1
|
Busold S, Akkerdaas JH, Zijlstra-Willems EM, van der Graaf K, Tas SW, de Jong EC, van Ree R, Geijtenbeek TBH. Toll-like receptor 4 and Syk kinase shape dendritic cell-induced immune activation to major house dust mite allergens. Front Med (Lausanne) 2023; 10:1105538. [PMID: 37614946 PMCID: PMC10442820 DOI: 10.3389/fmed.2023.1105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Background House dust mite (HDM) is a major cause of respiratory allergic diseases. Dendritic cells (DCs) play a central role in orchestrating adaptive allergic immune responses. However, it remains unclear how DCs become activated by HDM. Biochemical functions of the major HDM allergens Der p 1 (cysteine protease) and Der p 2 (MD2-mimick) have been implicated to contribute to DC activation. Methods We investigated the immune activating potential of HDM extract and its major allergens Der p 1 and Der p 2 using monocyte-derived DCs (moDCs). Maturation and activation markers were monitored by flow cytometry and cytokine production by ELISA. Allergen depletion and proteinase K digestion were used to investigate the involvement of proteins, and in particular of the major allergens. Inhibitors of spleen tyrosine kinase (Syk), Toll-like receptor 4 (TLR4) and of C-type lectin receptors (CLRs) were used to identify the involved receptors. The contribution of endotoxins in moDC activation was assessed by their removal from HDM extract. Results HDM extract induced DC maturation and cytokine responses in contrast to the natural purified major allergens Der p 1 and Der p 2. Proteinase K digestion and removal of Der p 1 or Der p 2 did not alter the immune stimulatory capacity of HDM extract. Antibodies against the CLRs Dectin-1, Dectin-2, and DC-SIGN did not affect cytokine responses. In contrast, Syk inhibition partially reduced IL-6, IL-12 and completely blocked IL-10. Blocking TLR4 signaling reduced the HDM-induced IL-10 and IL-12p70 induction, but not IL-6, while endotoxin removal potently abolished the induced cytokine response. Conclusion Our data strongly suggest that HDM-induced DC activation is neither dependent on Der p 1 nor Der p 2, but depend on Syk and TLR4 activation, which might suggest a crosstalk between Syk and TLR4 pathways. Our data highlight that endotoxins play a potent role in immune responses targeting HDM.
Collapse
Affiliation(s)
- Stefanie Busold
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Jaap H. Akkerdaas
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Esther M. Zijlstra-Willems
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | | | - Sander W. Tas
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Ronald van Ree
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Centers, location AMC, Department of Otorhinolaryngology, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| |
Collapse
|
2
|
He K, Wan T, Wang D, Hu J, Zhou T, Tao W, Wei Z, Lu Q, Zhou R, Tian Z, Flavell RA, Zhu S. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell 2023; 186:3033-3048.e20. [PMID: 37327784 DOI: 10.1016/j.cell.2023.05.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/03/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.
Collapse
Affiliation(s)
- Kaixin He
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Wan
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Decai Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ji Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingyue Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; School of Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Palladino C, Ellinger I, Kalic T, Humeniuk P, Ret D, Mayr V, Hafner C, Hemmer W, Hoffmann-Sommergruber K, Untersmayr E, Bublin M, Radauer C, Breiteneder H. Peanut lipids influence the response of bronchial epithelial cells to the peanut allergens Ara h 1 and Ara h 2 by decreasing barrier permeability. Front Mol Biosci 2023; 10:1126008. [PMID: 36845549 PMCID: PMC9945344 DOI: 10.3389/fmolb.2023.1126008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Peanut-allergic individuals react upon their first known ingestion of peanuts, suggesting sensitization occurs through non-oral exposure. Increasing evidence suggests that the respiratory tract is a probable site for sensitization to environmental peanuts. However, the response of the bronchial epithelium to peanut allergens has never been explored. Furthermore, food matrix-derived lipids play an important role in allergic sensitization. Objective: To contribute to a better understanding of the mechanisms of allergic sensitization to peanuts via inhalation, by exploring the direct effect of the major peanut allergens Ara h 1 and Ara h 2 and peanut lipids on bronchial epithelial cells. Methods: Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with peanut allergens and/or peanut lipids (PNL). Barrier integrity, transport of allergens across the monolayers, and release of mediators were monitored. Results: Ara h 1 and Ara h 2 impacted the barrier integrity of the 16HBE14o- bronchial epithelial cells and crossed the epithelial barrier. Ara h 1 also induced the release of pro-inflammatory mediators. PNL improved the barrier function of the cell monolayers, decreased paracellular permeability and reduced the amount of allergens crossing the epithelial layer. Conclusion: Our study provides evidence of the transport of Ara h 1 and Ara h 2 across the airway epithelium, of the induction of a pro-inflammatory milieu, and identifies an important role for PNL in controlling the amount of allergens that can cross the epithelial barrier. These, all together, contribute to a better understanding of the effects of peanuts exposure on the respiratory tract.
Collapse
Affiliation(s)
- Chiara Palladino
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Piotr Humeniuk
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Vanessa Mayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
- Karl Landsteiner Institute for Dermatological Research, St. Pölten, Austria
| | | | - Karin Hoffmann-Sommergruber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Merima Bublin
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Liu Q, Lin S, Sun N. How does food matrix components affect food allergies, food allergens and the detection of food allergens? A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Gazme B, Rezaei K, Udenigwe CC. Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food Funct 2022; 13:38-51. [PMID: 34908097 DOI: 10.1039/d1fo01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egg white has high protein content and numerous biological/functional properties. However, reported allergenicity for some of the proteins in egg white is an issue that needs to be paid exclusive attention. A consideration of the structure of IgE epitopes and their sequences, as well as a comprehensive understanding of the effects of various processes on epitopes and the impact of the gastrointestinal tract on them, can help target such issues. The current study focuses on the identified IgE epitopes in egg white proteins and evaluation of the effects of the gastrointestinal digestion, carbohydrate moiety, food matrix, microbial fermentation, recombinant allergen, heat treatment, Maillard reaction and combination of various processes and gastrointestinal digestion on egg white allergenicity. Although the gastrointestinal tract reduces the immunoreactivity of native egg white proteins, some of the IgE epitope-containing fragments remain intact during the digestion process. It has been found that the gastrointestinal tract can have both positive and negative impacts on the IgE binding activities of egg white proteins. Elimination of the carbohydrate moiety leads to a reduction in the immunoreactivity of ovalbumin. But, such effects from the carbohydrate parts in the IgE binding activity need to be explored further. In addition, the interaction between the egg white proteins and the food matrix leads to various effects from the gastrointestinal tract on the digestion of egg white proteins and their subsequent immunoreactivity. Further on this matter, studies have shown that both microbial fermentation and Maillard reaction can reduce the IgE binding activities of egg white proteins. Also, as an alternate approach, the thermal process can be used to treat the egg white proteins, which may result in the reduction or increase in their IgE binding activities depending on the conditions used in the process. Overall, based on the reported data, the allergenicity levels of egg white proteins can be mitigated or escalated depending on the conditions applied in the processing of the food products containing egg white. So far, no practical solutions have been reported to eliminate such allergenicity.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
7
|
Soares JRA, Pereira E Silva A, de Souza Oliveira AL, Guimarães IM, das Neves Faccini CRJ, de Aquino Mattos EB, Rodrigues SKPM, Marmello BO, Teixeira GAPB. Allergen extraction: Factors influencing immunogenicity and sensitivity of immunoassays. J Immunol Methods 2021; 498:113125. [PMID: 34450115 DOI: 10.1016/j.jim.2021.113125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Food allergy prevalence is increasing worldwide, therefore there is a high demand for reliable tests to correctly diagnose this disease. Knowledge of proteins allergenicity and how they react both in the body and in diagnostic tests is necessary to adequately assess the potential immunogenicity of both natural foods and those produced through biotechnological processes. Thus, our aim was to analyze the factors that influence the protein extraction of foods in terms of, immunogenicity and immunoassays sensitivity. Peanut proteins were extracted using four distinct extraction buffers with different pH values (physiological saline, tris buffer, borate buffer with and without β-mercaptoethanol), the protein concentration was determined by the Lowry method and polyacrylamide electrophoresis (SDS-PAGE) was used to compare the protein profile of each extract. The immunogenicity of each extract was verified by sensitizing two mouse strains (Balb/c and C57Bl/6) with a solution containing 100 μg of the extracted proteins and was determined by ELISA. Results show that extraction with the distinct buffers resulted in protein solutions with different yields and profiles. The immunogenicity of the different extracts also demonstrated distinct patterns that varied depending on the extraction methods, mouse strain and in vitro test. Immunoreactivity varied in accordance with the protein extract used to coat the microtitration plates. In conclusion, the protein profile in the extracts is critically influenced by the salt composition and pH of the extraction buffers, this in turn influences both in vivo immunogenicity and in vitro immunoreactivity.
