1
|
Kang L, Lin X, Feng J, Duan M, Duan N, Wang Z, Wu S. Machine Learning-Assisted Multiplexed Fluorescence-Labeled miRNAs Imaging Decoding for Combined Mycotoxins Toxicity Assessment. Anal Chem 2025; 97:8001-8010. [PMID: 40177960 DOI: 10.1021/acs.analchem.5c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Mycotoxins, particularly deoxynivalenol (DON) and zearalenone (ZEN), are common food contaminants that frequently co-occur in grains, posing significant health risks. This study proposed a multiplexed detection platform for simultaneous quantification and imaging of three microRNAs (miRNAs) integrated with machine learning to evaluate the combined toxicity of DON and ZEN. Based on Exonuclease III-assisted signal amplification, highly sensitive fluorescent molecular beacon probes (MBs) targeting miR-21, miR-221, and miR-27a were developed, achieving remarkable detection limits of 0.18 pM, 0.22 pM, and 0.21 pM, respectively. The MBs were efficiently delivered into cells via liposome-mediated endocytosis, enabling simultaneous intracellular imaging of the three miRNAs. By integrating machine learning algorithms, including linear discriminant analysis and principal component analysis, with RGB values extracted from cellular fluorescence images, a robust analytical platform was established for classifying miRNA expression patterns induced by various DON/ZEN concentrations. A highest single agent model was subsequently constructed to evaluate the combined toxicity, revealing that ZEN exhibited antagonistic effects on DON at low doses but synergistic effects at high doses. This sensitive and multiplexed detection method demonstrates a strong correlation between miRNA expression profiles and DON/ZEN toxicity, providing an innovative analytical tool for multicomponent toxicity assessment.
Collapse
Affiliation(s)
- Lixin Kang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiaqi Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Kim J, Song B, Kim KH, Moon Y. Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117645. [PMID: 39788032 DOI: 10.1016/j.ecoenv.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells. Through a combination of transcriptomic analysis and experimental models, we demonstrate that while RPL13A negatively regulates inflammation by enhancing the anti-inflammatory transcription factor ATF3, RPS3 acts as a proinflammatory driver, promoting chemokine production via activation of MAPK pathways, transcriptional upregulation of EGR-1, and stabilization of mRNA through cytosolic translocation of HuR. Our findings reveal a dynamic interplay between RPL13A and RPS3, wherein RPL13A counteracts the proinflammatory effects of RPS3, offering a finely tuned regulatory axis in the inflammatory response to environmental toxins. These insights provide potential molecular targets for therapeutic intervention in toxin-induced inflammatory diseases of the gut, highlighting the non-canonical roles of ribosomal proteins in modulating immune responses to environmental stressors.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea
| | - BoGyoung Song
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea.
| |
Collapse
|
3
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
4
|
Garofalo M, Payros D, Taieb F, Oswald E, Nougayrède JP, Oswald IP. From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins. Crit Rev Food Sci Nutr 2023; 65:193-205. [PMID: 37862145 DOI: 10.1080/10408398.2023.2271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
5
|
Sun J, Kim J, Jeong H, Kwon D, Moon Y. Xenobiotic-induced ribosomal stress compromises dysbiotic gut barrier aging: A one health perspective. Redox Biol 2022; 59:102565. [PMID: 36470131 PMCID: PMC9720106 DOI: 10.1016/j.redox.2022.102565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Upon exposure to internal or environmental insults, ribosomes stand sentinel. In particular, stress-driven dysregulation of ribosomal homeostasis is a potent trigger of adverse outcomes in mammalians. The present study assessed whether the ribosomal insult affects the aging process via the regulation of sentinel organs such as the gut. Analyses of the human aging dataset demonstrated that elevated features of ribosomal stress are inversely linked to barrier maintenance biomarkers during the aging process. Ribosome-insulted worms displayed reduced lifespan, which was associated with the disruption of gut barriers. Mechanistically, ribosomal stress-activated Sek-1/p38 signaling, a central platform of ribosomal stress responses, counteracted the gut barrier deterioration through the maintenance of the gut barrier, which was consistent with the results in a murine insult model. However, since the gut-protective p38 signaling was attenuated with aging, the ribosomal stress-induced distress was exacerbated in the gut epithelia and mucosa of the aged animals, subsequently leading to increased bacterial exposure. Moreover, the bacterial community-based evaluation predicted concomitant increases in the abundance of mucosal sugar utilizers and mucin metabolic enzymes in response to ribosomal insult in the aged host. All of the present evidence on ribosomal insulting against the gut barrier integrity from worms to mammals provides new insights into organelle-associated translational modulation of biological longevity in a one health perspective.
