1
|
Pfeifer LM, Sensbach J, Pipp F, Werkmann D, Hewitt P. Increasing sustainability and reproducibility of in vitro toxicology applications: serum-free cultivation of HepG2 cells. FRONTIERS IN TOXICOLOGY 2024; 6:1439031. [PMID: 39650261 PMCID: PMC11621109 DOI: 10.3389/ftox.2024.1439031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal Bovine Serum (FBS) is an important ingredient in cell culture media and the current standard for most cells in vitro. However, the use of FBS is controversial for several reasons, including ethical concerns, political, and societal pressure, as well as scientific problems due to the undefined and variable nature of FBS. Nevertheless, scientists hesitate to change the paradigm without solid data de-risking the switch of their assays to alternatives. In this study, HepG2 cells, a human hepatoblastoma cell line commonly used to study drug hepatotoxicity, were adapted to serum-free conditions by using different commercially available media and FBS replacements. After transition to these new culture conditions, the success of adaptation was determined based on cell morphology and growth characteristics. Long-term culturing capacity for each medium was defined as the number of passages HepG2 cells could be cultured without any alterations in morphology or growth behavior. Two media (Advanced DMEM/F12 from ThermoFisher and TCM® Serum Replacement from MP Biomedicals) showed a long-term cultivation capacity comparable to media containing FBS and were selected for further analysis. Both media can be characterized as serum-free, however still contain animal-derived components: bovine serum albumin (both media) and bovine transferrin (only TCM® serum replacement). To assess the functionality of the cells cultivated in either of the two media, HepG2 cells were treated with reference compounds, specifically selected for their known hepatotoxicity characteristics in man. Different toxicological assays focusing on viability, mitochondrial toxicity, oxidative stress, and intracellular drug response were performed. Throughout the different assays, response to reference compounds was comparable, with a slightly higher sensitivity of serum-free cultivated HepG2 cells when assessing viability/cell death and a lower sensitivity towards oxidative stress. Taken together, the two selected media were shown to support growth, morphology, and function of serum-free cultivated HepG2 cells in the early preclinical safety space. Therefore, these results can serve as a starting point to further optimize culture conditions with the goal to remove any remaining animal-derived components.
Collapse
Affiliation(s)
| | - Janike Sensbach
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Frederic Pipp
- Corporate Animal Affairs, Merck KGaA, Darmstadt, Germany
| | - Daniela Werkmann
- Cell Design Lab, Molecular Biology, Merck KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
2
|
Hussein W, Goldberg D, Tenzer G, Bentwich I, Haran Y, Getter T. Boronic Acid-Based Glucose Detection for Liver Three-Dimensional Cellular Models. ACS OMEGA 2024; 9:44214-44223. [PMID: 39524682 PMCID: PMC11541505 DOI: 10.1021/acsomega.4c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Liver 3D cell models are regularly employed as a screening platform for predicting the metabolic safety of drugs, by monitoring the physiological responses of the spheroids, through the measurement of relevant markers of normal liver physiology, notably glucose. Measuring glucose levels within the spheroids and their surroundings provides insight into the metabolic homeostasis of liver cells and may be employed as an indication of potential drug-induced toxicity. Several ortho-aminomethyl phenylboronic acid (PDBA) glucose sensors have been developed. Most recently, Mc-CDBA ((((((2-(methoxycarbonyl)anthracene-9,10-diyl)bis(methylene)) bis(methylazanediyl))bis(methylene))bis(4-cyano-2,1-phenylene))diboronic acid) was reported. Although Mc-CDBA exhibits good water solubility and sensitivity toward glucose, its ability for intra- and extracellular glucose monitoring in spheroids has not been determined. Here, we present a set of Mc-CDBA derivatives: carboxylic (BA) and amide (BA 5)-based Mc-CDBA sensors for extra- and intracellular glucose monitoring, respectively. Both sensors exhibit superior spectroscopic features. BA 5 showed selective intracellular accumulation in liver spheroids and exhibited more than 3-fold higher basal fluorescence sensitivity compared to Mc-CDBA. These observations led to the development of an extracellular hydrogel-embedded sensor (HG-BA 21) to monitor extracellular glucose levels under persistent solution flow mimicking physiological conditions. We have therefore demonstrated that the sensors developed by our team are suitable for a variety of assays, notably with liver spheroids, and provide powerful new tools for organ-on-a-chip applications predicting drug-induced liver injury in the early stages of drug development.
Collapse
Affiliation(s)
- Wessal Hussein
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Doron Goldberg
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Guy Tenzer
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Isaac Bentwich
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Yossi Haran
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Tamar Getter
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| |
Collapse
|
3
|
Tomasello DL, Barrasa MI, Mankus D, Alarcon KI, Lytton-Jean AKR, Liu XS, Jaenisch R. Mitochondrial dysfunction and increased reactive oxygen species production in MECP2 mutant astrocytes and their impact on neurons. Sci Rep 2024; 14:20565. [PMID: 39232000 PMCID: PMC11374804 DOI: 10.1038/s41598-024-71040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.
Collapse
Affiliation(s)
| | | | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia I Alarcon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail K R Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - X Shawn Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Buron N, Porceddu M, Loyant R, Martel C, Allard JA, Fromenty B, Borgne-Sanchez A. Drug-induced impairment of mitochondrial fatty acid oxidation and steatosis: assessment of causal relationship with 45 pharmaceuticals. Toxicol Sci 2024; 200:369-381. [PMID: 38676573 DOI: 10.1093/toxsci/kfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 nonsteatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-l-carnitine, palmitoyl-CoA + l-carnitine, or octanoyl- l-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate, and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, whereas dexamethasone, olanzapine, and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential, and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin, and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.
Collapse
Affiliation(s)
- Nelly Buron
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | | | - Roxane Loyant
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Cécile Martel
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Julien A Allard
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | | |
Collapse
|
6
|
Khalil SM, MacKenzie KR, Maletic-Savatic M, Li F. Metabolic bioactivation of antidepressants: advance and underlying hepatotoxicity. Drug Metab Rev 2024; 56:97-126. [PMID: 38311829 PMCID: PMC11118075 DOI: 10.1080/03602532.2024.2313967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Rosell-Hidalgo A, Eakins J, Walker P, Moore AL, Ghafourian T. Risk Assessment of Psychotropic Drugs on Mitochondrial Function Using In Vitro Assays. Biomedicines 2023; 11:3272. [PMID: 38137493 PMCID: PMC10741027 DOI: 10.3390/biomedicines11123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria are potential targets responsible for some drug- and xenobiotic-induced organ toxicities. However, molecular mechanisms of drug-induced mitochondrial toxicities are mostly unknown. Here, multiple in vitro assays were used to investigate the effects of 22 psychotropic drugs on mitochondrial function. The acute extracellular flux assay identified inhibitors of the electron transport chain (ETC), i.e., aripiprazole, phenytoin, and fluoxetine, an uncoupler (reserpine), substrate inhibitors (quetiapine, carbamazepine, buspirone, and tianeptine), and cytotoxic compounds (chlorpromazine and valproic acid) in HepG2 cells. Using permeabilized HepG2 cells revealed minimum effective concentrations of 66.3, 6730, 44.5, and 72.1 µM for the inhibition of complex-I-linked respiration for quetiapine, valproic acid, buspirone, and fluoxetine, respectively. Assessing complex-II-linked respiration in isolated rat liver mitochondria revealed haloperidol is an ETC inhibitor, chlorpromazine is an uncoupler in basal respiration and an ETC inhibitor under uncoupled respiration (IC50 = 135 µM), while olanzapine causes a mild dissipation of the membrane potential at 50 µM. This research elucidates some mechanisms of drug toxicity and provides some insight into their safety profile for clinical drug decisions.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Julie Eakins
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Paul Walker
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
| | - Taravat Ghafourian
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
8
|
Herman D, Kańduła MM, Freitas LGA, van Dongen C, Le Van T, Mesens N, Jaensch S, Gustin E, Micholt L, Lardeau CH, Varsakelis C, Reumers J, Zoffmann S, Will Y, Peeters PJ, Ceulemans H. Leveraging Cell Painting Images to Expand the Applicability Domain and Actively Improve Deep Learning Quantitative Structure-Activity Relationship Models. Chem Res Toxicol 2023. [PMID: 37327474 DOI: 10.1021/acs.chemrestox.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The search for chemical hit material is a lengthy and increasingly expensive drug discovery process. To improve it, ligand-based quantitative structure-activity relationship models have been broadly applied to optimize primary and secondary compound properties. Although these models can be deployed as early as the stage of molecule design, they have a limited applicability domain─if the structures of interest differ substantially from the chemical space on which the model was trained, a reliable prediction will not be possible. Image-informed ligand-based models partly solve this shortcoming by focusing on the phenotype of a cell caused by small molecules, rather than on their structure. While this enables chemical diversity expansion, it limits the application to compounds physically available and imaged. Here, we employ an active learning approach to capitalize on both of these methods' strengths and boost the model performance of a mitochondrial toxicity assay (Glu/Gal). Specifically, we used a phenotypic Cell Painting screen to build a chemistry-independent model and adopted the results as the main factor in selecting compounds for experimental testing. With the additional Glu/Gal annotation for selected compounds we were able to dramatically improve the chemistry-informed ligand-based model with respect to the increased recognition of compounds from a 10% broader chemical space.
