hazards from military burn pits have profound and lasting health and wellness consequences. Research on the long-term health consequences of exposure to open burn pits has been limited. Work continues to understand the scope of the health impacts and the underlying pathobiology following exposures and to establish care standards. The U.S. Sergeant First Class Heath Robinson Honoring our Promise to Address Comprehensive Toxics (PACT) Act was signed into law August 2022. This act expands the benefits and services to U.S. Veterans exposed to toxicants, requires the Veterans Health Administration to provide toxic exposure screening, and supports increased research, education, and treatment due to toxic occupational exposures. This review highlights the state of the science related to military burn pit exposures research with an emphasis on pulmonary health. Clinical data demonstrate areas of reduced or delayed pulmonary ventilation and lung pathologies such as small airways scarring, diffuse collagen deposition and focal areas of ossification. Identification and characterization of foreign matter deposition in lung tissues are reported, including particulate matter, silica, titanium oxides, and polycyclic aromatic hydrocarbons. These data are consistent with toxic exposures and with the symptoms reported by post-deployment Veterans despite near-normal non-invasive pulmonary evaluations. On-going work toward new methods for non-invasive pulmonary diagnoses and disease monitoring are described. We propose various studies and databases as resources for clinical and health outcomes research. Pre-clinical research using different burn pit modeling approaches are summarized, including oropharyngeal aspiration, intranasal inhalation, and whole-body exposure chamber inhalation. These studies focus on the impacts of specific toxic substances as well as the effects of short-term and sustained insults over time on the pulmonary systems.
Collapse
Affiliation(s)
- Janeen H Trembley
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Paul Barach
- Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jedidah T Poole
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Pamela K Ginex
- School of Nursing, Stony Brook University, Stony Brook, NY, USA
| | - Robert F Miller
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Anthony M Szema
- Three Village Allergy and Asthma, PLLC, South Setauket, NY, USA
- Department of Occupational Medicine, Epidemiology, and Prevention, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Division of Allergy and Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Division of Pulmonary and Critical Care, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, USA
| | | | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark A Klein
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Schuller A, Oakes J, LaRocca T, Matz J, Eden M, Bellini C, Montrose L. Robust differential gene expression patterns in the prefrontal cortex of male mice exposed to an occupationally relevant dose of laboratory-generated wildfire smoke. Toxicol Sci 2024; 201:300-310. [PMID: 39107885 PMCID: PMC11424885 DOI: 10.1093/toxsci/kfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Wildfires have become common global phenomena concurrent with warmer and drier climates and are now major contributors to ambient air pollution worldwide. Exposure to wildfire smoke has been classically associated with adverse cardiopulmonary health outcomes, especially in vulnerable populations. Recent work has expanded our understanding of wildfire smoke toxicology to include effects on the central nervous system and reproductive function; however, the neurotoxic profile of this toxicant remains ill-explored in an occupational context. Here, we sought to address this by using RNA sequencing to examine transcriptomic signatures in the prefrontal cortex of male mice modeling career wildland firefighter smoke exposure. We report robust changes in gene expression profiles between smoke-exposed samples and filtered air controls, evidenced by 2,862 differentially expressed genes (51.2% increased). We further characterized the functional relevance of these genes highlighting enriched pathways related to synaptic transmission, neuroplasticity, blood-brain barrier integrity, and neurotransmitter metabolism. Additionally, we identified possible contributors to these alterations through protein-protein interaction network mapping, which revealed a central node at ß-catenin and secondary hubs centered around mitochondrial oxidases, the Wnt signaling pathway, and gene expression machinery. The data reported here will serve as the foundation for future experiments aiming to characterize the phenotypic effects and mechanistic underpinnings of occupational wildfire smoke neurotoxicology.