Collapse
Affiliation(s)
- Junjie Sun
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Hoyoung Jeong
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Dasom Kwon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
6
|
Janik-Karpinska E, Ceremuga M, Wieckowska M, Szyposzynska M, Niemcewicz M, Synowiec E, Sliwinski T, Bijak M. Direct T-2 Toxicity on Human Skin-Fibroblast Hs68 Cell Line-In Vitro Study. Int J Mol Sci 2022; 23:ijms23094929. [PMID: 35563320 PMCID: PMC9105691 DOI: 10.3390/ijms23094929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Magdalena Wieckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
- Correspondence:
| |
Collapse
|
7
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
8
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
10
|
Wojtacha P, Trybowski W, Podlasz P, Żmigrodzka M, Tyburski J, Polak-Śliwińska M, Jakimiuk E, Bakuła T, Baranowski M, Żuk-Gołaszewska K, Zielonka Ł, Obremski K. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins (Basel) 2021; 13:toxins13040277. [PMID: 33924586 PMCID: PMC8070124 DOI: 10.3390/toxins13040277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Plant materials used in the production of pig feed are frequently contaminated with mycotoxins. T-2 toxin is a secondary metabolite of selected Fusarium species, and it can exert a harmful influence on living organisms. Most mycotoxins enter the body via the gastrointestinal tract, and they can modulate the gut-associated lymphoid tissue (GALT) function. However, little is known about the influence of low T-2 toxin doses on GALT. Therefore, the aim of this study was to evaluate the effect of T-2 toxin administered at 50% of the lowest-observed-adverse-effect level (LOAEL) on the percentage of CD2+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD4+CD8+ double-positive T cells, TCRγδ+ cells, CD5+CD8- B1 cells, and CD21+ B2 cells, and the secretion of proinflammatory (IFN-γ, IL-1β, IL-2, IL-12/23p40, IL-17A), anti-inflammatory, and regulatory (IL-4, IL-10, TGF-β) cytokines in the porcine ileal wall. The results of the study revealed that T-2 toxin disrupts the development of tolerance to food antigens by enhancing the secretion of proinflammatory and regulatory cytokines and decreasing the production of anti-inflammatory TGF-β. T-2 toxin triggered the cellular response, which was manifested by an increase in the percentage of CD8+ T cells and a decrease in the percentage of B2 and Tγδ lymphocytes.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
- Correspondence: (P.P.); (K.O.)
| | - Magdalena Żmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland;
| | - Józef Tyburski
- Department of Agroecosystems and Horticulture, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Mirosław Baranowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusines, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
- Correspondence: (P.P.); (K.O.)
| |
Collapse
|
11
|
Mycotoxin Deoxynivalenol Has Different Impacts on Intestinal Barrier and Stem Cells by Its Route of Exposure. Toxins (Basel) 2020; 12:toxins12100610. [PMID: 32987679 PMCID: PMC7598581 DOI: 10.3390/toxins12100610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
The different effects of deoxynivalenol (DON) on intestinal barrier and stem cells by its route of exposure remain less known. We explored the toxic effects of DON on intestinal barrier functions and stem cells after DON microinjection (luminal exposure) or addition to a culture medium (basolateral exposure) using three-dimensional mouse intestinal organoids (enteroids). The influx test using fluorescein-labeled dextran showed that basolateral DON exposure (1 micromolar (µM) disrupted intestinal barrier functions in enteroids compared with luminal DON exposure at the same concentration. Moreover, an immunofluorescence experiment of intestinal epithelial proteins, such as E-cadherin, claudin, zonula occludens-1 (ZO-1), and occludin, exhibited that only basolateral DON exposure broke down intestinal epithelial integrity. A time-lapse analysis using enteroids from leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-enhanced green fluorescence protein (EGFP) transgenic mice and 5-ethynyl-2-deoxyuridine (EdU) assay indicated that only the basolateral DON exposure, but not luminal DON exposure, suppressed Lgr5+ stem cell count and proliferative cell ratio, respectively. These results revealed that basolateral DON exposure has larger impacts on intestinal barrier function and stem cells than luminal DON exposure. This is the first report that DON had different impacts on intestinal stem cells depending on the administration route. In addition, RNA sequencing analysis showed different expression of genes among enteroids after basolateral and luminal DON exposure.
Collapse
|
12
|
Deoxynivalenol Exposure Suppresses Adipogenesis by Inhibiting the Expression of Peroxisome Proliferator-Activated Receptor Gamma 2 (PPARγ2) in 3T3-L1 Cells. Int J Mol Sci 2020; 21:ijms21176300. [PMID: 32878272 PMCID: PMC7504378 DOI: 10.3390/ijms21176300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Deoxynivalenol (DON)-a type B trichothecene mycotoxin, mainly produced by the secondary metabolism of Fusarium-has toxic effects on animals and humans. Although DON's toxicity in many organs including the adrenal glands, thymus, stomach, spleen, and colon has been addressed, its effects on adipocytes have not been investigated. In this study, 3T3-L1 cells were chosen as the cell model and treated with less toxic doses of DON (100 ng/mL) for 7 days. An inhibition of adipogenesis and decrease in triglycerides (TGs) were observed. DON exposure significantly downregulated the expression of PPARγ2 and C/EBPα, along with that of other adipogenic marker genes in 3T3-L1 cells and BALB/c mice. The anti-adipogenesis effect of DON and the downregulation of the expression of adipogenic marker genes were effectively reversed by PPARγ2 overexpression. The repression of PPARγ2's expression is the pivotal event during DON exposure regarding adipogenesis. DON exposure specifically decreased the di-/trimethylation levels of Histone 3 at lysine 4 in 3T3-L1 cells, therefore weakening the enrichment of H3K4me2 and H3K4me3 at the Pparγ2 promoter and suppressing its expression. Conclusively, DON exposure inhibited PPARγ2 expression via decreasing H3K4 methylation, downregulated the expression of PPARγ2-regulated adipogenic marker genes, and consequently suppressed the intermediate and late stages of adipogenesis. Our results broaden the current understanding of DON's toxic effects and provide a reference for addressing the toxicological mechanism of DON's interference with lipid homeostasis.