Collapse
Affiliation(s)
- Dorota Herman
- In-Silico Discovery, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Maciej M Kańduła
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Lorena G A Freitas
- In-Silico Discovery, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | | | - Thanh Le Van
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Natalie Mesens
- Predictive, Investigative and Translational Toxicology, PSTS, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Steffen Jaensch
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Emmanuel Gustin
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Liesbeth Micholt
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Charles-Hugues Lardeau
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Christos Varsakelis
- In-Silico Discovery, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Joke Reumers
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Sannah Zoffmann
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Yvonne Will
- Predictive, Investigative and Translational Toxicology, PSTS, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Pieter J Peeters
- Discovery Technology and Molecular Pharmacology, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| | - Hugo Ceulemans
- In-Silico Discovery, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse B-2340, Belgium
| |
Collapse
|
9
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
10
|
Ľupták M, Fišar Z, Hroudová J. Different Effects of SSRIs, Bupropion, and Trazodone on Mitochondrial Functions and Monoamine Oxidase Isoform Activity. Antioxidants (Basel) 2023; 12:1208. [PMID: 37371937 DOI: 10.3390/antiox12061208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
11
|
Stern S, Wang H, Sadrieh N. Microphysiological Models for Mechanistic-Based Prediction of Idiosyncratic DILI. Cells 2023; 12:1476. [PMID: 37296597 PMCID: PMC10253021 DOI: 10.3390/cells12111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system. This review summarizes the in vitro co-culture models that exploit the role of the immune system to investigate iDILI. Particularly, this review focuses on advancements in human-based 3D multicellular models attempting to supplement in vivo models that often lack predictability and display interspecies variations. Exploiting the immune-mediated mechanisms of iDILI, the inclusion of non-parenchymal cells in these hepatoxicity models, namely, Kupffer cells, stellate cells, dendritic cells, and liver sinusoidal endothelial cells, introduces heterotypic cell-cell interactions and mimics the hepatic microenvironment. Additionally, drugs recalled from the market in the US between 1996-2010 that were studies in these various models highlight the necessity for further harmonization and comparison of model characteristics. Challenges regarding disease-related endpoints, mimicking 3D architecture with different cell-cell contact, cell source, and the underlying multi-cellular and multi-stage mechanisms are described. It is our belief that progressing our understanding of the underlying pathogenesis of iDILI will provide mechanistic clues and a method for drug safety screening to better predict liver injury in clinical trials and post-marketing.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Nakissa Sadrieh
- Office of New Drugs, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
12
|
Coyle JP, Johnson C, Jensen J, Farcas M, Derk R, Stueckle TA, Kornberg TG, Rojanasakul Y, Rojanasakul LW. Variation in pentose phosphate pathway-associated metabolism dictates cytotoxicity outcomes determined by tetrazolium reduction assays. Sci Rep 2023; 13:8220. [PMID: 37217524 DOI: 10.1038/s41598-023-35310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Tetrazolium reduction and resazurin assays are the mainstay of routine in vitro toxicity batteries. However, potentially erroneous characterization of cytotoxicity and cell proliferation can arise if verification of baseline interaction of test article with method employed is neglected. The current investigation aimed to demonstrate how interpretation of results from several standard cytotoxicity and proliferation assays vary in dependence on contributions from the pentose phosphate pathway (PPP). Non-tumorigenic Beas-2B cells were treated with graded concentrations of benzo[a]pyrene (B[a]P) for 24 and 48 h prior to cytotoxicity and proliferation assessment with commonly used MTT, MTS, WST1, and Alamar Blue assays. B[a]P caused enhanced metabolism of each dye assessed despite reductions in mitochondrial membrane potential and was reversed by 6-aminonicotinamide (6AN)-a glucose-6-phosphate dehydrogenase inhibitor. These results demonstrate differential sensitivity of standard cytotoxicity assessments on the PPP, thus (1) decoupling "mitochondrial activity" as an interpretation of cellular formazan and Alamar Blue metabolism, and (2) demonstrating the implicit requirement for investigators to sufficiently verify interaction of these methods in routine cytotoxicity and proliferation characterization. The nuances of method-specific extramitochondrial metabolism must be scrutinized to properly qualify specific endpoints employed, particularly under the circumstances of metabolic reprogramming.
Collapse
Affiliation(s)
- Jayme P Coyle
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., Morgantown, WV, 26505, USA.
| | - Caroline Johnson
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jake Jensen
- Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Mariana Farcas
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Raymond Derk
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Todd A Stueckle
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tiffany G Kornberg
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Liying W Rojanasakul
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., Morgantown, WV, 26505, USA.
| |
Collapse
|
13
|
Hoogstraten CA, Lyon JJ, Smeitink JAM, Russel FGM, Schirris TJJ. Time to Change: A Systems Pharmacology Approach to Disentangle Mechanisms of Drug-Induced Mitochondrial Toxicity. Pharmacol Rev 2023; 75:463-486. [PMID: 36627212 DOI: 10.1124/pharmrev.122.000568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, which is associated with almost half of all Food and Drug Administration black box warnings, a variety of drug withdrawals, and attrition of drug candidates. This can mainly be attributed to a historic lack of sensitive and specific assays to identify the mechanisms underlying mitochondrial toxicity during drug development. In the last decade, a better understanding of drug-induced mitochondrial dysfunction has been achieved by network-based and structure-based systems pharmacological approaches. Here, we propose the implementation of a tiered systems pharmacology approach to detect adverse mitochondrial drug effects during preclinical drug development, which is based on a toolset developed to study inherited mitochondrial disease. This includes phenotypic characterization, profiling of key metabolic alterations, mechanistic studies, and functional in vitro and in vivo studies. Combined with binding pocket similarity comparisons and bottom-up as well as top-down metabolic network modeling, this tiered approach enables identification of mechanisms underlying drug-induced mitochondrial dysfunction. After validation of these off-target mechanisms, drug candidates can be adjusted to minimize mitochondrial activity. Implementing such a tiered systems pharmacology approach could lead to a more efficient drug development trajectory due to lower drug attrition rates and ultimately contribute to the development of safer drugs. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs adversely affect mitochondrial function, which can be detected using phenotypic assays. However, these methods provide only limited insight into the underlying mechanisms. In recent years, a better understanding of drug-induced mitochondrial dysfunction has been achieved by network-based and structure-based system pharmacological approaches. Their implementation in preclinical drug development could reduce the number of drug failures, contributing to safer drug design.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Jonathan J Lyon
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| |
Collapse
|
14
|
Rana P, Khan S, Arat S, Potter D, Khan N. Nonclinical Safety Signals in PharmaPendium Improve the Predictability of Human Drug-Induced Liver Injury. Chem Res Toxicol 2022; 35:2133-2144. [PMID: 36287557 DOI: 10.1021/acs.chemrestox.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) is a leading cause of candidate attrition during drug development in the pharmaceutical industry. This study evaluated liver toxicity signals for 249 approved drugs (114 of "most-DILI concern" and 135 of "no-DILI concern") using PharmaPendium and assessed the association between nonclinical and clinical injuries using contingency table analysis. All animal liver findings were combined into eight toxicity categories based on nature and severity. Together, these analyses revealed that cholestasis [odds ratio (OR): 5.02; 95% confidence interval (CI) 1.04-24.03] or liver aminotransferase increases (OR: 1.86; 95% CI 1.09-3.09) in rats and steatosis (OR-1.9; 95% CI 1.03-3.49) or liver aminotransferase increases (OR-2.57; 95% CI 1.4-4.7) in dogs were significant predictors of human liver injury. The predictive value further improved when the liver injury categories were combined into less severe (steatosis, cholestasis, liver aminotransferase increase, hyperbilirubinemia, or jaundice) and more-severe (liver necrosis, acute liver failure, or hepatotoxicity) injuries. In particular, less-severe liver injuries in the following pairs of species predicted human hepatotoxicity {[dog and mouse] (OR: 2.70; 95% CI 1.25-5.84), [dog and rat] (OR-2.61; 95% CI 1.48-4.59), [monkey and mouse] (OR-4.22; 95% CI 1.33-13.32), and [monkey and rat] (OR-2.45; 95% CI 1.15-5.21)} were predictive of human hepatotoxicity. Meanwhile, severe liver injuries in both [dog and rat] (OR-1.9; 95% CI 1.04-3.49) were significant predictors of human liver toxicity. Therefore, we concluded that the occurrence of DILI in humans is highly likely if liver injuries are observed in one rodent and one nonrodent species and that liver aminotransferase increases in dogs and rats can predict DILI in humans. Together, these findings indicate that the liver safety signals observed in animal toxicity studies indicate potential DILI risk in humans and could therefore be used to prioritize small molecules with less potential to cause DILI in humans.