Collapse
Affiliation(s)
- Adam Schuller
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Jessica Oakes
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Tom LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Matthew Eden
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Luke Montrose
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
10
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
11
|
Godoy‐Lugo JA, Thorwald MA, Cacciottolo M, D'Agostino C, Chakhoyan A, Sioutas C, Tanzi RE, Rynearson KD, Finch CE. Air pollution amyloidogenesis is attenuated by the gamma-secretase modulator GSM-15606. Alzheimers Dement 2024; 20:6107-6114. [PMID: 39132765 PMCID: PMC11497728 DOI: 10.1002/alz.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Chronic air pollution (AirPoll) is associated with accelerated cognitive decline and risk of Alzheimer's disease (AD). Correspondingly, wild-type and AD-transgenic rodents exposed to AirPoll have increased amyloid peptides and behavioral impairments. METHODS We examined the γ-secretase modulator GSM-15606 for potential AirPoll protection by its attenuating of amyloid beta (Aβ)42 peptide production. Male and female wild-type mice were fed GSM-15606 during an 8-week inhalation exposure to AirPoll subfractions, ambient nanoparticulate matter (nPM), and diesel exhaust particles (DEP). RESULTS GSM-15606 decreased Aβ42 during nPM and DEP exposure without changing beta- or gamma-secretase activity or BACE1 and PS1 protein levels. DEP increased lateral ventricle volume by 25%. DISCUSSION These enzyme responses are relevant to AD drug treatments, as well as to the physiological functions of the Aβ42 peptide. GSM-15606 attenuation of Aβ42 may benefit human exposure to AirPoll. HIGHLIGHTS Gamma-secretase modulator (GSM-15606) attenuates the amyloidogenic amyloid beta (Aβ)42 peptide during exposure to air pollution, which may be a mechanism by which air pollution increases Alzheimer's disease (AD) risk. AD drug treatments may also consider Aβ homeostasis among the chronic effects of GSM-15606 and other amyloid reduction treatments on secretase enzymes.
Collapse
Affiliation(s)
- Jose A. Godoy‐Lugo
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mafalda Cacciottolo
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Capricor Therapeutics, Inc.Beverly HillsCaliforniaUSA
| | - Carla D'Agostino
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ararat Chakhoyan
- Department of Physiology and NeuroscienceKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Zilkha Neurogenetic InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Constantinos Sioutas
- Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rudolph E. Tanzi
- Department of NeurologyGenetics and Aging Research UnitMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
- Henry and Allison McCance Center for Brain HealthMassachusetts General HospitalBostonMassachusettsUSA
| | - Kevin D. Rynearson
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Dornsife CollegeUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Bottenhorn KL, Sukumaran K, Cardenas-Iniguez C, Habre R, Schwartz J, Chen JC, Herting MM. Air pollution from biomass burning disrupts early adolescent cortical microarchitecture development. ENVIRONMENT INTERNATIONAL 2024; 189:108769. [PMID: 38823157 PMCID: PMC11878718 DOI: 10.1016/j.envint.2024.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Exposure to outdoor particulate matter (PM2.5) represents a ubiquitous threat to human health, and particularly the neurotoxic effects of PM2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neurodevelopmental implications of PM exposure have been limited by small, geographically limited samples and largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. Here, we leverage residentially assigned exposure to six, data-driven sources of PM2.5 and neuroimaging data from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 different recruitment sites across the United States. To contribute an interpretable and actionable assessment of the role of air pollution in the developing brain, we identified alterations in cortical microstructure development associated with exposure to specific sources of PM2.5 using multivariate, partial least squares analyses. Specifically, average annual exposure (i.e., at ages 8-10 years) to PM2.5 from biomass burning was related to differences in neurite development across the cortex between 9 and 13 years of age.
Collapse
Affiliation(s)
- Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA.