Collapse
Affiliation(s)
- João Ricardo Almeida Soares
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Airton Pereira E Silva
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Ana Luísa de Souza Oliveira
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Isabelle Mazza Guimarães
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Claudia Regina Josetti das Neves Faccini
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Erika Bertozzi de Aquino Mattos
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Sónia Kristy Pinto Melo Rodrigues
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil
| | - Bárbara Oliveira Marmello
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Gerlinde Agate Platais Brasil Teixeira
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-150, Brazil; Graduate Program in Science and Biotechnology, Federal Fluminense University, Niterói, Rio de Janeiro 24020-141, Brazil; Graduate Program in Pathology, Medicine School, Antônio Pedro Hospital, Federal Fluminense University, Niterói, Rio de Janeiro 24033-900, Brazil.
| |
Collapse
|
8
|
Luo C, Chen G, Ahmed I, Sun L, Li W, Pavase TR, Li Z. Immunostimulatory and allergenic properties of emulsified and non-emulsified digestion products of parvalbumin ( Scophthalmus maximus) in RBL-2H3 cells and BALB/c mouse models. Food Funct 2021; 12:5351-5360. [PMID: 33982680 DOI: 10.1039/d1fo00575h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the influence of lipid emulsion on the allergenicity of digestion products of fish parvalbumin (PV) was investigated, which was initially subjected to simulated gastric/intestinal digestion both under emulsified and non-emulsified conditions. The release of β-hexosaminidase (β-hex), histamine (His), tryptase (TPS), interleukin 4 (IL-4), and IL-13 in RBL cells was decreased by 79.32, 26.19, 41.67, 53.95 and 54.40%, respectively, following stimulation with the gastric digestion products of PV. Whereas, lipid emulsified digestion products of PV (e-PV) significantly enhanced the release of active mediators and cytokines. The digestion products of emulsified PV at 180 min resulted in a higher release of β-hex (197.60%), His (12.18%), TPS (38.85%), IL-4 (48.19%) and IL-13 (59.40%), as compared to that of PV. However, no obvious differences in the release of active substances and cytokines were noted between intestinal digestion products of PV and intestinal digestion products of emulsified PV. In the mouse model studies, digested PV products reduced the anaphylactic scores, whereas e-PV manifested a higher level of allergic symptoms. Moreover, mice treated with 50% e-PV had significantly higher levels of specific IgE (32.56%), total IgE (16.67%) and total IgG1 (5.15%) than those treated with 50% PV. Mice treated with 50% e-PV had significantly higher levels of His (8.50%) and TPS (10.07%) compared with mice treated with 50% PV. Lipid emulsions altered the digestibility of PV in gastrointestinal digestion and enhanced the allergenicity of PV digestion products at the cellular levels, subsequently posing a higher risk of allergic reactions in susceptible individuals.
Collapse
Affiliation(s)
- Chen Luo
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Ishfaq Ahmed
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Lirui Sun
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Wenjie Li
- Qingdao Women & Children Hospital, Clinical Laboratory, Qingdao, Shandong Province 266003, PR China
| | - Tushar Ramesh Pavase
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Zhenxing Li
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| |
Collapse
|
9
|
Liu Y, Fang X, Sun X, Niu B, Chen Q. Detection of Allergen Genes in Peanut and Soybean by Circular Fluorescence Probe-Mediated Isothermal Amplification. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01883-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Venkataratnam H, Cahill O, Sarangapani C, Cullen PJ, Barry-Ryan C. Impact of cold plasma processing on major peanut allergens. Sci Rep 2020; 10:17038. [PMID: 33046788 PMCID: PMC7550356 DOI: 10.1038/s41598-020-72636-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022] Open
Abstract
Cold plasma is emerging as a novel food processing technology, with demonstrated efficacies for microbial inactivation and residual chemical dissipation of food products. Given the technology's multimodal action it has the potential to reduce allergens in foods, however data on the efficacy and mechanisms of action are sparse. This study investigates the efficacy of cold plasma on major peanut allergens (Ara h 1 and Ara h 2). For this purpose, dry, whole peanut (WP) and defatted peanut flour (DPF) were subjected to an atmospheric air discharge using a pin to plate cold plasma reactor for different treatment durations. With increases in plasma exposure, SDS-PAGE analysis revealed reduced protein solubility of the major peanut allergens. Alterations in allergenicity and structure of Ara h 1 and Ara h 2 were examined using ELISA and circular dichroism (CD) spectroscopy. Competitive ELISA with proteins purified from plasma treated WP or DPF revealed reduced antigenicity for both Ara h 1 and Ara h 2. The highest reduction in antigenicity was 65% for Ara h 1 and 66% Ara h 2 when purified from DPF. Results from CD spectroscopy analysis of purified proteins strongly suggests the reduction in antigenicity is due to modifications in the secondary structure of the allergens induced by plasma reactive species. Cold plasma is effective at reducing peanut protein solubility and causes changes in allergen structure leading to reduced antigenicity.
Collapse
Affiliation(s)
- Harshitha Venkataratnam
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Republic of Ireland.