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - Sanaa Khan
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - Seda Arat
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - David Potter
- Early Clinical Development Biostatistics, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Nasir Khan
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| |
Collapse
|
15
|
Khedr NF, El-Feky OA, Werida RH. L-Carnitine Mitigates Trazadone Induced Rat Cardiotoxicity Mediated via Modulation of Autophagy and Oxidative Stress. Cardiovasc Toxicol 2022; 22:831-841. [PMID: 35781619 PMCID: PMC9381465 DOI: 10.1007/s12012-022-09759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Trazodone (TRZ) is an antidepressant drug which widely used to treat insomnia, but it has a cardiotoxic effect which considered one of the TRZ limitations. The aim of this study was to investigate the protective role of l-carnitine in rats against TRZ-induced cardiotoxicity, as well as to look into the molecular mechanisms underlying its cardioprotective effects via autophagy-mediated cell death and oxidative stress. Male albino rats were randomized into four experimental groups (n = 8): normal control, TRZ group (TRZ, 20 mg/kg/day), l-carnitine group (LC, 200 mg/kg/day), and Co-treated group (l-carnitine and TRZ). All treatments were administered via oral gavage for 4 weeks. Cardiac enzymes (AST & CK-MB) and serum cardiac troponin T(cTnI) were assessed. Oxidative stress biomarkers in heart tissue (malondialdehyde; MDA, total thiol, and catalase activity) were measured. Autophagy related-genes (ATG-5 and Beclin-1), P62, and TNF-α were quantified. AST and CK-MB and cTnI significantly (p < 0.001) were increased with enhanced autophagy as well as severe histopathological changes which were manifested as scattered chronic inflammatory cells with focal fragmentation of myocardial fibers and loss of nuclei in TRZ-treated group. However, daily administration of l-carnitine (200 mg/kg) for 28 days completely reversed TRZ-induced the increased cardiac enzymes, autophagy, and myocardial inflammatory processes to the normal values. TRZ administration might have the potential to cause cardiotoxic effects that can be treated with l-carnitine administration.
Collapse
Affiliation(s)
- Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Baher Street, Medical Campus, Tanta, 31527, Egypt.
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Baher Street, Medical Campus, Tanta, 31527, Egypt
| | - Rehab H Werida
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhur University, El-Bahiara, Egypt.
| |
Collapse
|
16
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
17
|
Analysis of Mitochondrial Function in Cell Membranes as Indicator of Tissue Vulnerability to Drugs in Humans. Biomedicines 2022; 10:biomedicines10050980. [PMID: 35625717 PMCID: PMC9138415 DOI: 10.3390/biomedicines10050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Drug side effects are one of the main reasons for treatment withdrawal during clinical trials. Reactive oxygen species formation is involved in many of the drug side effects, mainly by interacting with the components of the cellular respiration. Thus, the early detection of these effects in the drug discovery process is a key aspect for the optimization of pharmacological research. To this end, the superoxide formation of a series of drugs and compounds with antidepressant, antipsychotic, anticholinergic, narcotic, and analgesic properties was evaluated in isolated bovine heart membranes and on cell membrane microarrays from a collection of human tissues, together with specific inhibitors of the mitochondrial electron transport chain. Fluphenazine and PB28 promoted similar effects to those of rotenone, but with lower potency, indicating a direct action on mitochondrial complex I. Moreover, nefazodone, a drug withdrawn from the market due to its mitochondrial hepatotoxic effects, evoked the highest superoxide formation in human liver cell membranes, suggesting the potential of this technology to anticipate adverse effects in preclinical phases.
Collapse
|
18
|
Cho MK, Jin L, Han JH, Jin JS, Cheon SY, Shin S, Bae SJ, Park JK, Ha KT. Water-Extracted Prunella vulgaris Alleviates Endometriosis by Reducing Aerobic Glycolysis. Front Pharmacol 2022; 13:872810. [PMID: 35444541 PMCID: PMC9014096 DOI: 10.3389/fphar.2022.872810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Endometriosis is a chronic inflammatory disorder caused by abnormal adhesion of endometrial tissue to the outside of the uterus. The combination of surgery, non-steroidal anti-inflammatory drugs, and hormone treatment is well established therapy for endometriosis, however, case reports have showed that high rates of relapse and unpleasant side effect. For these reasons, recently, the studies have been focused on the Warburg-like metabolic shift of endometriosis. Prunella vulgaris is one of traditionally used herbal medicine for inflammatory disease and the anti-estrogenic effects of P. vulgaris is well-established. Therefore, in this work, we evaluated water-extracted P. vulgaris (PV) as a potential treatment for endometriosis. To this, we artificially induced endometriosis in ovarectomized mice by intra-peritoneal inoculation of uterus extracts. PV was orally administered, and PV significantly alleviated endometriosis, particularly the growth of ectopic endometrial lesions in artificially endometriosis-induced mice. For the mechanism study of anti-endometriosis by PV, we designed an in vitro study using human normal endometrial stromal cells (T-HESCs) and human endometrial cell (12Z) obtained from patients with endometriosis. PV strongly induced the apoptosis of 12Z cells rather than T-HESCs by control the activity or expression of aerobic glycolysis enzymes, such as lactate dehydrogenase A (LDHA), pyruvate dehydrogenase A, and pyruvate dehydrogenase kinase 1/3. In addition, lactate production was enhanced, and oxygen consumption rate was suppressed in 12Z cells upon PV treatment. These changes in aerobic glycolysis eventually caused mitochondrial damage following decreased mitochondrial membrane potential and excessive mitochondrial ROS production. Especially, ulsolic acid (UA), one of the compounds in PV considerably led 12Z cell apoptosis with inhibition of LDHA activity. Therefore, UA could be a major active substance of PV in terms of endometriosis inhibitors. In conclusion, this study provides the evidence that the beneficial efficacy of PV for the prevention/treatment of endometriosis.