Collapse
|
13
|
The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food Chem Toxicol 2020; 145:111676. [PMID: 32805342 DOI: 10.1016/j.fct.2020.111676] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
During the last decade, the neurotoxicity of the trichothecenes T-2 toxin and deoxynivalenol (DON) has been a major concern, and many important findings have been reported on this topic. Through a summary of relevant research reports in recent years, we discuss the potential neurotoxic mechanisms of T-2 toxin and DON. In neuronal cells, T-2 toxin induces mitochondrial dysfunction and oxidative stress through a series of signalling pathways, including Nrf2/HO-1 and p53. This toxin crosses the blood-brain barrier (BBB) by altering permeability and induces oxidative stress responses, including ROS generation, lipid peroxidation, and protein carbonyl formation. Cellular metabolites (for example, HT-2 toxin) further promote neurotoxic effects. The type B trichothecene DON induces neuronal cell apoptosis via the MAPK and mitochondrial apoptosis pathways. This molecule induces inflammation of the central nervous system, increasing the expression of proinflammatory molecules. DON directly affects brain neurons and glial cells after passing through the BBB and affects the vitality and function of astrocytes and microglia. Exposure to trichothecenes alters brain dopamine levels, decreases ganglion area, and further induces brain damage. In this review, we mainly discuss the neurotoxicity of T-2 toxin and DON. However, our main goal was to reveal the potential mechanism(s) and offer new topics, including the potential of hypoxia-inducible factors, immune evasion, and exosomes, for future research in this context. This review should help elucidate the neurotoxic mechanism of trichothecenes and provides some potential inspiration for the follow-up study of neurotoxicity of mycotoxins.
Collapse
|
14
|
The food contaminant deoxynivalenol provokes metabolic impairments resulting in non-alcoholic fatty liver (NAFL) in mice. Sci Rep 2020; 10:12072. [PMID: 32694515 PMCID: PMC7374573 DOI: 10.1038/s41598-020-68712-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
The ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication. We demonstrated that acute DON intoxication triggered liver steatosis associated with an altered expression of genes related to lipids oxidation, lipogenesis and lipolysis. This steatosis was concomitant to anorexia, hypoglycemia and a paradoxical transient insulin release. DON treatment resulted also in stimulation of central autonomic network regulating sympathetic outflow and adrenaline and glucocorticoids secretion. Furthermore, an increased expression of genes linked to inflammation and reticulum endoplasmic stress was observed in the liver of DON-treated mice. Finally, we propose that lipids mobilization from adipose tissues (AT) induced by DON intoxication drives hepatic steatosis since (1) genes encoding lipolytic enzymes were up-regulated in AT and (2) plasma concentration of triglycerides (TGs) and non-esterified fatty acids were increased during DON intoxication. Altogether, these data demonstrate that DON induced hormonal and metabolic dysregulations associated with a spectrum of hepatic abnormalities, evocative of a non-alcoholic fatty liver disease.
Collapse
|
15
|
Zhou H, Guog T, Dai H, Yu Y, Zhang Y, Ma L. Deoxynivalenol: toxicological profiles and perspective views for future research. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is a secondary metabolite mainly produced by the fungi Fusarium in agricultural crops, widely existing in feeds and cereal-based foodstuffs. Because of the high occurrence and potentials to induce a variety of toxic effects on animals and humans, DON has been a very harmful exogenous dietary toxicant threating public health. The focus of this review is to summarise the DON-induced broad spectrum of adverse health effects, to probe the current state of knowledge of combined toxicity of DON with other mycotoxins and its derivatives, and to put forward prospective ideas that multi-generational toxicity of DON and its overall impacts on intestinal-immuno-neuroendocrine system could receive more attention in future investigations. The general aim is to provide a scientific basis for the necessity to re-consider risk-assessment and regulations.
Collapse
Affiliation(s)
- H. Zhou
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - T. Guog
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - H. Dai
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Yu
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Zhang
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| | - L. Ma
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| |
Collapse
|
16
|
The Mycotoxin Deoxynivalenol Significantly Alters the Function and Metabolism of Bovine Kidney Epithelial Cells In Vitro. Toxins (Basel) 2019; 11:toxins11100554. [PMID: 31547149 PMCID: PMC6832441 DOI: 10.3390/toxins11100554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022] Open
Abstract
Bovine mycotoxicosis is a disorder caused by the ingestion of fungal toxins. It is associated with chronic signs, such as reduced growth rate and milk yield, and causes significant economic cost to the dairy industry. The mycotoxins deoxynivalenol (DON), zearalenone (ZEN), and fumonisin B1 (FB1) are commonly found in grain fed to cattle. Patulin (PA) is a common grass silage contaminant but is also found in grain. The effects of these mycotoxins on cellular function at low concentrations are not well understood. Using Madin–Darby bovine kidney cells we evaluated the cellular response to these mycotoxins, measuring cytotoxicity, de novo protein synthesis, cell proliferation, cell cycle analysis, and also metabolic profiling by 1H NMR spectroscopy. DON, ZEN, and PA induced cytotoxicity, and PA and FB1 induced a decrease in metabolic activity in surviving cells. DON was the only mycotoxin found to have a significant effect on the metabolic profile, with exposed cells showing increased cellular amino acids, lactate, 2-oxoglutarate, 3-hydroxybutyrate, and UDP-N-acetylglucosamine and decreased β-alanine, choline, creatine, taurine, and myo-inositol. Cells exposed to DON also showed reductions in protein synthesis. DON has previously been documented as being a ribotoxin; the results here suggest that exposure of bovine cells to DON causes a decrease in protein synthesis with corresponding cellular accumulation of precursors. Cell proliferation was also arrested without causing apoptosis. It is likely that exposure triggers hypoxic, hypertonic, and ribotoxic responses in bovine cells, and that these responses contribute to reduced productivity in exposed cattle.