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
14
|
Bottenhorn KL, Sukumaran K, Cardenas-Iniguez C, Habre R, Schwartz J, Chen JC, Herting MM. Air pollution from biomass burning disrupts early adolescent cortical microarchitecture development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.21.563430. [PMID: 38798573 PMCID: PMC11118378 DOI: 10.1101/2023.10.21.563430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Exposure to outdoor particulate matter (PM 2.5 ) represents a ubiquitous threat to human health, and particularly the neurotoxic effects of PM 2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neurodevelopmental implications of PM exposure have been limited by small, geographically limited samples and largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. Here, we leverage residentially assigned exposure to six, data-driven sources of PM 2.5 and neuroimaging data from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 different recruitment sites across the United States. To contribute an interpretable and actionable assessment of the role of air pollution in the developing brain, we identified alterations in cortical microstructure development associated with exposure to specific sources of PM 2.5 using multivariate, partial least squares analyses. Specifically, average annual exposure (i.e., at ages 8-10 years) to PM 2.5 from biomass burning was related to differences in neurite development across the cortex between 9 and 13 years of age.
Collapse
|
15
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
16
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
17
|
Sharma A, Smyth L, Jian H, Vargas N, Bowles D, Hunter A. Are we teaching the health impacts of climate change in a clinically relevant way? A systematic narrative review of biomechanism-focused climate change learning outcomes in medical curricula. MEDICAL TEACHER 2024; 46:414-422. [PMID: 37722803 DOI: 10.1080/0142159x.2023.2256963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
PURPOSE Introducing biomedical approaches to the health impacts of climate change can improve medical student engagement with relevant climate-related issues, improve the development of medical schemas, and minimise displacement into crowded medical curricula. This paper aims to systematically review the medical education curricula related to climate change, with a particular focus on systems-based biomechanisms for the health impacts of climate change. We do this to provide a clear agenda for further development of learning outcomes (LOs) in this area to maximize the clinical applicability of this knowledge. MATERIAL AND METHODS A systematic review was undertaken following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Liberati et al. 2009) guidelines for both the published and grey literature. Five databases (PubMed, SCOPUS, ERIC, Open Access Thesis and Dissertation, and Proquest Global Dissertation and Theses) were searched for works published between 2011 and June 2023. Full texts that contained LOs were the main inclusion criteria for the final review. Descriptive and content extraction guided the final narrative synthesis. RESULTS Analysis indicated that biomechanism-related LOs represented about 25% of each published LO set, on average. These outcomes were primarily at the "understand" level of Bloom's taxonomy and were spread across a range of body systems and climate-change aspects. Infectious diseases and extreme heat were strong focuses. Authorship analysis indicated that the majority of these sets of published LOs are from Western contexts and authored by researchers and educators with medical and population health qualifications. CONCLUSIONS Biomechanism-focused teaching about the health impacts of climate change is relatively rare in published curricula. Of the available sets of LOs, the majority are sourced from Western authors and are focused on a fairly circumscribed set of biomedical topics. There is scope to both broaden and deepen curriculum in this area, and we would recommend the field prioritise collaboration with medical educators from the Global South, where the effects of climate change are already the most acutely felt.
Collapse
Affiliation(s)
- Atul Sharma
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lillian Smyth
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Holly Jian
- Australian Institute of Health and Welfare, Canberra, Australian Capital Territory, Australia
| | - Nicole Vargas
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Devin Bowles
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arnagretta Hunter
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
18
|
Chen AI, Ebisu K, Benmarhnia T, Basu R. Emergency department visits associated with wildfire smoke events in California, 2016-2019. ENVIRONMENTAL RESEARCH 2023; 238:117154. [PMID: 37716386 DOI: 10.1016/j.envres.2023.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Wildfire smoke has been associated with adverse respiratory outcomes, but the impacts of wildfire on other health outcomes and sensitive subpopulations are not fully understood. We examined associations between smoke events and emergency department visits (EDVs) for respiratory, cardiovascular, diabetes, and mental health outcomes in California during the wildfire season June-December 2016-2019. Daily, zip code tabulation area-level wildfire-specific fine particulate matter (PM2.5) concentrations were aggregated to air basins. A "smoke event" was defined as an air basin-day with a wildfire-specific PM2.5 concentration at or above the 98th percentile across all air basin-days (threshold = 13.5 μg/m3). We conducted a two-stage time-series analysis using quasi-Poisson regression considering lag effects and random effects meta-analysis. We also conducted analyses stratified by race/ethnicity, age, and sex to assess potential effect modification. Smoke events were associated with an increased risk of EDVs for all respiratory diseases at lag 1 [14.4%, 95% confidence interval (CI): (6.8, 22.5)], asthma at lag 0 [57.1% (44.5, 70.8)], and chronic lower respiratory disease at lag 0 [12.7% (6.2, 19.6)]. We also found positive associations with EDVs for all cardiovascular diseases at lag 10. Mixed results were observed for mental health outcomes. Stratified results revealed potential disparities by race/ethnicity. Short-term exposure to smoke events was associated with increased respiratory and schizophrenia EDVs. Cardiovascular impacts may be delayed compared to respiratory outcomes.