Collapse
Affiliation(s)
- Min Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Ling Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Jung Ho Han
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Jung-Suk Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Su Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Sung-Jin Bae
- Department of Anatomy, Kosin University College of Medicine, Busan, South Korea
| | - Jang-Kyung Park
- Department of Korean Obstetrics and Gynecology, Pusan National University Korean Medicine Hospital, Yangsan, South Korea,*Correspondence: Jang-Kyung Park, ; Ki-Tae Ha,
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea,*Correspondence: Jang-Kyung Park, ; Ki-Tae Ha,
| |
Collapse
|
19
|
Rana P, Aleo MD, Wen X, Kogut S. Hepatotoxicity reports in the FDA adverse event reporting system database: A comparison of drugs that cause injury via mitochondrial or other mechanisms. Acta Pharm Sin B 2021; 11:3857-3868. [PMID: 35024312 PMCID: PMC8727782 DOI: 10.1016/j.apsb.2021.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42-1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12-2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61-0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.
Collapse
Key Words
- AE, adverse event
- Adverse event reporting
- CI, confidence interval
- CNS, center nervous system
- DILI, drug-induced liver injury
- DNA, deoxyribonucleic acid
- Drug-induced liver injury
- FAERS database
- FAERS, FDA's Adverse Event Reporting System
- FDA, US Food and Drug Administration
- Hepatotoxicity
- MedDRA, Medical Dictionary for Regulatory Activities
- Mitochondrial toxicity
- NCTR-LTKB, National Center for Toxicological Research-Liver Toxicity Knowledge Base
- NSAID, nonsteroidal anti-inflammatory drugs
- ROR, Reporting Odds Ratio
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research & Development, Pfizer, Groton, CT 06340, USA
- Corresponding author. Tel.: +1 0 715 6154.
| | - Michael D. Aleo
- Drug Safety Research & Development, Pfizer, Groton, CT 06340, USA
| | - Xuerong Wen
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA
| | - Stephen Kogut
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA
| |
Collapse
|
20
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
21
|
Yang H, van der Stel W, Lee R, Bauch C, Bevan S, Walker P, van de Water B, Danen EHJ, Beltman JB. Dynamic Modeling of Mitochondrial Membrane Potential Upon Exposure to Mitochondrial Inhibitors. Front Pharmacol 2021; 12:679407. [PMID: 34489692 PMCID: PMC8416757 DOI: 10.3389/fphar.2021.679407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the main bioenergetic organelles of cells. Exposure to chemicals targeting mitochondria therefore generally results in the development of toxicity. The cellular response to perturbations in cellular energy production is a balance between adaptation, by reorganisation and organelle biogenesis, and sacrifice, in the form of cell death. In homeostatic conditions, aerobic mitochondrial energy production requires the maintenance of a mitochondrial membrane potential (MMP). Chemicals can perturb this MMP, and the extent of this perturbation depends both on the pharmacokinetics of the chemicals and on downstream MMP dynamics. Here we obtain a quantitative understanding of mitochondrial adaptation upon exposure to various mitochondrial respiration inhibitors by applying mathematical modeling to partially published high-content imaging time-lapse confocal imaging data, focusing on MMP dynamics in HepG2 cells over a period of 24 h. The MMP was perturbed using a set of 24 compounds, either acting as uncoupler or as mitochondrial complex inhibitor targeting complex I, II, III or V. To characterize the effect of chemical exposure on MMP dynamics, we adapted an existing differential equation model and fitted this model to the observed MMP dynamics. Complex III inhibitor data were better described by the model than complex I data. Incorporation of pharmacokinetic decay into the model was required to obtain a proper fit for the uncoupler FCCP. Furthermore, oligomycin (complex V inhibitor) model fits were improved by either combining pharmacokinetic (PK) decay and ion leakage or a concentration-dependent decay. Subsequent mass spectrometry measurements showed that FCCP had a significant decay in its PK profile as predicted by the model. Moreover, the measured oligomycin PK profile exhibited only a limited decay at high concentration, whereas at low concentrations the compound remained below the detection limit within cells. This is consistent with the hypothesis that oligomycin exhibits a concentration-dependent decay, yet awaits further experimental verification with more sensitive detection methods. Overall, we show that there is a complex interplay between PK and MMP dynamics within mitochondria and that data-driven modeling is a powerful combination to unravel such complexity.
Collapse
Affiliation(s)
- Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Randy Lee
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Sam Bevan
- Cyprotex Discovery Limited, Cheshire, United Kingdom
| | - Paul Walker
- Cyprotex Discovery Limited, Cheshire, United Kingdom
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Erik H J Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
22
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
23
|
Hong S, Song JM. A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity. Biomater Sci 2021; 9:5939-5950. [PMID: 34318795 DOI: 10.1039/d1bm00749a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
3D spheroid cultures are attractive candidates for application in in vitro drug-induced hepatotoxicity testing models to improve the reliability of biological information obtainable from a simple 2D culture model. Various 3D spheroid culture models exist for hepatotoxicity screening, but quantitative assays of spheroid response in situ are still challenging to achieve with the current 3D liver toxicity platforms. In this study, we developed a 3D printing-based HepG2 liver spheroid culture model for in situ quantitative evaluation and high-content monitoring of drug-induced hepatotoxicity. HepG2 liver spheroids grown in mini-fabricated hydrogel constructs using a 3D bioprinter were used to obtain the EC50 values and to measure the multi-parametric hepatotoxic effects, including mitochondrial permeability transition (MPT), cytosolic calcium levels, and apoptosis. Interestingly, the average fluorescence intensities of apoptotic and cell death markers, calculated for out-of-focus and in-focus spheroids, increased proportionally as a function of the drug concentration, allowing for the determination of the EC50 values. In addition, 3D HepG2 spheroids were more resistant to nefazodone-induced MPT than 2D HepG2 cells, indicating that the gelatin/alginate hydrogel culture system provides enhanced resistance to hepatotoxic drugs. The drug response of HepG2 liver spheroids was also found to be unrelated to the spheroid size. These results demonstrate that the present 3D cell-printing-based embedded HepG2 liver spheroid platform is a promising approach for screening and characterizing drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| | | |
Collapse
|
24
|
Rossi A, Pacella I, Piconese S. RNA Flow Cytometry for the Study of T Cell Metabolism. Int J Mol Sci 2021; 22:ijms22083906. [PMID: 33918901 PMCID: PMC8069477 DOI: 10.3390/ijms22083906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
T cells undergo activation and differentiation programs along a continuum of states that can be tracked through flow cytometry using a combination of surface and intracellular markers. Such dynamic behavior is the result of transcriptional and post-transcriptional events, initiated and sustained by the activation of specific transcription factors and by epigenetic remodeling. These signaling pathways are tightly integrated with metabolic routes in a bidirectional manner: on the one hand, T cell receptors and costimulatory molecules activate metabolic reprogramming; on the other hand, metabolites modify T cell transcriptional programs and functions. Flow cytometry represents an invaluable tool to analyze the integration of phenotypical, functional, metabolic and transcriptional features, at the single cell level in heterogeneous T cell populations, and from complex microenvironments, with potential clinical application in monitoring the efficacy of cancer immunotherapy. Here, we review the most recent advances in flow cytometry-based analysis of gene expression, in combination with indicators of mitochondrial activity, with the aim of revealing and characterizing major metabolic pathways in T cells.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Roma, Italy
- Correspondence:
| |
Collapse
|
25
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
26
|
Donato MT, Tolosa L. High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants (Basel) 2021; 10:antiox10010106. [PMID: 33451093 PMCID: PMC7828515 DOI: 10.3390/antiox10010106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a major cause of drug development failure, post-marketing warnings and restriction of use. An improved understanding of the mechanisms underlying DILI is required for better drug design and development. Enhanced reactive oxygen species (ROS) levels may cause a wide spectrum of oxidative damage, which has been described as a major mechanism implicated in DILI. Several cell-based assays have been developed as in vitro tools for early safety risk assessments. Among them, high-content screening technology has been used for the identification of modes of action, the determination of the level of injury and the discovery of predictive biomarkers for the safety assessment of compounds. In this paper, we review the value of in vitro high-content screening studies and evaluate how to assess oxidative stress induced by drugs in hepatic cells, demonstrating the detection of pre-lethal mechanisms of DILI as a powerful tool in human toxicology.