Collapse
|
17
|
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins (Basel) 2019; 11:toxins11060350. [PMID: 31216687 PMCID: PMC6628406 DOI: 10.3390/toxins11060350] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.
Collapse
|
18
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Whole-Cell Multiparameter Assay for Ricin and Abrin Activity-Based Digital Holographic Microscopy. Toxins (Basel) 2019; 11:toxins11030174. [PMID: 30909438 PMCID: PMC6468687 DOI: 10.3390/toxins11030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
Ricin and abrin are ribosome-inactivating proteins leading to inhibition of protein synthesis and cell death. These toxins are considered some of the most potent and lethal toxins against which there is no available antidote. Digital holographic microscopy (DHM) is a time-lapse, label-free, and noninvasive imaging technique that can provide phase information on morphological features of cells. In this study, we employed DHM to evaluate the morphological changes of cell lines during ricin and abrin intoxication. We showed that the effect of these toxins is characterized by a decrease in cell confluence and changes in morphological parameters such as cell area, perimeter, irregularity, and roughness. In addition, changes in optical parameters such as phase-shift, optical thickness, and effective-calculated volume were observed. These effects were completely inhibited by specific neutralizing antibodies. An enhanced intoxication effect was observed for preadherent compared to adherent cells, as was detected in early morphology changes and confirmed by annexin V/propidium iodide (PI) apoptosis assay. Detection of the dynamic changes in cell morphology at initial stages of cell intoxication by DHM emphasizes the highly sensitive and rapid nature of this method, allowing the early detection of active toxins.
Collapse
|
20
|
Baldwin T, Islamovic E, Klos K, Schwartz P, Gillespie J, Hunter S, Bregitzer P. Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and patterns of small interfering RNA associated with reduced virulence and mycotoxin production. PLoS One 2018; 13:e0202798. [PMID: 30161200 PMCID: PMC6116998 DOI: 10.1371/journal.pone.0202798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) contamination of cereal grains caused by Fusarium head blight may be addressed by future RNA interference (RNAi)-based gene silencing approaches. However, utilizing these approaches will require a greater understanding of the principles that govern RNAi effectiveness in the pathogen Fusarium graminearum. RNAi in higher eukaryotes, including fungi, involves processing double stranded RNA (dsRNA) into small interfering RNA (siRNA) that silence gene expression based on base pair complementarity. This study examined virulence, DON production, and the small RNA (sRNA) populations in response to RNAi-based silencing of TRI6, a transcription factor that positively regulates DON synthesis via control of TRI5 expression. Silencing was accomplished via the expression of transgenes encoding inverted repeats targeting various regions of TRI6 (RNAi vectors). Transgene expression was associated with novel, TRI6-specific siRNAs. For RNAi vectors targeting the majority of TRI6 sequence (~600 bp), a discontinuous, repeatable pattern was observed in which most siRNAs mapped to specific regions of TRI6. Targeting shorter regions (250-350 bp) did not alter the siRNA populations corresponding to that region of TRI6. No phased processing was observed. The 5' base of ~83% of siRNAs was uracil, consistent with DICER processing and ARGONAUTE binding preferences for siRNA. Mutant lines showed TRI6 siRNA-associated reductions of TRI5 expression on toxin inducing media and DON in infected wheat and barley spikes. Shorter RNAi vectors resulted in variable levels of silencing that were less than for the ~600 bp RNAi vector, with a 343 bp RNAi vector targeting the 5' end of TRI6 having the best silencing efficiency. This work identifies efficient shorter region for silencing of TRI6 and describes the patterns of siRNA corresponding to those regions.
Collapse
Affiliation(s)
- Thomas Baldwin
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, Idaho, United States of America
| | - Emir Islamovic
- BASF, Research Triangle Park, NC, United States of America
| | - Kathy Klos
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, Idaho, United States of America
| | - Paul Schwartz
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| | - James Gillespie
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Samuel Hunter
- iBEST, University of Idaho, Moscow, ID, United States of America
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, Idaho, United States of America
| |
Collapse
|
21
|
Huang CH, Chen YT, Lin JH, Wang HT. Acrolein induces ribotoxic stress in human cancer cells regardless of p53 status. Toxicol In Vitro 2018; 52:265-271. [PMID: 29964147 DOI: 10.1016/j.tiv.2018.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
Abstract
Acrolein (Acr) cytotoxicity contributes to chemotherapeutic activity of cyclophosphamide via metabolism of the anticancer drug. Our previous studies have shown that Acr causes ribosomal DNA (rDNA) damages, thus shuts down ribosomal RNA (rRNA) synthesis and leads to ribosomal stress in human cancer cells. Ribosome senses stress in 28S rRNA and induces subsequent activation of mitogen-activated protein kinase (MAPK) pathway which triggers ribotoxic stress response (RSR). Here, we report that cells harboring p53 or not responds differently to Acr-induced RSR. Our results show that Acr induced rRNA cleavage via the activated caspases in cancer cells with wild type p53, but not in cells with deficient p53. Furthermore, MAPK pathways were activated by Acr in cancer cells regardless of p53 status. Acr induced apoptosis in cells with wild type p53, while it induced G2/M cell cycle arrest in cancer cells with deficient p53. In conclusion, the presence of functional p53 plays a significant role in the mechanisms of Acr-induced rRNA cleavage and cell fates. Our results enhance our understanding of the molecular mechanisms of Acr-mediated antitumor activity which helps develop better therapeutic strategies for killing cancer cells with different p53 status.