Collapse
Affiliation(s)
- Annie I Chen
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
19
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
20
|
Zhang B, Weuve J, Langa KM, D’Souza J, Szpiro A, Faul J, Mendes de Leon C, Gao J, Kaufman JD, Sheppard L, Lee J, Kobayashi LC, Hirth R, Adar SD. Comparison of Particulate Air Pollution From Different Emission Sources and Incident Dementia in the US. JAMA Intern Med 2023; 183:1080-1089. [PMID: 37578757 PMCID: PMC10425875 DOI: 10.1001/jamainternmed.2023.3300] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
Importance Emerging evidence indicates that exposure to fine particulate matter (PM2.5) air pollution may increase dementia risk in older adults. Although this evidence suggests opportunities for intervention, little is known about the relative importance of PM2.5 from different emission sources. Objective To examine associations of long-term exposure of total and source-specific PM2.5 with incident dementia in older adults. Design, Setting, and Participants The Environmental Predictors of Cognitive Health and Aging study used biennial survey data from January 1, 1998, to December 31, 2016, for participants in the Health and Retirement Study, which is a nationally representative, population-based cohort study in the US. The present cohort study included all participants older than 50 years who were without dementia at baseline and had available exposure, outcome, and demographic data between 1998 and 2016 (N = 27 857). Analyses were performed from January 31 to May 1, 2022. Exposures The 10-year mean total PM2.5 and PM2.5 from 9 emission sources at participant residences for each month during follow-up using spatiotemporal and chemical transport models. Main Outcomes and Measures The main outcome was incident dementia as classified by a validated algorithm incorporating respondent-based cognitive testing and proxy respondent reports. Adjusted hazard ratios (HRs) were estimated for incident dementia per IQR of residential PM2.5 concentrations using time-varying, weighted Cox proportional hazards regression models with adjustment for the individual- and area-level risk factors. Results Among 27 857 participants (mean [SD] age, 61 [10] years; 15 747 [56.5%] female), 4105 (15%) developed dementia during a mean (SD) follow-up of 10.2 [5.6] years. Higher concentrations of total PM2.5 were associated with greater rates of incident dementia (HR, 1.08 per IQR; 95% CI, 1.01-1.17). In single pollutant models, PM2.5 from all sources, except dust, were associated with increased rates of dementia, with the strongest associations for agriculture, traffic, coal combustion, and wildfires. After control for PM2.5 from all other sources and copollutants, only PM2.5 from agriculture (HR, 1.13; 95% CI, 1.01-1.27) and wildfires (HR, 1.05; 95% CI, 1.02-1.08) were robustly associated with greater rates of dementia. Conclusion and Relevance In this cohort study, higher residential PM2.5 levels, especially from agriculture and wildfires, were associated with higher rates of incident dementia, providing further evidence supporting PM2.5 reduction as a population-based approach to promote healthy cognitive aging. These findings also indicate that intervening on key emission sources might have value, although more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | | | - Jiaqi Gao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Lianne Sheppard
- Department of Biostatistics, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
| | - Jinkook Lee
- Center for Economic and Social Research, University of Southern California, Los Angeles
| | - Lindsay C. Kobayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Richard Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
21
|
Scieszka D, Gu H, Barkley-Levenson A, Barr E, Garcia M, Begay JG, Herbert G, Bhaskar K, McCormick M, Brigman J, Ottens A, Bleske B, Campen MJ. NEUROMETABOLOMIC IMPACTS OF MODELED WILDFIRE SMOKE AND PROTECTIVE BENEFITS OF ANTI-AGING THERAPEUTICS IN AGED FEMALE C57BL/6J MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558863. [PMID: 37790385 PMCID: PMC10542542 DOI: 10.1101/2023.09.21.558863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Wildland fires have become progressively more extensive over the past 30 years in the US, and now routinely generate smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact that smoke derived from biomass has on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. Mice (N=6/group) were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 0.448mg/m 3 per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib+quercetin; DQ); or both RNMN with DQ (RNDQ). Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD+ within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by forced swim tests, which revealed an increased immobility (reduction in motivation) immediately post-exposure and persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. Findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Significance Statement Neurological impacts of wildfire smoke are largely underexplored but include neuroinflammation and metabolic changes. The present study highlights modulation of major metabolites in the prefrontal cortex and behavioral consequences in aged (18 month) female mice that persists 10 weeks after wood smoke exposure ended. Supplements derived from the anti-aging field were able to mitigate much of the woodsmoke effect, especially a combination of resveratrol and nicotinamide mononucleotide.