Collapse
Affiliation(s)
- María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| |
Collapse
|
27
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
28
|
Krajnc E, Visentin M, Gai Z, Stieger B, Samodelov SL, Häusler S, Kullak-Ublick GA. Untargeted Metabolomics Reveals Anaerobic Glycolysis as a Novel Target of the Hepatotoxic Antidepressant Nefazodone. J Pharmacol Exp Ther 2020; 375:239-246. [PMID: 32848075 DOI: 10.1124/jpet.120.000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial damage is considered a hallmark of drug-induced liver injury (DILI). However, despite the common molecular etiology, the evolution of the injury is usually unpredictable, with some cases that are mild and reversible upon discontinuation of the treatment and others characterized by irreversible acute liver failure. This suggests that additional mechanisms of damage play a role in determining the progression of the initial insult. To uncover novel pathways potentially involved in DILI, we investigated in vitro the metabolic perturbations associated with nefazodone, an antidepressant associated with acute liver failure. Several pathways associated with ATP production, including gluconeogenesis, anaerobic glycolysis, and oxidative phosphorylation, were altered in human hepatocellular carcinoma-derived (Huh7) cells after 2-hour exposure to a 50 μM extracellular concentration of nefazodone. In the presence or absence of glucose, ATP production of Huh7 cells was glycolysis- and oxidative phosphorylation-dependent, respectively. In glucose-containing medium, nefazodone-induced ATP depletion from Huh7 cells was biphasic. Huh7 cells in glucose-free medium were more sensitive to nefazodone than those in glucose-containing medium, losing the biphasic inhibition. Nefazodone-induced ATP depletion in primary cultured mouse hepatocytes, mainly dependent on oxidative phosphorylation, was monophasic. At lower extracellular concentrations, nefazodone inhibited the oxygen consumption of Huh7 cells, whereas at higher extracellular concentrations, it also inhibited the extracellular acidification. ATP content was rescued by increasing the extracellular concentration of glucose. In conclusion, nefazodone has a dual inhibitory effect on mitochondrial-dependent and mitochondrial-independent ATP production. SIGNIFICANCE STATEMENT: Mitochondrial damage is a hallmark of drug-induced liver injury, yet other collateral alterations might contribute to the severity and evolution of the injury. Our in vitro study supports previous results arguing that a deficit in hepatic glucose metabolism, concomitant to the mitochondrial injury, might be cardinal in the prognosis of the initial insult to the liver. From a drug development standpoint, coupling anaerobic glycolysis and mitochondrial function assessment might increase the drug-induced liver injury preclinical screening performance.
Collapse
Affiliation(s)
- Evelin Krajnc
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Stephanie Häusler
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (E.K., M.V., Z.G., B.S., S.L.S., S.H., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.);and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| |
Collapse
|
29
|
Miranda CA, Guimarães ARDJS, Bizerra PFV, Mingatto FE. Diazinon impairs bioenergetics and induces membrane permeability transition on mitochondria isolated from rat liver. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:616-629. [PMID: 32787525 DOI: 10.1080/15287394.2020.1805078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diazinon (DZN) is a broad-spectrum insecticide extensively used to control pests in crops and animals. Several investigators demonstrated that DZN produced tissue toxicity especially to the liver. In addition, the mitochondrion was implicated in DZN-induced toxicity, but the precise role of this organelle remains to be determined. The aim of this study was thus to examine the effects of DZN (50 to 150 μM) on the bioenergetics and mitochondrial permeability transition (MPT) associated processes in isolated rat liver mitochondria. DZN inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I, and succinate, substrate of complex II of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. MPT was estimated by the extent of mitochondrial swelling, in the presence of 10 µM Ca2+. DZN elicited MPT in a concentration-dependent manner, via a mechanism sensitive to cyclosporine A, EGTA, ruthenium red and N-ethylmaleimide, which was associated with mitochondrial Ca2+ efflux and cytochrome c release. DZN did not result in hydrogen peroxide accumulation or glutathione oxidation, but this insecticide oxidized endogenous NAD(P)H and protein thiol groups. Data suggest the involvement of mitochondria, via apoptosis, in the hepatic cytotoxicity attributed to DZN.
Collapse
Affiliation(s)
- Camila Araújo Miranda
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (Unesp) , Dracena, Brazil
| | | | - Paulo Francisco Veiga Bizerra
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (Unesp) , Dracena, Brazil
| | - Fábio Erminio Mingatto
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (Unesp) , Dracena, Brazil
| |
Collapse
|
30
|
Ke L, Lu C, Shen R, Lu T, Ma B, Hua Y. Knowledge Mapping of Drug-Induced Liver Injury: A Scientometric Investigation (2010-2019). Front Pharmacol 2020; 11:842. [PMID: 32581801 PMCID: PMC7291871 DOI: 10.3389/fphar.2020.00842] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Drug-induced liver injury (DILI) is a common adverse event, which compromises the safety of numerous drugs, poses a significant risk to patient health, and enhances healthcare expenditures. Many articles have been recently published on DILI related research, though no relevant scientometric study has been published yet. This scientometric study was aimed at comprehensively analyzing the knowledge base and emerging topics on DILI. Methods The articles and reviews related to DILI, published from 2010 to 2019 in the Web of Science Core Collection (WoSCC), were retrieved on March 15, 2020, using relevant keywords. Four different scientometric software (HistCite, VOSviewer, CiteSpace, and R-bibliometrix) was used to conduct this scientometric study. Results A total of 1,995 publications were retrieved (including 1,550 articles and 445 reviews) from 592 academic journals with 56,273 co-cited references in 10 languages by 2,331 institutions from 79 countries/regions. The majority of publications (n = 727, 36.44%) were published in the United States, and the University of North Carolina contributed the most publications (n = 89, 4.46%). The most productive academic journal on DILI was the Toxicological Sciences [n = 79, 3.96%; impact factor (IF) 2018 = 3.564], and Hepatology was the first co-cited journal (n = 7,383, IF 2018 = 14.971). Fontana RJ and Teschke R may have significant influence on DILI research, with more publications (n = 46; n = 39) and co-citations (n = 382; n = 945). Definition, incidence rate or clinical characteristics, etiology or pathogenesis (such as the character of the innate immune system, the regulation of cell-death pathways, and susceptible HLA-B*5701 genotype), identification of main drugs and causality assessment (criteria and methods) were the knowledge base for DILI research. Exploring the microscopic mechanism (such as the organelle dysfunction and cytotoxicity induced by drugs, and exploration of role of neutrophils in DILI using mouse models) and developed newer approaches to prevent DILI (such as the prospective HLA-B*5701 screening and in vitro approaches for assessing the potential risk of candidate drugs for DILI) were the recent major topics for DILI research. Conclusion This scientometric study comprehensively reviewed the publications related to DILI during the past decade using quantitative and qualitative methods. This information would provide references for scholars, researching on DILI.
Collapse
Affiliation(s)
- Lixin Ke
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuncun Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Shen
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bin Ma
- Key Laboratory of Preclinical Study for New Drug of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Yunpeng Hua
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Insights on the relationship between structure vs. toxicological activity of antibacterial rhodamine-labelled 3-hydroxy-4-pyridinone iron(III) chelators in HepG2 cells. Interdiscip Toxicol 2019; 11:189-199. [PMID: 31736632 PMCID: PMC6853001 DOI: 10.2478/intox-2018-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
In the present study we investigated the in vitro hepatotoxicity of a set of rhodamine-labelled 3-hydroxy-4-pyridinones (3,4-HPO) that had previously demonstrated significant inhibitory effect in the intramacrophagic growth of Mycobacterium avium. Our aim was to establish a correspondence between the molecular structure and the in vitro toxicological activity of these compounds. The impact of a set of bidentate (MRB2, MRB7, MRB8, and MRB9) and hexadentate (MRH7, MRH8, and MRH10) chelators on cellular metabolic competence and membrane integrity was investigated in HepG2 cells. Our findings indicate that: a) hexadentate chelators are more cytotoxic than parent bidentate ligands; b) disruption of cell membrane and metabolic competence only occurred after 5 days, at the highest concentrations tested; c) strict correlation between bacteriostatic activity and in vitro toxicity was observed, which seems to be directly dependent on the size of the molecule and on the hydrophilic/lipophilic balance; d) among the set of bidentate ligands, carboxyrhodamine derivatives (amide linker) presented lower detrimental effects, when compared with rhodamine B isothiocyanate chelators (thiourea linker); e) contrarily, for the hexadentate series, rhodamine B isothiocyanate derivatives are less cytotoxic to HepG2 cells than carboxyrhodamine molecules; and f) for all compounds tested, when the substituents of the nitrogen atom were switched from ethyl to methyl, an increment of toxicity was observed. Overall, all chelators seem to display suitable in vitro toxicological potential to combat fast grow bacteria. According to their in vitro pharmacological: toxicological potential ratio, MRH7 and MRH8 may be considered as the most suitable compounds to undergo further pre-clinical development studies.