Collapse
Affiliation(s)
- Chun-Hao Huang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ting Chen
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jing-Heng Lin
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
22
|
Alassane-Kpembi I, Pinton P, Hupé JF, Neves M, Lippi Y, Combes S, Castex M, Oswald IP. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome. Toxins (Basel) 2018; 10:E199. [PMID: 29762474 PMCID: PMC5983255 DOI: 10.3390/toxins10050199] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
- Hôpital d'Instruction des Armées-Centre Hospitalier Universitaire Cotonou Camp Guézo, Cotonou 01BP517, Benin.
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| | - Jean-François Hupé
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France.
| | - Manon Neves
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, 31320 Castanet Tolosan, France.
| | - Mathieu Castex
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| |
Collapse
|
23
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
24
|
Liao Y, Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food Chem Toxicol 2018; 112:342-354. [PMID: 29331731 DOI: 10.1016/j.fct.2018.01.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol (DON, vomitoxin) is the most frequent mycotoxin in grains and grain products. DON contamination in fodder and food is a serious threat for health, since it impairs the immune and gastrointestinal systems of both human and animals. Gut microbiota seems to play a more and more important part in human and animals' health according to related researches. Previous studies implied some associations among gut microbiota, DON and immune system. For example, DON affects immune system as well as the composition and abundance of gut microbiota, and the latter influences immune system as well. In the present short review, we not only provide the available information about the toxic consequences of DON-induced immunotoxicity on different animals and cell lines and discuss its main possible molecule mechanisms, but also summarize research results concerning the role of gut microbiota in DON-induced immunotoxicity and gender differences, with the aim to find some potential therapeutic strategies to tackle DON-induced immunotoxicity.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
25
|
Dąbrowski M, Jakimiuk E, Gajęcka M, Gajęcki MT, Zielonka Ł. Effect of deoxynivalenol on the levels of toll-like receptors 2 and 9 and their mRNA expression in enterocytes in the porcine large intestine: a preliminary study. Pol J Vet Sci 2017; 20:213-220. [PMID: 28865221 DOI: 10.1515/pjvs-2017-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Deoxynivalenol (DON), one of the most prevalent mycotoxins in the world, and is capable of inducing immune disorders in humans and animals. The aim of this study was to determine the effect of feed contaminated with DON on the number of TLR2- and TLR9-positive cells and their mRNA expression in the porcine large intestine. The experiment was conducted on two equal groups of pigs (n=4). The experimental group (E) was administered feed contaminated with DON (1008 μg/kg of feed) for 6 weeks, and the control group (C) was administered non-contaminated feed over the same period of time. A decrease in the expression of TLR2 mRNA was noted in the cecum. The percentage of TLR9-positive enterocytes increased in the ascending colon and decreased in the cecum. The results of this study indicate that DON can modify the local immune response by changing the expression of TLRs.
Collapse
|
26
|
Alassane-Kpembi I, Gerez JR, Cossalter AM, Neves M, Laffitte J, Naylies C, Lippi Y, Kolf-Clauw M, Bracarense APL, Pinton P, Oswald IP. Intestinal toxicity of the type B trichothecene mycotoxin fusarenon-X: whole transcriptome profiling reveals new signaling pathways. Sci Rep 2017; 7:7530. [PMID: 28790326 PMCID: PMC5548841 DOI: 10.1038/s41598-017-07155-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/23/2017] [Indexed: 12/02/2022] Open
Abstract
The few data available on fusarenon-X (FX) do not support the derivation of health-based guidance values, although preliminary results suggest higher toxicity than other regulated trichothecenes. Using histo-morphological analysis and whole transcriptome profiling, this study was designed to obtain a global view of the intestinal alterations induced by FX. Deoxynivalenol (DON) served as a benchmark. FX induced more severe histological alterations than DON. Inflammation was the hallmark of the molecular toxicity of both mycotoxins. The benchmark doses for the up-regulation of key inflammatory genes by FX were 4- to 45-fold higher than the previously reported values for DON. The transcriptome analysis revealed that both mycotoxins down-regulated the peroxisome proliferator-activated receptor (PPAR) and liver X receptor - retinoid X receptor (LXR-RXR) signaling pathways that control lipid metabolism. Interestingly, several pathways, including VDR/RXR activation, ephrin receptor signaling, and GNRH signaling, were specific to FX and thus discriminated the transcriptomic fingerprints of the two mycotoxins. These results demonstrate that FX induces more potent intestinal inflammation than DON. Moreover, although the mechanisms of toxicity of both mycotoxins are similar in many ways, this study emphasize specific pathways targeted by each mycotoxin, highlighting the need for specific mechanism-based risk assessments of Fusarium mycotoxins.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
- Hôpital d'Instruction des Armées, Camp Guézo, 01BP517, Cotonou, Benin
| | - Juliana Rubira Gerez
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Anne-Marie Cossalter
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
| | - Manon Neves
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
| | - Joëlle Laffitte
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
| | - Claire Naylies
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
| | - Yannick Lippi
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
| | - Martine Kolf-Clauw
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
- Université de Toulouse, Ecole Nationale Vétérinaire (ENVT), Toulouse, France
| | - Ana Paula L Bracarense
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Philippe Pinton
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France
| | - Isabelle P Oswald
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS, F-31027, Toulouse, France.