Collapse
|
22
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
23
|
Scieszka D, Jin Y, Noor S, Barr E, Garcia M, Begay J, Herbert G, Hunter RP, Bhaskar K, Kumar R, Gullapalli R, Bolt A, McCormick MA, Bleske B, Gu H, Campen MJ. Biomass smoke inhalation promotes neuroinflammatory and metabolomic temporal changes in the hippocampus of female mice. J Neuroinflammation 2023; 20:192. [PMID: 37608305 PMCID: PMC10464132 DOI: 10.1186/s12974-023-02874-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the temporal dynamics of neuroinflammation and metabolomics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6 J mice were exposed to wood smoke every other day for 2 weeks at an average exposure concentration of 0.5 mg/m3. Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-day post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of CD31Hi and CD31Med expressors, with wood smoke inhalation causing an increased proportion of CD31Hi. These populations of CD31Hi and CD31Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b+/CD45low) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules, such as glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD+ metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD+ abundance on day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated with wildfire smoke exposure.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Yan Jin
- Florida International University Center for Translational Sciences, Port St. Lucie, FL, 34987, USA
| | - Shahani Noor
- Department of Molecular Genetics and Microbiology, Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ed Barr
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Russell P Hunter
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rahul Kumar
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rama Gullapalli
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haiwei Gu
- Florida International University Center for Translational Sciences, Port St. Lucie, FL, 34987, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
24
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
25
|
Scieszka D, Jin Y, Noor S, Barr E, Garcia M, Begay J, Herbert G, Hunter RP, Bhaskar K, Kumar R, Gullapalli R, Bolt A, McCormick MA, Bleske B, Gu H, Campen M. Neuroinflammatory and Metabolomic Temporal Dynamics Following Wood Smoke Inhalation. RESEARCH SQUARE 2023:rs.3.rs-3002040. [PMID: 37333410 PMCID: PMC10275049 DOI: 10.21203/rs.3.rs-3002040/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the neuroinflammatory and metabolomic temporal dynamics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6J mice were exposed to wood smoke every other day for two weeks at an average exposure concentration of 0.5mg/m 3 . Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-days post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of PECAM (CD31), high and medium expressors, with wood smoke inhalation causing an increased proportion of PECAM Hi . These populations of PECAM Hi and PECAM Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b + /CD45 low ) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules like glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD + metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD + abundance at day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated wtith wildfire smoke exposure.