| | - Orla Cahill
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Republic of Ireland
| | - Chaitanya Sarangapani
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Republic of Ireland
| | - P J Cullen
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Republic of Ireland
- Centre for Advanced Food Enginomics, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
- Plasmaleap Technologies, Merewether Building, City Road, Sydney, Australia
| | - Catherine Barry-Ryan
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Republic of Ireland
| |
Collapse
|
11
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
12
|
Fish-derived low molecular weight components modify bronchial epithelial barrier properties and release of pro-inflammatory cytokines. Mol Immunol 2019; 112:140-150. [PMID: 31102986 PMCID: PMC6997027 DOI: 10.1016/j.molimm.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
The prevalence of fish allergy among fish-processing workers is higher than in the general population, possibly due to sensitization via inhalation and higher exposure. However, the response of the bronchial epithelium to fish allergens has never been explored. Parvalbumins (PVs) from bony fish are major sensitizers in fish allergy, while cartilaginous fish and their PVs are considered less allergenic. Increasing evidence demonstrates that components other than proteins from the allergen source, such as low molecular weight components smaller than 3 kDa (LMC) from pollen, may act as adjuvants during allergic sensitization. We investigated the response of bronchial epithelial cells to PVs and to LMC from Atlantic cod, a bony fish, and gummy shark, a cartilaginous fish. Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with fish PVs and/-or the corresponding fish LMC. Barrier integrity, transport of PVs across the monolayers and release of mediators were monitored. Intact PVs from both the bony and the cartilaginous fish were rapidly internalized by the cells and transported to the basolateral side of the monolayers. The PVs did not disrupt the epithelial barrier integrity nor did they modify the release of proinflammatory cytokines. In contrast, LMC from both fish species modified the physical and immunological properties of the epithelial barrier and the responses differed between bony and cartilaginous fish. While the barrier integrity was lowered by cod LMC 24 h after cell stimulation, it was increased by up to 2.3-fold by shark LMC. Furthermore, LMC from both fish species increased basolateral and apical release of IL-6 and IL-8, while CCL2 release was increased by cod but not by shark LMC. In summary, our study demonstrated the rapid transport of PVs across the epithelium which may result in their availability to antigen presenting cells required for allergic sensitization. Moreover, different cell responses to LMC derived from bony versus cartilaginous fish were observed, which may play a role in different allergenic potentials of these two fish classes.
Collapse
|
13
|
Abstract
The prevalence of food allergy is raising in industrialized countries, but the mechanisms behind this increased incidence are not fully understood. Environmental factors are believed to play a role in allergic diseases, including lifestyle influences, such as diet. There is a close relationship between allergens and lipids, with many allergenic proteins having the ability to bind lipids. Dietary lipids exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to cells of the adaptive immunity. In addition to modifying the immunostimulating properties of proteins, lipids also alter their digestibility and intestinal absorption, changing allergen bioavailability. This study provides an overview of the role of dietary lipids in food allergy, taking into account epidemiological information, as well as results of mechanistic investigations using in vivo, ex vivo and in vitro models. The emerging link among high-fat diets, obesity, and allergy is also discussed.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
14
|
Thermal processing influences the digestibility and immunoreactivity of muscle proteins of Scylla paramamosain. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Kusari A, Han A, Eichenfield L. Recent advances in understanding and preventing peanut and tree nut hypersensitivity. F1000Res 2018; 7:F1000 Faculty Rev-1716. [PMID: 30467518 PMCID: PMC6208566 DOI: 10.12688/f1000research.14450.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Peanut allergy, the most persistent and deadly of the food allergies, has become more prevalent worldwide in recent decades. Numerous explanations have been offered for the rise in peanut allergy, which has been more pronounced in Western, industrialized nations. In infants who are at increased risk of peanut allergy, new evidence indicates that early introduction of peanuts can help prevent allergy development. This counterintuitive finding directly contradicts the previously established practice of peanut avoidance for high-risk infants but is supported by clinical and basic science evidence. Here, we review the literature contributing to our evolving understanding of nut allergy, emphasizing the translation of this work to clinical practice.
Collapse
Affiliation(s)
- Ayan Kusari
- Departments of Pediatric and Adolescent Dermatology, Rady Children’s Hospital, San Diego, California, USA
- Department of Dermatology, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Allison Han
- Departments of Pediatric and Adolescent Dermatology, Rady Children’s Hospital, San Diego, California, USA
- Department of Dermatology, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Lawrence Eichenfield
- Departments of Pediatric and Adolescent Dermatology, Rady Children’s Hospital, San Diego, California, USA
- Department of Dermatology, University of California, San Diego School of Medicine, San Diego, California, USA
| |
Collapse
|
16
|
Palladino C, Narzt MS, Bublin M, Schreiner M, Humeniuk P, Gschwandtner M, Hafner C, Hemmer W, Hoffmann-Sommergruber K, Mildner M, Palomares O, Gruber F, Breiteneder H. Peanut lipids display potential adjuvanticity by triggering a pro-inflammatory response in human keratinocytes. Allergy 2018; 73:1746-1749. [PMID: 29747215 PMCID: PMC6095042 DOI: 10.1111/all.13475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- C. Palladino
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. S. Narzt
- Department of Dermatology; Division of Biology and Pathobiology of the Skin; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging; Department of Dermatology; Medical University of Vienna; Vienna Austria
| | - M. Bublin
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Schreiner
- Institute of Food Science; University of Natural Resources and Life Sciences (BOKU); Vienna Austria
| | - P. Humeniuk
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Gschwandtner
- Department of Dermatology; Division of Biology and Pathobiology of the Skin; Medical University of Vienna; Vienna Austria
| | - C. Hafner
- Department of Dermatology; University Hospital St. Poelten; Karl Landsteiner University of Health Sciences; St. Poelten Austria
- Karl Landsteiner Institute of Dermatological Research; Karl Landsteiner Gesellschaft; St. Poelten Austria
| | - W. Hemmer
- Floridsdorf Allergy Center; Vienna Austria
| | | | - M. Mildner
- Department of Dermatology; Division of Biology and Pathobiology of the Skin; Medical University of Vienna; Vienna Austria
| | - O. Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - F. Gruber
- Department of Dermatology; Division of Biology and Pathobiology of the Skin; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging; Department of Dermatology; Medical University of Vienna; Vienna Austria
| | - H. Breiteneder
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| |
Collapse
|
17
|
Pablos-Tanarro A, Lozano-Ojalvo D, Molina E, López-Fandiño R. Assessment of the Allergenic Potential of the Main Egg White Proteins in BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2970-2976. [PMID: 29493227 DOI: 10.1021/acs.jafc.8b00402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work aimed to assess the contribution of the major egg white proteins, ovalbumin, ovomucoid, and lysozyme, to the induction and elicitation of allergenic responses. For this purpose, BALB/c mice were orally administered either the individual egg allergens or a mixture of the three proteins in the same proportion, to evaluate their relative allergenicity avoiding their different abundance in egg white. Cholera toxin was used as a T helper 2 (Th2)-polarizing adjuvant. Ovomucoid and lysozyme triggered the most severe anaphylaxis reactions upon oral challenge. In comparison to ovalbumin and ovomucoid, lysozyme was a more active promotor of early immunoglobulin E and immunoglobulin G1 production and stimulated stronger Th2-biased responses from both mesenteric lymph node and spleen cells. These results indicate that lysozyme is highly immunogenic and should be considered as a major allergen, whose clinical usefulness in the diagnosis, prognosis, and therapeutic approaches of egg allergy deserves further consideration.