| |
Collapse
|
27
|
Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedhairy AA, Kaushik NK, Choi EH. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget 2017; 8:33933-33952. [PMID: 28430618 PMCID: PMC5464924 DOI: 10.18632/oncotarget.15422] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/08/2017] [Indexed: 01/19/2023] Open
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungus which causes food contamination, resulting in mycotoxicosis in animals and humans. In particular, trichothecenes mycotoxin produced by genus fusarium is agriculturally more important worldwide due to the potential health hazards they pose. It is mainly metabolized and eliminated after ingestion, yielding more than 20 metabolites with the hydroxy trichothecenes-2 toxin being the major metabolite. Trichothecene is hazardously intoxicating due to their additional potential to be topically absorbed, and their metabolites affect the gastrointestinal tract, skin, kidney, liver, and immune and hematopoietic progenitor cellular systems. Sensitivity to this type of toxin varying from dairy cattle to pigs, with the most sensitive endpoints being neural, reproductive, immunological and hematological effects. The mechanism of action mainly consists of the inhibition of protein synthesis and oxidative damage to cells followed by the disruption of nucleic acid synthesis and ensuing apoptosis. In this review, the possible hazards, historical significance, toxicokinetics, and the genotoxic and cytotoxic effects along with regulatory guidelines and recommendations pertaining to the trichothecene mycotoxin are discussed. Furthermore, various techniques utilized for toxin determination, pathophysiology, prophylaxis and treatment using herbal antioxidant compounds and regulatory guidelines and recommendations are reviewed. The prospects of the trichothecene as potential hazardous agents, decontamination strategies and future perspectives along with plausible therapeutic uses are comprehensively described.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Bhawana Negi
- Department of Molecular Biology and Genetic Engineering, G B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Anupriya Adhikari
- Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar, India
| | | | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
28
|
GC-TOF/MS-based metabolomics approach to study the cellular immunotoxicity of deoxynivalenol on murine macrophage ANA-1 cells. Chem Biol Interact 2016; 256:94-101. [DOI: 10.1016/j.cbi.2016.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022]
|
29
|
Do KH, Park SH, Kim J, Yu M, Moon Y. Ribosome Inactivation Leads to Attenuation of Intestinal Polymeric Ig Receptor Expression via Differential Regulation of Human Antigen R. THE JOURNAL OF IMMUNOLOGY 2016; 197:847-58. [DOI: 10.4049/jimmunol.1502047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
30
|
Falach R, Sapoznikov A, Gal Y, Israeli O, Leitner M, Seliger N, Ehrlich S, Kronman C, Sabo T. Quantitative profiling of the in vivo enzymatic activity of ricin reveals disparate depurination of different pulmonary cell types. Toxicol Lett 2016; 258:11-19. [PMID: 27298272 DOI: 10.1016/j.toxlet.2016.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
The plant-derived toxins ricin and abrin, operate by site-specific depurination of ribosomes, which in turn leads to protein synthesis arrest. The clinical manifestation following pulmonary exposure to these toxins is that of a severe lung inflammation and respiratory insufficiency. Deciphering the pathways mediating between the catalytic activity and the developing lung inflammation, requires a quantitative appreciation of the catalytic activity of the toxins, in-vivo. In the present study, we monitored truncated cDNA molecules which are formed by reverse transcription when a depurinated 28S rRNA serves as template. We found that maximal depurination after intranasal exposure of mice to 2LD50 ricin was reached 48h, where nearly 40% of the ribosomes have been depurinated and that depurination can be halted by post-exposure administration of anti-ricin antibodies. We next demonstrated that the effect of ricin intoxication on different cell types populating the lungs differs greatly, and that outstandingly high levels of damage (80% depurination), were observed in particular for pulmonary epithelial cells. Finally, we found that the magnitude of depurination induced by the related plant-derived toxin abrin, was significantly lower in comparison to ricin, and can be attributed mostly to reduced depurination of pulmonary epithelial cells by abrin. This study provides for the first time vital information regarding the scope and timing of the catalytic performance of ricin and abrin in the lungs of intact animals.
Collapse
Affiliation(s)
- Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Leitner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Nehama Seliger
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
31
|
Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 2014; 6:3406-25. [PMID: 25521494 PMCID: PMC4280541 DOI: 10.3390/toxins6123406] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Kaiyu He
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeff Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA.
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014; 84:1-6. [DOI: 10.1016/j.toxicon.2014.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 09/18/2013] [Accepted: 03/18/2014] [Indexed: 01/24/2023]
|
33
|
Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm 2014; 2014:708193. [PMID: 24523573 PMCID: PMC3910075 DOI: 10.1155/2014/708193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.
Collapse
|
34
|
Wang X, Wang W, Cheng G, Huang L, Chen D, Tao Y, Pan Y, Hao H, Wu Q, Wan D, Liu Z, Wang Y, Yuan Z. High Risk of Embryo-Fetal Toxicity: Placental Transfer of T-2 Toxin and Its Major Metabolite HT-2 Toxin in BeWo Cells. Toxicol Sci 2013; 137:168-78. [DOI: 10.1093/toxsci/kft233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
35
|
Li D, Ye Y, Deng L, Ma H, Fan X, Zhang Y, Yan H, Deng X, Li Y, Ma Y. Gene expression profiling analysis of deoxynivalenol-induced inhibition of mouse thymic epithelial cell proliferation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:557-566. [PMID: 23827195 DOI: 10.1016/j.etap.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced as a secondary metabolite by fungal species. It has been shown that DON has serious toxic effects on many kinds of immune cells. However, the toxic effects on thymic epithelial cells were poorly understood. The purpose of this study is to investigate the gene expression differences for the DON-induced inhibition on the proliferation of mouse thymic epithelial cell line 1 (MTEC1). After the experiments of cell viability, morphological investigation and cell cycle analysis, microarray analysis was carried out. The differentially expressed genes belong to a variety of functional categories, including genes involved in metabolic process, cell cycle, oxidation-reduction process and apoptosis. Our results provide molecular insights into the gene expression differences of DON-induced toxic effects and suggest that p53 signaling pathway may play an important role in the inhibition of MTEC1 cell proliferation.