Collapse
|
32
|
Abstract
Cumulative research over several decades has implicated the involvement of reactive metabolites in many idiosyncratic adverse drug reactions (IADRs). Consequently, "avoidance" strategies have been inserted into drug discovery paradigms, which include the exclusion of structural alerts and possible termination of reactive metabolite-positive compounds. Several noteworthy examples where reactive metabolite-related liabilities have been resolved through structure-metabolism studies are presented herein. Considerable progress has also been made in addressing the limitations of the avoidance strategy and further refining the process of managing reactive metabolite issues in drug development. These efforts primarily stemmed from the observation that numerous drugs, which contain structural alerts and/or form reactive metabolites, are devoid of ADRs. The Perspective also dwells into an analysis of the structural alert/reactive metabolite concept with a discussion of risk mitigation tactics to support the progression of reactive metabolite-positive drug candidates.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Naves MPC, de Morais CR, Spanó MA, de Rezende AAA. Mutagenicity and recombinogenicity evaluation of bupropion hydrochloride and trazodone hydrochloride in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2019; 131:110557. [DOI: 10.1016/j.fct.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
|
34
|
Xu Q, Liu L, Vu H, Kuhls M, Aslamkhan AG, Liaw A, Yu Y, Kaczor A, Ruth M, Wei C, Imredy J, Lebron J, Pearson K, Gonzalez R, Mitra K, Sistare FD. Can Galactose Be Converted to Glucose in HepG2 Cells? Improving the in Vitro Mitochondrial Toxicity Assay for the Assessment of Drug Induced Liver Injury. Chem Res Toxicol 2019; 32:1528-1544. [PMID: 31271030 DOI: 10.1021/acs.chemrestox.9b00033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hepatocellular carcinoma cells, HepG2, are often used for drug mediated mitochondrial toxicity assessments. Glucose in HepG2 culture media is replaced by galactose to reveal drug-induced mitochondrial toxicity as a marked shift of drug IC50 values for the reduction of cellular ATP. It has been postulated that galactose sensitizes HepG2 mitochondria by the additional ATP consumption demand in the Leloir pathway. However, our NMR metabolomics analysis of HepG2 cells and culture media showed very limited galactose metabolism. To clarify the role of galactose in HepG2 cellular metabolism, U-13C6-galactose or U-13C6-glucose was added to HepG2 culture media to help specifically track the metabolism of those two sugars. Conversion to U-13C3-lactate was hardly detected when HepG2 cells were incubated with U-13C6-galactose, while an abundance of U-13C3-lactate was produced when HepG2 cells were incubated with U-13C6-glucose. In the absence of glucose, HepG2 cells increased glutamine consumption as a bioenergetics source. The requirement of additional glutamine almost matched the amount of glucose needed to maintain a similar level of cellular ATP in HepG2 cells. This improved understanding of galactose and glutamine metabolism in HepG2 cells helped optimize the ATP-based mitochondrial toxicity assay. The modified assay showed 96% sensitivity and 97% specificity in correctly discriminating compounds known to cause mitochondrial toxicity from those with prior evidence of not being mitochondrial toxicants. The greatest significance of the modified assay was its improved sensitivity in detecting the inhibition of mitochondrial fatty acid β-oxidation (FAO) when glutamine was withheld. Use of this improved assay for an empirical prediction of the likely contribution of mitochondrial toxicity to human DILI (drug induced liver injury) was attempted. According to testing of 65 DILI positive compounds representing numerous mechanisms of DILI together with 55 DILI negative compounds, the overall prediction of mitochondrial mechanism-related DILI showed 25% sensitivity and 95% specificity.
Collapse
Affiliation(s)
- Qiuwei Xu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Liping Liu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Heather Vu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Matthew Kuhls
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Amy G Aslamkhan
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Andy Liaw
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Yan Yu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Allen Kaczor
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Michael Ruth
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Christina Wei
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - John Imredy
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Jose Lebron
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Kara Pearson
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Raymond Gonzalez
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Kaushik Mitra
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Frank D Sistare
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| |
Collapse
|
35
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
36
|
Zhang X, Sun Q, Huang Z, Huang L, Xiao Y. Immobilizable fluorescent probes for monitoring the mitochondria microenvironment: a next step from the classic. J Mater Chem B 2019; 7:2749-2758. [PMID: 32255076 DOI: 10.1039/c9tb00043g] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immobilizable probes represent a valuable trend.
Collapse
Affiliation(s)
- Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116024
- China
| | - Qin Sun
- Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University
- Luzhou 646000
- China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116024
- China
| | - Lirong Huang
- Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University
- Luzhou 646000
- China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
37
|
Rana P, Aleo MD, Gosink M, Will Y. Evaluation of in Vitro Mitochondrial Toxicity Assays and Physicochemical Properties for Prediction of Organ Toxicity Using 228 Pharmaceutical Drugs. Chem Res Toxicol 2018; 32:156-167. [DOI: 10.1021/acs.chemrestox.8b00246] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Payal Rana
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael D. Aleo
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Gosink
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yvonne Will
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
38
|
Klopčič I, Dolenc MS. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem Res Toxicol 2018; 32:1-34. [DOI: 10.1021/acs.chemrestox.8b00213] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivana Klopčič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
39
|
Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, Williams DP, Kevin Park B, Chadwick AE. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol In Vitro 2018; 53:136-147. [PMID: 30096366 DOI: 10.1016/j.tiv.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/03/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
The importance of mitochondrial toxicity in drug-induced liver injury is well established. The bioenergetic phenotype of the HepaRG cell line was defined in order to assess their suitability as a model of mitochondrial hepatotoxicity. Bioenergetic phenotyping categorised the HepaRG cells as less metabolically active when measured beside the more energetic HepG2 cells. However, inhibition of mitochondrial ATP synthase induced an increase in glycolytic activity of both HepaRG and HepG2 cells suggesting an active Crabtree Effect in both cell lines. The suitability of HepaRG cells for the acute metabolic modification assay as a screen for mitotoxicity was confirmed using a panel of compounds, including both positive and negative mitotoxic compounds. Seahorse respirometry studies demonstrated that a statistically significant decrease in spare respiratory capacity is the first indication of mitochondrial dysfunction. Furthermore, based upon comparing changes in respiratory parameters to those of the positive controls, rotenone and carbonyl cyanide m-chlorophenyl hydrazone, compounds were categorised into two mechanistic groups; inhibitors or uncouplers of the electron transport chain. Overall, the findings from this study have demonstrated that HepaRG cells, despite having different resting bioenergetic phenotype to HepG2 cells are a suitable model to detect drug-induced mitochondrial toxicity with similar detection rates to HepG2 cells.