Collapse
Affiliation(s)
- Alba Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM) , Nicolás Cabrera 8 , 28049 Madrid , Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM) , Nicolás Cabrera 8 , 28049 Madrid , Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM) , Nicolás Cabrera 8 , 28049 Madrid , Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM) , Nicolás Cabrera 8 , 28049 Madrid , Spain
| |
Collapse
|
18
|
Vonk MM, Wagenaar L, Pieters RHH, Knippels LMJ, Willemsen LEM, Smit JJ, van Esch BCAM, Garssen J. The efficacy of oral and subcutaneous antigen-specific immunotherapy in murine cow's milk- and peanut allergy models. Clin Transl Allergy 2017; 7:35. [PMID: 29021893 PMCID: PMC5622477 DOI: 10.1186/s13601-017-0170-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antigen-specific immunotherapy (AIT) is a promising therapeutic approach for both cow's milk allergy (CMA) and peanut allergy (PNA), but needs optimization in terms of efficacy and safety. AIM Compare oral immunotherapy (OIT) and subcutaneous immunotherapy (SCIT) in murine models for CMA and PNA and determine the dose of allergen needed to effectively modify parameters of allergy. METHODS Female C3H/HeOuJ mice were sensitized intragastrically (i.g.) to whey or peanut extract with cholera toxin. Mice were treated orally (5 times/week) or subcutaneously (3 times/week) for three consecutive weeks. Hereafter, the acute allergic skin response, anaphylactic shock symptoms and body temperature were measured upon intradermal (i.d.) and intraperitoneal (i.p.) challenge, and mast cell degranulation was measured upon i.g. challenge. Allergen-specific IgE, IgG1 and IgG2a were measured in serum at different time points. Single cell suspensions derived from lymph organs were stimulated with allergen to induce cytokine production and T cell phenotypes were assessed using flow cytometry. RESULTS Both OIT and SCIT decreased clinically related signs upon challenge in the CMA and PNA model. Interestingly, a rise in allergen-specific IgE was observed during immunotherapy, hereafter, treated mice were protected against the increase in IgE caused by allergen challenge. Allergen-specific IgG1 and IgG2a increased due to both types of AIT. In the CMA model, SCIT and OIT reduced the percentage of activated Th2 cells and increased the percentage of activated Th1 cells in the spleen. OIT increased the percentage of regulatory T cells (Tregs) and activated Th2 cells in the MLN. Th2 cytokines IL-5, IL-13 and IL-10 were reduced after OIT, but not after SCIT. In the PNA model, no differences were observed in percentages of T cell subsets. SCIT induced Th2 cytokines IL-5 and IL-10, whereas OIT had no effect. CONCLUSION We have shown clinical protection against allergic manifestations after OIT and SCIT in a CMA and PNA model. Although similar allergen-specific antibody patterns were observed, differences in T cell and cytokine responses were shown. Whether these findings are related to a different mechanism of AIT in CMA and PNA needs to be elucidated.
Collapse
Affiliation(s)
- Marlotte M Vonk
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| | - Laura Wagenaar
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands
| | - Raymond H H Pieters
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.,Yalelaan 104, 3594 CM Utrecht, The Netherlands
| | - Leon M J Knippels
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joost J Smit
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands
| | - Betty C A M van Esch
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
19
|
Dendritic Cells and Their Role in Allergy: Uptake, Proteolytic Processing and Presentation of Allergens. Int J Mol Sci 2017; 18:ijms18071491. [PMID: 28696399 PMCID: PMC5535981 DOI: 10.3390/ijms18071491] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are the most important antigen presenting cells to activate naïve T cells, which results in the case of Type 1 allergies in a Type 2 helper T cell (Th2)-driven specific immune response towards allergens. So far, a number of different subsets of specialized DCs in different organs have been identified. In the recent past methods to study the interaction of DCs with allergenic proteins, their different uptake and processing mechanisms followed by the presentation to T cells were developed. The following review aims to summarize the most important characteristics of DC subsets in the context of allergic diseases, and highlights the recent findings. These detailed studies can contribute to a better understanding of the pathomechanisms of allergic diseases and contribute to the identification of key factors to be addressed for therapeutic interventions.
Collapse
|
20
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
21
|
Guillon B, Bernard H, Drumare MF, Hazebrouck S, Adel-Patient K. Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6. Mol Nutr Food Res 2016; 60:2722-2735. [PMID: 27374416 PMCID: PMC5213772 DOI: 10.1002/mnfr.201500923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 11/11/2022]
Abstract
SCOPE Processing of food has been shown to impact IgE binding and functionality of food allergens. In the present study, we investigated the impact of heat processing on the sensitization capacity of Ara h 6, a major peanut allergen and one of the most potent elicitors of the allergic reaction. METHODS AND RESULTS Peanut extracts obtained from raw or heat-processed peanut and some fractions thereof were biochemically and immunochemically characterized. These extracts/fractions, purified Ara h 6, or recombinant Ara h 6 including Ara h 6 mutants lacking disulfide bridges were used in in vitro digestion tests and mouse models of experimental sensitization. Peanut roasting led to the formation of complexes of high molecular weight, notably between Ara h 6 and Ara h 1, which supported the induction of IgE specific to native Ara h 6. On the contrary, a fraction containing free monomeric 2S albumins or purified native Ara h 6 displayed no intrinsic allergenicity. In addition to complex formation, heat denaturation and/or partial destabilization enhanced Ara h 6 immunogenicity and increased its sensitivity to digestion. CONCLUSION These results suggest that sensitization potency and IgE binding capacity can be supported by different structures, modified and/or produced during food processing in interaction with other food constituents.
Collapse
Affiliation(s)
- Blanche Guillon
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Bernard
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Françoise Drumare
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Adel-Patient
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Smit J, Zeeuw-Brouwer MLD, van Roest M, de Jong G, van Bilsen J. Evaluation of the sensitizing potential of food proteins using two mouse models. Toxicol Lett 2016; 262:62-69. [PMID: 27663974 DOI: 10.1016/j.toxlet.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/30/2016] [Accepted: 09/11/2016] [Indexed: 01/01/2023]
Abstract
The current methodology to identify allergenic food proteins is effective in identifying those that are likely to cross-react with known allergens. However, most assays show false positive results for low/non-allergens. Therefore, an ex vivo/in vitro DC-T cell assay and an in vivo mouse model were used to distinguish known allergenic food proteins (Ara h 1, β-Lactoglobulin, Pan b 1, bovine serum albumin, whey protein isolate) from low/non allergenic food proteins (soy lipoxygenase, gelatin, beef tropomyosin, rubisco, Sola t 1). CD4+ T cells from protein/alum-immunized mice were incubated with corresponding protein-pulsed bone marrow-derived DC and analyzed for cytokine release. All known allergens induced Th2 responses in vitro, whereas soy lipoxygenase, gelatin or beef tropomyosin did not. Sola t 1 and rubisco induced a more generalized T cell response due to endotoxin contamination, indicating the endotoxin-sensitivity of the DC-T assay. To analyze responses in vivo, mice were orally sensitized on days 0 and 7. Known allergens induced IgE and mMCP-1 release upon oral challenge at day 16, whereas the low/non-allergens did not. Both the DC-T cell assay and the mouse model were able to distinguish 5 known allergens from 5 low/non-allergens and may be useful to identify novel allergenic food proteins.
Collapse
Affiliation(s)
- Joost Smit
- Institute for Risk Assessment Sciences, University Utrecht, Utrecht, The Netherlands; Utrecht Center for Food Allergy, Utrecht, The Netherlands.