Collapse
Affiliation(s)
- Daotong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haikuo Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xianbo Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
36
|
Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2012; 217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023]
Abstract
Trichothecenes are sesquiterpenoid mycotoxins commonly found as contaminants in cereal grains and are a major health and food safety concern due to their toxicity to humans and farm animals. Trichothecenes are predominantly produced by the phytopathogenic Fusarium fungus, and in plants they act as a virulence factor aiding the spread of the fungus during disease development. Known for their inhibitory effect on eukaryotic protein synthesis, trichothecenes also induce oxidative stress, DNA damage and cell cycle arrest and affect cell membrane integrity and function in eukaryotic cells. In animals, trichothecenes can be either immunostimulatory or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathway. In plants, trichothecenes induce programmed cell death via production of reactive oxygen species. Recent advances in molecular techniques have led to the elucidation of signal transduction pathways that manifest trichothecene toxicity in eukaryotes. In animals, trichothecenes induce mitogen-activated protein kinase (MAPK) signalling cascades via ribotoxic stress response and/or endoplasmic reticulum stress response. The upstream signalling events that lead to the activation trichothecene-induced ribotoxic stress response are discussed. In plants, trichothecenes exhibit elicitor-like activity leading to the inductions MAPKs and genes involved in oxidative stress, cell death and plant defence response. Trichothecenes might also modulate hormone-mediated defence signalling and abiotic stress signalling in plants.
Collapse
|
38
|
Katika MR, Hendriksen PJ, Shao J, van Loveren H, Peijnenburg A. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights. Toxicol Appl Pharmacol 2012; 264:51-64. [DOI: 10.1016/j.taap.2012.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/30/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022]
|
39
|
Tian J, Yan J, Wang W, Zhong N, Tian L, Sun J, Min Z, Ma J, Lu S. T-2 toxin enhances catabolic activity of hypertrophic chondrocytes through ROS-NF-κB-HIF-2α pathway. Toxicol In Vitro 2012; 26:1106-13. [DOI: 10.1016/j.tiv.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/14/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|
40
|
Mechanisms for ribotoxin-induced ribosomal RNA cleavage. Toxicol Appl Pharmacol 2012; 265:10-8. [PMID: 23022514 DOI: 10.1016/j.taap.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022]
Abstract
The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism.
Collapse
|
41
|
Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense AP, Kolf-Clauw M, Oswald IP. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci 2012; 130:180-90. [PMID: 22859312 DOI: 10.1093/toxsci/kfs239] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intestinal epithelium is the first barrier against food contaminants and is highly sensitive to mycotoxins, especially de oxynivalenol (DON). Consumption of DON-contaminated food is associated with outbreaks of gastroenteritis. In cereals and their byproducts, DON is present together with two acetylated derivatives, 3-ADON and 15-ADON. The aim of this study was to compare the intestinal toxicity of DON and A-DONs, using noncytotoxic doses. The toxicity was assessed using in vitro (intestinal epithelial cell line), ex vivo (intestinal explants), and in vivo (animals exposed to mycotoxin-contaminated diets) models. The effects were studied on cell proliferation, barrier function, and intestinal structure. The mechanism of toxicity was investigated by measuring the expression of the tight junction proteins and of phosphorylated ERK1/2, p38, and JNK, which are effectors of signaling pathway involved in cellular programs including embryogenesis, proliferation, differentiation, and apoptosis. On proliferating cells, 3-ADON was less toxic than DON, which was less toxic than 15-ADON. On differentiated cells, 15-ADON impaired the barrier function, whereas DON and 3-ADON did not have a significant effect. Similarly, ex vivo and in vivo, 15-ADON caused more histological lesions than DON or 3-ADON. At the molecular level, the 15-ADON activated the mitogen-activated protein kinases (MAPK) ERK1/2, p38, and JNK in the intestinal cell line, explants, and the jejunum from exposed animals at lower dose than DON and 3-ADON. Our results show that the higher toxicity of 15-DON is due to its ability to activate the MAPK. Given that cereal-based foods are contaminated with DON and acetylated-DON, the higher toxicity of 15-ADON should be taken into account.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
He K, Zhou HR, Pestka JJ. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol Sci 2012; 127:382-90. [PMID: 22491426 PMCID: PMC3355321 DOI: 10.1093/toxsci/kfs134] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/21/2012] [Indexed: 01/07/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3.
Collapse
Affiliation(s)
- Kaiyu He
- Department of Microbiology and Molecular Genetics
- Center for Integrative Toxicology
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics
- Center for Integrative Toxicology
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
43
|
Abstract
Shiga toxins and ricin are potent inhibitors of protein synthesis. In addition to causing inhibition of protein synthesis, these toxins activate proinflammatory signaling cascades that may contribute to the severe diseases associated with toxin exposure. Treatment of cells with Shiga toxins and ricin have been shown to activate a number of signaling pathways including those associated with the ribotoxic stress response, Nuclear factor kappa B activation, inflammasome activation, the unfolded protein response, mTOR signaling, hemostasis, and retrograde trafficking. In this chapter, we review our current understanding of these signaling pathways as they pertain to intoxication by Shiga toxins and ricin.