Collapse
Affiliation(s)
- Laleh Kamalian
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Oisin Douglas
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Carol E Jolly
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Jan Snoeys
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium.
| | - Damir Simic
- Mechanistic and Investigative Toxicology, Janssen Research and Development, Spring House, PA, USA.
| | - Mario Monshouwer
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium
| | - Dominic P Williams
- Innovative Medicines and Early Development
- Drug Safety and Metabolism
- Translational Safety, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge, CB4 0FZ, United Kingdom.
| | - B Kevin Park
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| |
Collapse
|
40
|
Ilgın S, Aydoğan-Kılıç G, Baysal M, Kılıç V, Ardıç M, Uçarcan Ş, Atlı Ö. Toxic Effects of Trazodone on Male Reproductive System via Disrupting Hypothalamic-Pituitary-Testicular Axis and Inducing Testicular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7196142. [PMID: 30151072 PMCID: PMC6087606 DOI: 10.1155/2018/7196142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/03/2018] [Indexed: 01/02/2023]
Abstract
Depression and anxiety are recognized as public health problems. Epidemiological studies have shown that depression and anxiety often occur during reproductive ages between 20 and 60 years of age in males. Trazodone is one of the most frequently prescribed drugs in the treatment of depression and anxiety. Drugs used in repeated doses also play a role in the etiology of infertility. In our study, it was aimed to identify the possible toxic effects of trazodone on male rats and elucidate the underlying mechanisms. Vehicle or trazodone (5, 10, and 20 mg/kg/day) was administered to rats for 28 consecutive days (n = 8 per group). At the end of that period, sperm concentration, motility, morphology, and DNA damage were determined and testicular morphology was assessed histopathologically in rats. Additionally, we investigated hormonal status by determining serum testosterone, FSH, and LH levels and oxidative stress by determining glutathione and malondialdehyde levels in testicular tissue to elucidate mechanisms of possible reproductive toxicity. According to our results, sperm concentration, sperm motility, and normal sperm morphology were decreased; sperm DNA damage was increased in trazodone-administered groups. Degenerative findings on the testicular structure were observed after trazodone administration in rats. Additionally, serum FSH, LH, and testosterone levels were elevated in the trazodone-administered groups. Increased MDA levels were the signs of enhanced oxidative stress after trazodone administration in testis tissues. Thus, we concluded that trazodone induced reproductive toxicity in male rats; this reproductive toxicity was accompanied by oxidative stress and hormonal changes, which are considered as important causes of reproductive disorders.
Collapse
Affiliation(s)
- Sinem Ilgın
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| | - Gözde Aydoğan-Kılıç
- Faculty of Science, Department of Biology, Anadolu University, Eskisehir, Turkey
| | - Merve Baysal
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| | - Volkan Kılıç
- Faculty of Science, Department of Biology, Anadolu University, Eskisehir, Turkey
| | - Mina Ardıç
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| | - Şeyda Uçarcan
- Faculty of Science, Department of Biology, Anadolu University, Eskisehir, Turkey
| | - Özlem Atlı
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
41
|
Le Guillou D, Bucher S, Begriche K, Hoët D, Lombès A, Labbe G, Fromenty B. Drug-Induced Alterations of Mitochondrial DNA Homeostasis in Steatotic and Nonsteatotic HepaRG Cells. J Pharmacol Exp Ther 2018; 365:711-726. [PMID: 29669730 DOI: 10.1124/jpet.117.246751] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
Although mitochondriotoxicity plays a major role in drug-induced hepatotoxicity, alteration of mitochondrial DNA (mtDNA) homeostasis has been described only with a few drugs. Because it requires long drug exposure, this mechanism of toxicity cannot be detected with investigations performed in isolated liver mitochondria or cultured cells exposed to drugs for several hours or a few days. Thus, a first aim of this study was to determine whether a 2-week treatment with nine hepatotoxic drugs could affect mtDNA homeostasis in HepaRG cells. Previous investigations with these drugs showed rapid toxicity on oxidative phosphorylation but did not address the possibility of delayed toxicity secondary to mtDNA homeostasis impairment. The maximal concentration used for each drug induced about 10% cytotoxicity. Two other drugs, zalcitabine and linezolid, were used as positive controls for their respective effects on mtDNA replication and translation. Another goal was to determine whether drug-induced mitochondriotoxicity could be modulated by lipid overload mimicking nonalcoholic fatty liver. Among the nine drugs, imipramine and ritonavir induced mitochondrial effects suggesting alteration of mtDNA translation. Ritonavir toxicity was stronger in nonsteatotic cells. None of the nine drugs decreased mtDNA levels. However, increased mtDNA was observed with five drugs, especially in nonsteatotic cells. The mtDNA levels could not be correlated with the expression of key factors involved in mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), PGC1β, and AMP-activated protein kinase α-subunit. Hence, drug-induced impairment of mtDNA translation might not be rare, and increased mtDNA levels could be a frequent adaptive response to slight energy shortage. Nevertheless, this adaptation could be impaired by lipid overload.
Collapse
Affiliation(s)
- Dounia Le Guillou
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Simon Bucher
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Karima Begriche
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Delphine Hoët
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Anne Lombès
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Gilles Labbe
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Bernard Fromenty
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| |
Collapse
|
42
|
Atli O, Kilic V, Baysal M, Kilic G, Gormus G, Ucarcan S, Korkut B, Ilgin S. Assessment of trazodone-induced cardiotoxicity after repeated doses in rats. Hum Exp Toxicol 2018; 38:45-55. [PMID: 29774748 DOI: 10.1177/0960327118769717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trazodone (TRZ) is an antidepressant drug commonly used in the treatment of depression, anxiety, and insomnia. Although some studies demonstrated the adverse effects of TRZ related to cardiovascular system, the conflicting results were observed in these studies. Therefore, we aimed to investigate the cardiac adverse effects of TRZ in rats at repeated doses in our study. In accordance with this purpose, TRZ was administered orally to rats at 5, 10, and 20 mg/kg doses for 28 days. Electrocardiogram records, serum aspartate aminotransferase (AST), lactate dehydrogenase, creatine kinase-myoglobin band, cardiac troponin-T (cTn-T) levels, DNA damage in cardiomyocytes, and histologic view of heart tissues were evaluated. In addition, glutathione (GSH) and malondialdehyde (MDA) levels were measured to determine the oxidative status of cardiac tissue after TRZ administration. Heart rate was decreased, PR interval was prolonged, and QRS and T amplitudes were decreased in 20 mg/kg TRZ-administered group compared to the control group. Serum AST and cTn-T levels were significantly increased in 10 and 20 mg/kg TRZ-administered rats with respect to control rats. DNA damage was significantly increased in these groups. Additionally, degenerative histopathologic findings were observed in TRZ-administered groups. Although there was no difference in MDA levels between groups, GSH levels were significantly decreased in 10 and 20 mg/kg TRZ-administered groups compared to the control group. Our results have shown that TRZ induced cardiotoxicity in rats dose-dependently. It is assumed that oxidative stress related to GSH depletion may be accompanied by these adverse effects.
Collapse
Affiliation(s)
- O Atli
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - V Kilic
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - M Baysal
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - G Kilic
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - G Gormus
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - S Ucarcan
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - B Korkut
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - S Ilgin
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
43
|
Chen S, Ren Z, Yu D, Ning B, Guo L. DNA damage-induced apoptosis and mitogen-activated protein kinase pathway contribute to the toxicity of dronedarone in hepatic cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:278-289. [PMID: 29399883 PMCID: PMC7941192 DOI: 10.1002/em.22173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 01/02/2018] [Indexed: 05/22/2023]
Abstract
Dronedarone, an antiarrhythmic drug, has been marketed as an alternative to amiodarone. The use of dronedarone has been associated with severe liver injury; however, the mechanisms remain unclear. In this study, the possible mechanisms of dronedarone induced liver toxicity were characterized in HepG2 cells. Dronedarone decreased cells viability and induced apoptosis and DNA damage in a concentration- and time-dependent manner. Pretreatment of the HepG2 cells with apoptosis inhibitors (caspase-3, -8, and -9) or the necrosis inhibitor (Necrox-5), partially, but significantly, reduced the release of lactate dehydrogenase. Dronedarone caused the release of cytochrome c from mitochondria to cytosol, a prominent feature of apoptosis. In addition, the activation of caspase-2 was involved in dronedarone induced DNA damage and the activation of JNK and p38 signaling pathways. Inhibition of JNK and p38 by specific inhibitors attenuated dronedarone-induced cell death, apoptosis, and DNA damage. Additionally, suppression of caspase-2 decreased the activities of JNK and p38. Dronedarone triggered DNA damage was regulated by downregulation of topoisomerase IIα at both transcriptional and post-transcriptional levels. Taken together, our data show that DNA damage, apoptosis, and the activation of JNK and p38 contribute to dronedarone-induced cytotoxicity. Environ. Mol. Mutagen. 59:278-289, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
- Correspondence to: Si Chen, Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), Jefferson, AR 72079. or Lei Guo, Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079.