| | | | - Manon van Roest
- Institute for Risk Assessment Sciences, University Utrecht, Utrecht, The Netherlands; Utrecht Center for Food Allergy, Utrecht, The Netherlands
| | - Govardus de Jong
- Utrecht Center for Food Allergy, Utrecht, The Netherlands; TNO, Zeist, The Netherlands
| | - Jolanda van Bilsen
- Utrecht Center for Food Allergy, Utrecht, The Netherlands; TNO, Zeist, The Netherlands
| |
Collapse
|
23
|
Angelina A, Sirvent S, Palladino C, Vereda A, Cuesta-Herranz J, Eiwegger T, Rodríguez R, Breiteneder H, Villalba M, Palomares O. The lipid interaction capacity of Sin a 2 and Ara h 1, major mustard and peanut allergens of the cupin superfamily, endorses allergenicity. Allergy 2016; 71:1284-94. [PMID: 26991432 DOI: 10.1111/all.12887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sin a 2 (11S globulin) and Ara h 1 (7S globulin) are major allergens from yellow mustard seeds and peanut, respectively. The ability of these two allergens to interact with lipid components remains unknown. OBJECTIVE To study the capacity of Sin a 2 and Ara h 1 to interact with lipid components and the potential effects of such interaction in their allergenic capacity. METHODS Spectroscopic and SDS-PAGE binding assays of Sin a 2 and Ara h 1 with different phospholipid vesicles and gastrointestinal and endolysosomal digestions in the presence or absence of lipids were performed. The capacity of human monocyte-derived dendritic cells (hmoDCs) to capture food allergens in the presence or absence of lipids, the induced cytokine signature, and the effect of allergens and lipids to regulate TLR2-L-induced NF-kB/AP-1 activation in THP1 cells were analyzed. RESULTS Sin a 2 and Ara h 1 bind phosphatidylglycerol (PG) acid but not phosphatidylcholine (PC) vesicles in a pH-dependent manner. The interaction of these two allergens with lipid components confers resistance to gastrointestinal digestion, reduces their uptake by hmoDCs, and enhances their stability to microsomal degradation. Mustard and peanut lipids favor a proinflammatory environment by increasing the IL-4/IL-10 ratio and IL-1β production by hmoDCs. The presence of mustard lipids and PG vesicles inhibits TLR2-L-induced NF-kB/AP-1 activation in THP1 cells. CONCLUSION Sin a 2 and Ara h 1 interact with lipid components, which might well contribute to explain the potent allergenic capacity of these two clinically relevant allergens belonging to the cupin superfamily.
Collapse
Affiliation(s)
- A. Angelina
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - S. Sirvent
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - C. Palladino
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - A. Vereda
- Servicio de Alergia; Fundación Jiménez Diaz; Madrid Spain
| | | | - T. Eiwegger
- Department of Paediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
- Division of Immunology and Allergy; Food allergy and Anaphylaxis Program; The Department of Paediatrics; Hospital for Sick Children; The University of Toronto; Toronto ON Canada
| | - R. Rodríguez
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - H. Breiteneder
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Villalba
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - O. Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| |
Collapse
|
24
|
Bøgh KL, van Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O'Mahony L. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 2016; 6:21. [PMID: 27313841 PMCID: PMC4910256 DOI: 10.1186/s13601-016-0110-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023] Open
Abstract
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
Collapse
Affiliation(s)
| | | | | | - Iván López-Expósito
- Department of Bioactivity and Food Analysis, Institute for Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | | | | | | | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole de Wit
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- UMR-INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Leon Knippels
- Danone Nutricia Research, Utrecht, The Netherlands ; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle M Epstein
- Experimental Allergy Laboratory, DIAID, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Ian Kimber
- University of Manchester, Manchester, UK
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos Platz, Switzerland
| |
Collapse
|
25
|
Pablos-Tanarro A, López-Expósito I, Lozano-Ojalvo D, López-Fandiño R, Molina E. Antibody Production, Anaphylactic Signs, and T-Cell Responses Induced by Oral Sensitization With Ovalbumin in BALB/c and C3H/HeOuJ Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:239-45. [PMID: 26922934 PMCID: PMC4773212 DOI: 10.4168/aair.2016.8.3.239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022]
Abstract
Purpose Two mouse strains, BALB/c and C3H/HeOuJ, broadly used in the field of food allergy, were compared for the evaluation of the allergenic potential of ovalbumin (OVA). Methods Sensitization was made by administering 2 different OVA doses (1 and 5 mg), with cholera toxin as Th2-polarizing adjuvant. Antibody levels, severity of anaphylaxis, and Th1 and Th2 responses induced by the allergen were assessed. In addition, because the mice selected had functional toll-like receptor 4, the influence of contamination with lipopolysaccharide (LPS) on the immunostimulating capacity of OVA on spleen cells was also evaluated. Results Both strains exhibited similar susceptibility to OVA sensitization. The 2 protein doses generated similar OVA-specific IgE and IgG1 levels in both strains, whereas C3H/HeOuJ mice produced significantly more IgG2a. Oral challenge provoked more severe manifestations in C3H/HeOuJ mice as indicated by the drop in body temperature and the severity of the anaphylactic scores. Stimulation of splenocytes with OVA led to significantly higher levels of Th2 and Th1 cytokines in BALB/c, and these were less affected by protein contamination with LPS. Conclusions The antibody and cytokine levels induced by OVA in BALB/c mice and the observation that BALB/c spleen cell cultures were more resistant than those of C3H/HeOuJ mice to the stimulus of LPS make this strain prone to exhibit Th2-mediated food allergic reactions and very adequate for the study of the features of OVA that make it allergenic.
Collapse
Affiliation(s)
- Alba Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Ivan López-Expósito
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain.
| |
Collapse
|
26
|
Benedé S, López-Expósito I, Molina E, López-Fandiño R. Egg proteins as allergens and the effects of the food matrix and processing. Food Funct 2016; 6:694-713. [PMID: 25598200 DOI: 10.1039/c4fo01104j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hen eggs are an important and inexpensive source of high-quality proteins in the human diet. Egg, either as a whole or its constituents (egg yolk and white), is a key ingredient in many food products by virtue of its nutritional value and unique functional properties, such as emulsifying, foaming, and gelling. Nevertheless, egg is also known because of its allergenic potential and, in fact, it is the second most frequent source of allergic reactions, particularly in children. This review deals with the structural or functional properties of egg proteins that make them strong allergens. Their ability to sensitize and/or elicit allergic reactions is linked to their resistance to gastroduodenal digestion, which ultimately allows them to interact with the intestinal mucosa where absorption occurs. The factors that affect protein digestibility, whether increasing it, decreasing it, or inducing a different proteolysis pattern, and their influence on their capacity to induce or trigger an allergic reaction are discussed. Special attention is paid to the effect of the food matrix and the processing practices on the capacity of egg proteins to modulate the immune response.
Collapse
Affiliation(s)
- S Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
27
|
Liu T, Navarro S, Lopata AL. Current advances of murine models for food allergy. Mol Immunol 2016; 70:104-17. [DOI: 10.1016/j.molimm.2015.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/21/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
28
|
Mihajlovic L, Radosavljevic J, Nordlund E, Krstic M, Bohn T, Smit J, Buchert J, Cirkovic Velickovic T. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase. Food Funct 2016; 7:2357-66. [DOI: 10.1039/c5fo01325a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Laccase cross-linking of peanut protein causes changes in the protein structure, phenolic composition and immunological properties of the treated peanut protein.