Collapse
Affiliation(s)
| | - Yan Jin
- Florida International University, Center for Translational Sciences
| | - Shahani Noor
- University of New Mexico, Department of Molecular Genetics and Microbiology
| | - Ed Barr
- University of New Mexico, College of Pharmacy
| | | | | | - Guy Herbert
- University of New Mexico, College of Pharmacy
| | | | - Kiran Bhaskar
- University of New Mexico, Department of Molecular Genetics and Microbiology
| | - Rahul Kumar
- University of New Mexico, Department of Pathology
| | | | - Alicia Bolt
- University of New Mexico, College of Pharmacy
| | - Mark A McCormick
- University of New Mexico, Department of Biochemistry and Molecular Biology
| | - Barry Bleske
- University of New Mexico, Department of Pharmacy Practice and Administrative Science
| | - Haiwei Gu
- Florida International University, Center for Translational Sciences
| | | |
Collapse
|
26
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
27
|
Eiser AR, Fulop T. Alzheimer's Disease Is a Multi-Organ Disorder: It May Already Be Preventable. J Alzheimers Dis 2023; 91:1277-1281. [PMID: 36617785 DOI: 10.3233/jad-221078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this commentary, we offer an overview of the several environmental and metabolic factors that have been identified as contributing to the development of Alzheimer's disease (AD). Many of these factors involve extracranial organ systems including immune system dysfunction accompanied by neuroinflammation (inflammaging), gastrointestinal dysbiosis, insulin resistance, and hepatic dysfunction. A variety of microbial factors including mouth flora, viruses, and fungi appear to play a significant role. There is a role for the colonic microbiome becoming dysbiotic and producing toxic metabolites. Declining hepatic function contributes diminished neuronal precursors and reduces toxin elimination. Environmental toxins especially metals play an important role in impairing the blood-brain barrier and acting synergistically with biotoxins and other toxic chemicals. Prevention and treatment of AD appears to require measuring several of these biomarkers and implementing corrective actions regarding such toxicants and correcting metabolic dysfunction at early or preclinical stages of this disorder.
Collapse
Affiliation(s)
- Arnold R Eiser
- Penn Center for Public Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Environmental Neuroscience Group, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamas Fulop
- Center on Aging, University of Sherbrooke, Quebec, Canada
| |
Collapse
|
28
|
Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med 2022; 28:2622-2632. [PMID: 36411343 PMCID: PMC9835154 DOI: 10.1038/s41591-022-02073-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Older people are particularly susceptible to infectious and neoplastic diseases of the lung and it is unclear how lifelong exposure to environmental pollutants affects respiratory immune function. In an analysis of human lymph nodes (LNs) from 84 organ donors aged 11-93 years, we found a specific age-related decline in lung-associated, but not gut-associated, LN immune function linked to the accumulation of inhaled atmospheric particulate matter. Increasing densities of particulates were found in lung-associated LNs with age, but not in the corresponding gut-associated LNs. Particulates were specifically contained within CD68+CD169- macrophages, which exhibited decreased activation, phagocytic capacity, and altered cytokine production compared with non-particulate-containing macrophages. The structures of B cell follicles and lymphatic drainage were also disrupted in lung-associated LNs with particulates. Our results reveal that the cumulative effects of environmental exposure and age may compromise immune surveillance of the lung via direct effects on immune cell function and lymphoid architecture.
Collapse
|
29
|
Amolegbe SM, Lopez AR, Velasco ML, Carlin DJ, Heacock ML, Henry HF, Trottier BA, Suk WA. Adapting to Climate Change: Leveraging Systems-Focused Multidisciplinary Research to Promote Resilience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14674. [PMID: 36429393 PMCID: PMC9690097 DOI: 10.3390/ijerph192214674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Approximately 2000 official and potential Superfund sites are located within 25 miles of the East or Gulf coasts, many of which will be at risk of flooding as sea levels rise. More than 60 million people across the United States live within 3 miles of a Superfund site. Disentangling multifaceted environmental health problems compounded by climate change requires a multidisciplinary systems approach to inform better strategies to prevent or reduce exposures and protect human health. The purpose of this minireview is to present the National Institute of Environmental Health Sciences Superfund Research Program (SRP) as a useful model of how this systems approach can help overcome the challenges of climate change while providing flexibility to pivot to additional needs as they arise. It also highlights broad-ranging SRP-funded research and tools that can be used to promote health and resilience to climate change in diverse contexts.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | | | | | - Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Michelle L. Heacock
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Heather F. Henry
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Brittany A. Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - William A. Suk
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| |
Collapse
|