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
| | - Dianke Yu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
- School of Public Health, Qingdao University, Qingdao, China
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
- Correspondence to: Si Chen, Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), Jefferson, AR 72079. or Lei Guo, Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079.
| |
Collapse
|
44
|
Babai S, Auclert L, Le-Louët H. Safety data and withdrawal of hepatotoxic drugs. Therapie 2018; 76:715-723. [PMID: 29609830 DOI: 10.1016/j.therap.2018.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The occurrence of drug induced liver injury (DILI) is the most common reason of post-marketing withdrawals. DILI in humans is difficult to predict using in vitro cytotoxicity screening and animal studies. A review of hepatotoxicity data was performed with the aim of identifying relevant factors that could have predicted the occurrence of serious DILI. METHODS The drugs withdrawn from the market due to hepatotoxicity in Europe and/or in USA either by marketing authorization holders or by Regulatory agencies from 1997 to 2016 were selected. The liver safety data and the withdrawal decisions were identified from a search within the European medicine agency (EMA) website, the Food and drug administration (FDA) orange book and PubMed®. RESULTS From 1997 to 2016, eight drugs were withdrawn from the market for hepatotoxicity reason: tolcapone, troglitazone, trovafloxacin, bromfenac, nefazodone, ximelagatran, lumiracoxib and sitaxentan. The safety data suggest that while liver test abnormalities have been detected during clinical trials, other relevant factors leading to the discontinuation of these drugs have been identified: lack of predictability of animal models, inappropriate liver function test, non-compliance with drug treatment, less attention paid to rare adverse drug reactions, unpredictable occurrence and irreversible outcome of liver toxicity. CONCLUSION Several relevant factors may contribute to an inadequate risk management leading to the discontinuation of the drugs. Preclinical safety data are not sufficient to allow early prediction of DILI in humans and post-marketing safety monitoring and signal detection still should be used to identify potential serious cases of DILI. However, it seems that changes in Pharmacovigilance legislation with a closer management of drug safety may have contributed to the improvement of the risk minimization.
Collapse
Affiliation(s)
- Samy Babai
- Centre régional de pharmacovigilance, hôpital Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France.
| | - Laurent Auclert
- Centre régional de pharmacovigilance, hôpital Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - Hervé Le-Louët
- Centre régional de pharmacovigilance, hôpital Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| |
Collapse
|
45
|
Bizerra PFV, Guimarães ARJS, Maioli MA, Mingatto FE. Imidacloprid affects rat liver mitochondrial bioenergetics by inhibiting F oF 1-ATP synthase activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:229-239. [PMID: 29437547 DOI: 10.1080/15287394.2018.1437581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Imidacloprid (IMD) is a neonicotinoid insecticide widely used in crops, pets, and on farm animals for pest control. Several studies were conducted examining the adverse effects of IMD on animals often exhibiting hepatic damage. The aim of this study was to determine the effects of IMD on bioenergetics of mitochondria isolated from rat liver. Imidacloprid (50-200 µM) produced a concentration-dependent decrease in oxygen consumption and ATP production without markedly affecting mitochondrial membrane potential (MMP). Oxygen consumption experiments showed that IMD did not significantly affect the respiratory chain, and this was similar to findings with oligomycin and carboxyatractyloside, suggesting a direct action on FoF1-ATP synthase and/or the adenine nucleotide translocator (ANT). Imidacloprid inhibited FoF1-ATP synthase activity only in disrupted mitochondria and induced a partial inhibition of ADP-stimulated depolarization of the MMP. Our results indicate that IMD interacts specifically with FoF1-ATP synthase resulting in functional inhibition of the enzyme with consequent impairment of mitochondrial bioenergetics. These effects of IMD on mitochondrial bioenergetics may be related to adverse effects of this insecticide on the liver.
Collapse
Affiliation(s)
- Paulo F V Bizerra
- a College of Agricultural and Technological Sciences , São Paulo State University (Unesp) , Dracena , SP , Brazil
| | - Anilda R J S Guimarães
- a College of Agricultural and Technological Sciences , São Paulo State University (Unesp) , Dracena , SP , Brazil
| | - Marcos A Maioli
- b School of Veterinary Medicine , São Paulo State University (Unesp) , Araçatuba , SP , Brazil
| | - Fábio E Mingatto
- a College of Agricultural and Technological Sciences , São Paulo State University (Unesp) , Dracena , SP , Brazil
| |
Collapse
|
46
|
Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology 2018; 396-397:33-45. [PMID: 29427785 DOI: 10.1016/j.tox.2018.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
Leflunomide, an anti-inflammatory drug used for the treatment of rheumatoid arthritis, has been marked with a black box warning regarding an increased risk of liver injury. The active metabolite of leflunomide, A771726, which also carries a boxed warning about potential hepatotoxicity, has been marketed as teriflunomide for the treatment of relapsing multiple sclerosis. Thus far, however, the mechanism of liver injury associated with the two drugs has remained elusive. In this study, cytotoxicity assays showed that ATP depletion and subsequent LDH release were induced in a time- and concentration-dependent manner by leflunomide in HepG2 cells, and to a lesser extent, by A77 1726. The decline of cellular ATP levels caused by leflunomide was dramatically exacerbated when galactose was substituted for glucose as the sugar source, indicating a potential mitochondrial liability of leflunomide. By measuring the activities of immuno-captured mitochondrial oxidative phosphorylation (OXPHOS) complexes, we found that leflunomide and A77 1726 preferentially targeted complex V (F1FO ATP synthase), with IC50 values of 35.0 and 63.7 μM, respectively. Bongkrekic acid, a mitochondrial permeability transition pore blocker that targets adenine nucleotide translocase, profoundly attenuated mitochondrial membrane depolarization, ATP depletion, and LDH leakage induced by leflunomide and A77 1726. Substantial alterations of mitochondrial function at the transcript level were observed in leflunomide-treated HepG2 cells, whereas the effects of A77 1726 on the cellular transcriptome were much less profound. Our results suggest that mitochondrial dysfunction may be implicated in the hepatotoxicity associated with leflunomide and A77 1726, with the former exhibiting higher toxicity potency.
Collapse
|
47
|
Xu J, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro 2018; 48:286-301. [PMID: 29407385 DOI: 10.1016/j.tiv.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Immortalized liver cells have been used for evaluating the toxicity of compounds; however, excessive glutathione is considered to lessen cytotoxicity. In this study, we compared the effects of glutathione depletion on cytotoxicities of drugs using HepaRG and HepG2 cells, which express and lack drug-metabolizing enzymes, respectively, for predicting drug-induced liver injury (DILI) risks. These cells were pre-incubated with L-buthionine-S,R-sulfoximine (BSO) and then exposed to 34 test compounds with various DILI risks for 24 h. ATP level exhibited the highest predictability of DILI among tested parameters. BSO treatment rendered cells susceptible to drug-induced cytotoxicity when evaluated by cell viability and caspase 3/7 activity with the sensitivity of cell viability from 50% in non-treated HepaRG cells to 71% in BSO-treated HepaRG cells. These results indicate that cytotoxicity assays using GSH-depleted HepaRG cells improve the predictability of DILI risks. However, HepaRG cells were not always superior to HepG2 cells when assessed by ATP level. The combination of HepG2 and HepaRG cells index produced the best prediction in the cases of caspase 3/7 acitivity and ATP level. In conclusions, the developed highly sensitive cell-based assay using GSH-reduced cells would be useful for predicting potential DILI risks at an early stage of drug development.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
48
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Porceddu M, Buron N, Rustin P, Fromenty B, Borgne-Sanchez A. In Vitro Assessment of Mitochondrial Toxicity to Predict Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
The use of high-throughput screening techniques to evaluate mitochondrial toxicity. Toxicology 2017; 391:34-41. [PMID: 28789971 DOI: 10.1016/j.tox.2017.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/30/2023]
Abstract
Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards.
Collapse
|