Collapse
Affiliation(s)
- L. Mihajlovic
- University of Belgrade
- Faculty of Chemistry
- Belgrade
- Serbia
| | | | | | - M. Krstic
- University of Belgrade
- Faculty of Chemistry
- Belgrade
- Serbia
| | - T. Bohn
- Centre de Recherche Public – Gabriel Lippmann
- Belvaux
- Luxembourg
| | - J. Smit
- Institute for Risk Assessment Sciences
- Utrecht University
- Utrecht
- Netherlands
| | - J. Buchert
- National Food Resources Institute (Luke)
- Helsinki
- Finland
| | | |
Collapse
|
29
|
Li Y, Sun X, Ma Z, Cui Y, Du C, Xia X, Qian H. Beneficial Influence of Short-Term Germination on Decreasing Allergenicity of Peanut Proteins. J Food Sci 2015; 81:T255-61. [DOI: 10.1111/1750-3841.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Yingchao Li
- School of Food Science and Technology; Jiangnan Univ; Wu Xi 214122 China
| | - Xiulan Sun
- School of Food Science and Technology; Jiangnan Univ; Wu Xi 214122 China
| | - Zhezhe Ma
- School of Food Science and Technology; Jiangnan Univ; Wu Xi 214122 China
| | - Yan Cui
- Inst. of Agricultural Products Processing; Ningbo Inst. of Agricultural Sciences; Ningbo 315040 China
| | - Chao Du
- School of Food Science and Technology; Jiangnan Univ; Wu Xi 214122 China
| | - Xiuhua Xia
- School of Food Science and Technology; Jiangnan Univ; Wu Xi 214122 China
| | - He Qian
- School of Food Science and Technology; Jiangnan Univ; Wu Xi 214122 China
| |
Collapse
|
30
|
Verma AK, Kumar S, Sharma A, Kumar D, Roy R, Gupta RK, Chaudhari BP, Giridhar B, Das M, Dwivedi PD. Allergic manifestation by black gram (Vigna mungo) proteins in allergic patients, BALB/c mice and RBL-2H3 cells. Int Immunopharmacol 2014; 23:92-103. [DOI: 10.1016/j.intimp.2014.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/30/2022]
|
31
|
Madsen JL, Kroghsbo S, Madsen CB, Pozdnyakova I, Barkholt V, Bøgh KL. The impact of structural integrity and route of administration on the antibody specificity against three cow's milk allergens - a study in Brown Norway rats. Clin Transl Allergy 2014; 4:25. [PMID: 25206972 PMCID: PMC4158394 DOI: 10.1186/2045-7022-4-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/28/2014] [Indexed: 01/14/2023] Open
Abstract
Background Characterisation of the specific antibody response, including the epitope binding pattern, is an essential task for understanding the molecular mechanisms of food allergy. Examination of antibody formation in a controlled environment requires animal models. The purpose of this study was to examine the amount and types of antibodies raised against three cow’s milk allergens; β-lactoglobulin (BLG), α-lactalbumin (ALA) and β-casein upon oral or intraperitoneal (i.p.) administration. A special focus was given to the relative amount of antibodies raised against linear versus conformational epitopes. Methods Specific antibodies were raised in Brown Norway (BN) rats. BN rats were dosed either (1) i.p. with the purified native cow’s milk allergens or (2) orally with skimmed milk powder (SMP) alone or together with gluten, without the use of adjuvants. The allergens were denatured by reduction and alkylation, resulting in unfolding of the primary structure and a consequential loss of conformational epitopes. The specific IgG1 and IgE responses were analysed against both the native and denatured form of the three cow’s milk allergens, thus allowing examination of the relative amount of linear versus conformational epitopes. Results The inherent capacity to induce specific IgG1 and IgE antibodies were rather similar upon i.p. administration for the three cow’s milk allergens, with BLG = ALA > β-casein. Larger differences were found between the allergens upon oral administration, with BLG > ALA > β-casein. Co-administration of SMP and gluten had a great impact on the specific antibody response, resulting in a significant reduced amount of antibodies. Together results indicated that most antibodies were raised against conformational epitopes irrespectively of the administration route, though the relative proportions between linear and conformational epitopes differed remarkably between the allergens. Conclusions This study showed that the three-dimensional (3D) structure has a significant impact on the antibodies raised for both systemic and orally administered allergens. A remarkable difference in the antibody binding patterns against linear and conformational epitope was seen between the allergens, indicating that the structural characteristics of proteins may heavily affect the induced antibody response.
Collapse
Affiliation(s)
- Jeanette Lund Madsen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Stine Kroghsbo
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Charlotte Bernhard Madsen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Irina Pozdnyakova
- NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Barkholt
- Department of Systems Biology, Enzyme and Protein Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrine Lindholm Bøgh
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| |
Collapse
|
32
|
Kroghsbo S, Rigby NM, Johnson PE, Adel-Patient K, Bøgh KL, Salt LJ, Mills ENC, Madsen CB. Assessment of the sensitizing potential of processed peanut proteins in Brown Norway rats: roasting does not enhance allergenicity. PLoS One 2014; 9:e96475. [PMID: 24805813 PMCID: PMC4013017 DOI: 10.1371/journal.pone.0096475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Background IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. Objectives The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route. Methods Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN) rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-), heated (H-) or heat glycated (G-)Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL) cell assay. Results In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native. Conclusions Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose.
Collapse
Affiliation(s)
- Stine Kroghsbo
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Neil M. Rigby
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Philip E. Johnson
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | | | - Katrine L. Bøgh
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Louise J. Salt
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - E. N. Clare Mills
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Charlotte B. Madsen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
- * E-mail:
| |
Collapse
|
33
|
Peanut Allergenicity and Cross-Reactivity with Pea Proteins in the In Vivo Model. POL J FOOD NUTR SCI 2013. [DOI: 10.2478/v10222-012-0063-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Mirotti L, Florsheim E, Rundqvist L, Larsson G, Spinozzi F, Leite-de-Moraes M, Russo M, Alcocer M. Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy 2013; 68:74-83. [PMID: 23137012 DOI: 10.1111/all.12057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Lipids are required for mice sensitization to Ber e 1, Brazil nut major allergen. Here, we characterized different lipid fractions extracted from Brazil nuts and the lipid-binding ability of Ber e 1. Further, we determined their in vivo ability to induce Ber-specific anaphylactic antibodies and the role of invariant natural killer T (iNKT) cells in this process. METHODS Wild-type (WT) and iNKT cell-deficient mice were sensitized with Ber e 1 and specific lipid fractions, and anaphylactic antibodies were measured by enzyme-linked immunosorbent assay (ELISA) and passive cutaneous anaphylaxis (PCA). The lipid-binding characteristic of Ber e 1 (Ber) was established by using fluorescent probes and (15) N-labeled NMR. In vitro production of IL-4 was determined in Ber/lipid C-stimulated mouse iNKT cells and human T-cell lines containing NKTs primed with CD1d+C1R transfectants by flow cytometry and ELISA, respectively. RESULTS Only one specific lipid fraction (lipid C), containing neutral and common phospholipids, induced Ber anaphylactic antibodies in mice. Ber e 1 has a lipid-binding site, and our results indicated an interaction between Ber e 1 and lipid C. iNKT-deficient mice produced lower levels of anaphylactic antibodies than WT mice. In vitro, Ber/lipid C-stimulated murine iNKT cells produced IL-4 but not IFN-gamma. Human T-cell lines derived from nut-allergic patients produced IL-4 to Ber/lipid C in a CD1d- and dose-dependent manner. CONCLUSION Lipid fraction C from Brazil nut presents an essential adjuvant activity to Ber e 1 sensitization, and iNKT cells play a critical role in the development of Brazil nut-allergic response.
Collapse
Affiliation(s)
- L. Mirotti
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo; Brasil
| | - E. Florsheim
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo; Brasil
| | - L. Rundqvist
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå; Sweden
| | - G. Larsson
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå; Sweden
| | - F. Spinozzi
- Laboratory of Experimental Immunology and Allergy; Department of Clinical and Experimental Medicine; University of Perugia; Perugia; Italy
| | - M. Leite-de-Moraes
- Unité Mixte de Recherche 8147; Centre National de la Recherche Scientifique; Faculté de Médecine René Descartes; Paris V, Hôpital Necker; Paris; France
| | - M. Russo
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo; Brasil
| | - M. Alcocer
- Division of Nutritional Sciences; School of Biosciences; University of Nottingham; Nottingham; UK
| |
Collapse
|
35
|
Rundqvist L, Tengel T, Zdunek J, Björn E, Schleucher J, Alcocer MJC, Larsson G. Solution structure, copper binding and backbone dynamics of recombinant Ber e 1-the major allergen from Brazil nut. PLoS One 2012; 7:e46435. [PMID: 23056307 PMCID: PMC3464261 DOI: 10.1371/journal.pone.0046435] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The 2S albumin Ber e 1 is the major allergen in Brazil nuts. Previous findings indicated that the protein alone does not cause an allergenic response in mice, but the addition of components from a Brazil nut lipid fraction were required. Structural details of Ber e 1 may contribute to the understanding of the allergenic properties of the protein and its potential interaction partners. METHODOLOGY/PRINCIPAL FINDINGS The solution structure of recombinant Ber e 1 was solved using NMR spectroscopy and measurements of the protein back bone dynamics at a residue-specific level were extracted using (15)N-spin relaxation. A hydrophobic cavity was identified in the structure of Ber e 1. Using the paramagnetic relaxation enhancement property of Cu(2+) in conjunction with NMR, it was shown that Ber e 1 is able to specifically interact with the divalent copper ion and the binding site was modeled into the structure. The IgE binding region as well as the copper binding site show increased dynamics on both fast ps-ns timescale as well as slower µs-ms timescale. CONCLUSIONS/SIGNIFICANCE The overall fold of Ber e 1 is similar to other 2S albumins, but the hydrophobic cavity resembles that of a homologous non-specific lipid transfer protein. Ber e 1 is the first 2S albumin shown to interact with Cu(2+) ions. This Cu(2+) binding has minimal effect on the electrostatic potential on the surface of the protein, but the charge distribution within the hydrophobic cavity is significantly altered. As the hydrophobic cavity is likely to be involved in a putative lipid interaction the Cu(2+) can in turn affect the interaction that is essential to provoke an allergenic response.
Collapse
Affiliation(s)
- Louise Rundqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Tobias Tengel
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Janusz Zdunek
- Protein Constructor Developers Company, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Marcos J. C. Alcocer
- Department of Nutritional Sciences, University of Nottingham, Loughborough, United Kingdom
| | - Göran Larsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
36
|
Ruiter B, Shreffler WG. Innate immunostimulatory properties of allergens and their relevance to food allergy. Semin Immunopathol 2012; 34:617-32. [PMID: 22886110 DOI: 10.1007/s00281-012-0334-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/12/2022]
Abstract
Food allergy is an increasingly prevalent disease of immune dysregulation directed to a small subset of proteins. Shared structural and functional features of allergens, such as glycosylation, lipid-binding and protease activity may provide insight into the mechanisms involved in the induction of primary Th2 immune responses. We review the literature of innate Th2-type immune activation as a context for better understanding the properties of allergens that contribute to the induction of Th2-biased immune responses in at least a subset of individuals. Th2-priming signals have been largely identified in the context of parasite immunity and wound healing. Some of the features of parasite antigens and the innate immune responses to them are now understood to play a role in allergic inflammation as well. These include both exogenous and endogenous activators of innate immunity and subsequent release of key cytokine mediators such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33. Moreover, numerous innate immune cells including epithelium, dendritic cells, basophils, innate lymphoid cells and others all interact to shape the adaptive Th2 immune response. Progress toward understanding Th2-inducing innate immune signals more completely may lead to novel strategies for primary prevention and therapy of respiratory and food allergies.
Collapse
Affiliation(s)
- Bert Ruiter
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
37
|
Shindo T, Kanazawa Y, Saito Y, Kojima K, Ohsawa M, Teshima R. Effective induction of oral anaphylaxis to ovalbumin in mice sensitized by feeding of the antigen with aid of oil emulsion and salicylate. J Toxicol Sci 2012; 37:307-15. [PMID: 22467021 DOI: 10.2131/jts.37.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is important to evaluate the ability of novel proteins in food crops and products to elicit potentially harmful immunologic responses, including allergic hypersensitivity. We developed a novel mouse model of food allergy involving an oral challenge of a protein antigen after feeding of the antigen in combination with modulating factors often ingested in daily life, namely, dietary oil emulsion and salicylate. In the model, BALB/c mice were sensitized orally for three weeks with ovalbumin (OVA) in linoleic acid/lecithin emulsion, followed immediately by intraperitoneal injection of sodium salicylate. At the end of the sensitization, the incidence of mice positive for serum OVA-specific IgG1 but not IgE had significantly increased in the combined-sensitization group. After the 3-week sensitization, a single or double oral challenge with OVA effectively and significantly caused severe anaphylaxis, as compared with the groups sensitized with OVA in the emulsion or the vehicle alone. Moderate increase of plasma histamine and intestinal abnormality in histology was found only in the combined-sensitization group. Anaphylaxis symptoms in the sensitized mice were induced more by oral challenge than by intravenous challenge, suggesting a critical role for the mucosal system. This is the first model for successful induction of oral anaphylaxis in mice sensitized by feeding of food protein without adjuvant. It will be useful to elucidate the mechanism of food allergy and to detect modulating factors of oral allergy at sensitization using this model, which simulates real life conditions.
Collapse
Affiliation(s)
- Tomoko Shindo
- Hatano Research Institute, Food and Drug Safety Center, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Elthon T, Bean S, Ioerger BP, Tilley M, Clemente T. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). PLANT BIOTECHNOLOGY JOURNAL 2012; 10:533-544. [PMID: 22353344 DOI: 10.1111/j.1467-7652.2012.00685.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sorghum prolamins, termed kafirins, are categorized into subgroups α, β, and γ. The kafirins are co-translationally translocated to the endoplasmic reticulum (ER) where they are assembled into discrete protein bodies that tend to be poorly digestible with low functionality in food and feed applications. As a means to address the issues surrounding functionality and digestibility in sorghum, we employed a biotechnology approach that is designed to alter protein body structure, with the concomitant synthesis of a co-protein in the endosperm fraction of the grain. Wherein perturbation of protein body architecture may provide a route to impact digestibility by reducing disulphide bonds about the periphery of the body, while synthesis of a co-protein, with known functionality attributes, theoretically could impact structure of the protein body through direct association and/or augment end-use applications of sorghum flour by stabilizing ß-sheet formation of the kafirins in sorghum dough preparations. This in turn may improve viscoelasticity of sorghum dough. To this end, we report here on the molecular and phenotypic characterizations of transgenic sorghum events that are down-regulated in γ- and the 29-kDa α-kafirins and the expression of a wheat Dy10/Dx 5 hybrid high-molecular weight glutenin protein. The results demonstrate that down-regulation of γ-kafirin alone does not alter protein body formation or impacts protein digestibility of cooked flour samples. However, reduction in accumulation of a predicted 29-kDa α-kafirin alters the morphology of protein body and enhances protein digestibility in both raw and cooked samples.
Collapse
Affiliation(s)
- Tejinder Kumar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vaz AF, Souza MP, Carneiro-da-Cunha MG, Medeiros PL, Melo AM, Aguiar JS, Silva TG, Silva-Lucca RA, Oliva ML, Correia MT. Molecular fragmentation of wheat-germ agglutinin induced by food irradiation reduces its allergenicity in sensitised mice. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.11.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Vissers YM, Wichers HJ, Savelkoul HFJ. Influence of Food Processing, Digestion and the Food Matrix on Allergenicity & Cellular Measures of Allergenicity. MULTIDISCIPLINARY APPROACHES TO ALLERGIES 2012. [DOI: 10.1007/978-3-642-31609-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Kumar S, Verma AK, Misra A, Tripathi A, Chaudhari BP, Prasad R, Jain S, Das M, Dwivedi PD. Allergenic responses of red kidney bean (Phaseolus vulgaris cv chitra) polypeptides in BALB/c mice recognized by bronchial asthma and allergic rhinitis patients. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.06.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Morin S, Bernard H, Przybylski-Nicaise L, Corthier G, Rabot S, Wal JM, Hazebrouck S. Allergenic and immunogenic potential of cow's milk β-lactoglobulin and caseins evidenced without adjuvant in germ-free mice. Mol Nutr Food Res 2011; 55:1700-7. [PMID: 22045656 DOI: 10.1002/mnfr.201100024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 01/07/2023]
Abstract
SCOPE In most animal models of allergy, the development of an IgE response requires the use of an adjuvant. Germ-free (GF) mice exhibit Th2-polarized antibody responses combined with defective immunosuppressive mechanisms. The sensitizing potential of milk proteins was investigated in GF mice in the absence of adjuvant. METHODS AND RESULTS β-lactoglobulin (BLG) and whole casein (CAS) allergenicity was evaluated by means of intraperitoneal injections without adjuvant. Injections of BLG induced significant IgE and IgG1 responses in GF mice, while CAS injections provoked the production of IgG1 toward κ- and αS1-caseins. No significant antibody response was evidenced in conventional (CV) mice. After in vitro BLG-reactivation, IL-4, IL-5, IL-13 and IFN-γ productions by splenocytes were higher in GF mice than in CV mice. Heat-treatment decreased BLG allergenicity as indicated by the absence of IgE production in GF mice. However, heat-treatment increased protein immunogenicity and led to the production of anti-BLG and anti-κ-casein IgG1 in both GF and CV mice. This correlated with enhanced productions of IL-4, IL-5 and IL-13 in BLG-reactivated splenocytes from CV mice. CONCLUSION Gut colonization by commensal bacteria appeared then to significantly reduce the susceptibility of mice toward the intrinsic allergenic and immunogenic potential of milk proteins.
Collapse
Affiliation(s)
- Stéphanie Morin
- INRA, UR 496, Immuno-Allergie Alimentaire, CEA de Saclay, Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Khramova DS, Golovchenko VV, Shashkov AS, Otgonbayar D, Chimidsogzol A, Ovodov YS. Chemical composition and immunomodulatory activity of a pectic polysaccharide from the ground thistle Cirsium esculentum Siev. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Finkelman FD. Peanut allergy and anaphylaxis. Curr Opin Immunol 2010; 22:783-8. [PMID: 21051210 DOI: 10.1016/j.coi.2010.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/11/2010] [Indexed: 11/28/2022]
Abstract
Peanuts are a frequent cause of food allergy and the most common cause of fatal food-induced anaphylaxis in the U.S. Advances during the past two years have promoted our understanding of peanut allergens and peanut allergy prevalence, etiology, diagnosis, and therapy. The advances highlighted in this review include evidence that the peanut allergens most important in disease differ in different parts of the world, that early oral exposure to peanuts may decrease the frequency of peanut allergy, while early nonoral exposure may have the opposite effect, that complement activation by peanut constituents appears to promote peanut-induced anaphylaxis and that oral immunotherapy, anti-IgE antibody, and a herbal formulation are promising approaches for the treatment of this disorder.
Collapse
Affiliation(s)
- Fred D Finkelman
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
45
|
Comstock SS, Gershwin LJ, Teuber SS. Effect of walnut (Juglans regia) polyphenolic compounds on ovalbumin-specific IgE induction in female BALB/c mice. Ann N Y Acad Sci 2010; 1190:58-69. [DOI: 10.1111/j.1749-6632.2009.05274.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Fecek RJ, Marcondes Rezende M, Busch R, Hassing I, Pieters R, Cuff CF. Enteric reovirus infection stimulates peanut-specific IgG2a responses in a mouse food allergy model. Immunobiology 2010; 215:941-8. [PMID: 20356650 DOI: 10.1016/j.imbio.2010.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
IgE-mediated food allergies are an important cause of life-threatening hypersensitivity reactions. Orally administered peanut antigens mixed with the mucosal adjuvant cholera toxin (CT) induce a strong peanut extract (PE)-specific serum IgE response that is correlated with T-helper type 1 (Th1) and type 2 (Th2)-like T-cell responses. This study was conducted to determine if respiratory enteric orphan virus (reovirus), a non-pathogenic virus that induces robust Th1-mediated mucosal and systemic responses could modulate induction of PE-specific allergic responses when co-administered with PE. Young mice were orally exposed to PE mixed with CT, reovirus, or both CT and reovirus. As expected, CT promoted PE-specific serum IgE, IgG1, and IgG2a and intestinal IgA production as well as splenic Th1- and Th2-associated cytokine recall responses. Reovirus did not alter PE-specific serum IgE and IgG1 levels, but substantially increased the PE-specific IgG2a response when co-administered with PE with or without CT. Additionally, reovirus significantly decreased the percentage of the Peyer's patch CD8+ T-cells and Foxp3+CD4+ T-regulatory cells when co-administered with PE. These results demonstrate that an acute mucosal reovirus infection and subsequent Th1 immune response is capable of modulating the Th1/Th2 controlled humoral response to PE. The reovirus-mediated increase in the PE-specific IgG2a antibody response may have therapeutic implications as increased levels of non-allergenic PE-specific IgG2a could block PE antigens from binding to IgE-sensitized mast cells.
Collapse
Affiliation(s)
- Ronald J Fecek
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center of West Virginia University, Morgantown, P.O. Box 9177, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ladics G, Knippels L, Penninks A, Bannon G, Goodman R, Herouet-Guicheney C. Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Regul Toxicol Pharmacol 2010; 56:212-24. [DOI: 10.1016/j.yrtph.2009.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/31/2009] [Accepted: 09/24/2009] [Indexed: 01/06/2023]
|
48
|
Utility of rodent models for evaluating protein allergenicity. Regul Toxicol Pharmacol 2009; 54:S58-61. [DOI: 10.1016/j.yrtph.2008.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 11/23/2022]
|
49
|
Aldemir H, Bars R, Herouet-Guicheney C. Murine models for evaluating the allergenicity of novel proteins and foods. Regul Toxicol Pharmacol 2009; 54:S52-7. [DOI: 10.1016/j.yrtph.2008.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 01/15/2023]
|
50
|
Jacobs DR, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 2009; 89:1543S-1548S. [PMID: 19279083 PMCID: PMC2731586 DOI: 10.3945/ajcn.2009.26736b] [Citation(s) in RCA: 422] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research and practice in nutrition relate to food and its constituents, often as supplements. In food, however, the biological constituents are coordinated. We propose that "thinking food first"' results in more effective nutrition research and policy. The concept of food synergy provides the necessary theoretical underpinning. The evidence for health benefit appears stronger when put together in a synergistic dietary pattern than for individual foods or food constituents. A review of dietary supplementation suggests that although supplements may be beneficial in states of insufficiency, the safe middle ground for consumption likely is food. Also, food provides a buffer during absorption. Constituents delivered by foods taken directly from their biological environment may have different effects from those formulated through technologic processing, but either way health benefits are likely to be determined by the total diet. The concept of food synergy is based on the proposition that the interrelations between constituents in foods are significant. This significance is dependent on the balance between constituents within the food, how well the constituents survive digestion, and the extent to which they appear biologically active at the cellular level. Many examples are provided of superior effects of whole foods over their isolated constituents. The food synergy concept supports the idea of dietary variety and of selecting nutrient-rich foods. The more we understand about our own biology and that of plants and animals, the better we will be able to discern the combinations of foods, rather than supplements, which best promote health.
Collapse
Affiliation(s)
- David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | | | | |
Collapse
|