Collapse
|
44
|
Gene regulation of intestinal porcine epithelial cells IPEC-J2 is dependent on the site of deoxynivalenol toxicological action. PLoS One 2012; 7:e34136. [PMID: 22506013 PMCID: PMC3323619 DOI: 10.1371/journal.pone.0034136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/22/2012] [Indexed: 01/03/2023] Open
Abstract
The intestinal epithelial cell layer represents the border between the luminal and systemic side of the gut. The decision between absorption and exclusion of substances is the quintessential function of the gut and varies along the gut axis. Consequently, potentially toxic substances may reach the basolateral domain of the epithelial cell layer via blood stream. The mycotoxin deoxynivalenol (DON) is a Fusarium derived secondary metabolite known to enter the blood stream and displaying a striking toxicity on the basolateral side of polarised epithelial cell layers in vitro. Here we analysed potential mechanisms of apical and basolateral DON toxicity reflected in the gene expression. We used the jejunum-derived, polarised intestinal porcine epithelial cell line IPEC-J2 as an in vitro cell culture model. Luminal and systemic DON challenge of the epithelial cell layer was mimicked by a DON application from the apical or basolateral compartment of membrane inserts for 72 h. We compared the genome-wide gene expression of untreated and DON-treated IPEC-J2 cells with the GeneChip® Porcine Genome Array of Affymetrix. Low basolateral DON (200 ng/mL) application triggered 10 times more gene transcripts in comparison to the corresponding apical application (2539 versus 267) despite the intactness of the challenged cell layer as measured by transepithelial electrical resistance. Analysis of the regulated genes by bioinformatic resource DAVID identified several groups of biochemical pathways modulated by concentration and orientation of DON application. Selected genes representing pathways of the cellular metabolism, information processing and structural design were analysed in detail by quantitative PCR. Our findings clearly show that apical and basolateral challenge of epithelial cell layers trigger different gene response profiles paralleled with a higher susceptibility towards basolateral challenge. The evaluation of toxicological potentials of mycotoxins should take this difference in gene regulation dependent on route of application into account.
Collapse
|
45
|
Moon Y. Cellular alterations of mucosal integrity by ribotoxins: Mechanistic implications of environmentally-linked epithelial inflammatory diseases. Toxicon 2012; 59:192-204. [DOI: 10.1016/j.toxicon.2011.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/20/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023]
|
46
|
Bin-Umer MA, McLaughlin JE, Basu D, McCormick S, Tumer NE. Trichothecene mycotoxins inhibit mitochondrial translation--implication for the mechanism of toxicity. Toxins (Basel) 2011; 3:1484-501. [PMID: 22295173 PMCID: PMC3268453 DOI: 10.3390/toxins3121484] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) reduces crop yield and results in contamination of grains with trichothecene mycotoxins. We previously showed that mitochondria play a critical role in the toxicity of a type B trichothecene. Here, we investigated the direct effects of type A and type B trichothecenes on mitochondrial translation and membrane integrity in Saccharomyces cerevisiae. Sensitivity to trichothecenes increased when functional mitochondria were required for growth, and trichothecenes inhibited mitochondrial translation at concentrations, which did not inhibit total translation. In organello translation in isolated mitochondria was inhibited by type A and B trichothecenes, demonstrating that these toxins have a direct effect on mitochondrial translation. In intact yeast cells trichothecenes showed dose-dependent inhibition of mitochondrial membrane potential and reactive oxygen species, but only at doses higher than those affecting mitochondrial translation. These results demonstrate that inhibition of mitochondrial translation is a primary target of trichothecenes and is not secondary to the disruption of mitochondrial membranes.
Collapse
Affiliation(s)
- Mohamed Anwar Bin-Umer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - John E. McLaughlin
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - Susan McCormick
- Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA;
| | - Nilgun E. Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| |
Collapse
|
47
|
Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 2011; 125:382-91. [PMID: 22048643 DOI: 10.1093/toxsci/kfr299] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Identification of aberrant microRNA (miRNA) expression during chemical carcinogen-induced cell transformation will lead to a better understanding of the substantial role of miRNAs in cancer development. To explore whether aberrant miRNAs expression can be used as biomarkers of chemical exposure in risk assessment of chemical carcinogenesis, we analyzed miRNA expression profiles of human bronchial epithelial cells expressing an oncogenic allele of H-Ras (HBER) at different stages of transformation induced by benzo(a)pyrene (BaP) by miRNA array. It revealed 12 miRNAs differentially expressed in HBER cells at both pretransformed and transformed stages. Differentially expressed miRNAs were confirmed in transformed cells and examined in 50 pairs of primary human non-small-cell lung cancer (NSCLC) tissues using real-time PCR. Among these miRNAs, downregulation of miR-638 was found in 68% (34/50) of NSCLC tissues. However, the expression of miR-638 in HBER cells increased upon treatment of BaP in a dose-dependent manner. The expression of miR-638 was also examined in peripheral lymphocytes from 86 polycyclic aromatic hydrocarbons (PAHs)-exposed (PE) workers. We found that the average expression level of miR-638 in peripheral lymphocytes from 86 PE workers increased by 72% compared with control group. The levels of miR-638 were correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) and external levels of PAHs. Overexpression of miR-638 aggravated cell DNA damage induced by BaP, which might be mediated by suppression of breast cancer 1 (BRCA1), one of the target genes of miR-638. In summary, we suggest that miR-638 is involved in the BaP-induced carcinogenesis by targeting BRCA1.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moon Y. Mucosal injuries due to ribosome-inactivating stress and the compensatory responses of the intestinal epithelial barrier. Toxins (Basel) 2011; 3:1263-77. [PMID: 22069695 PMCID: PMC3210458 DOI: 10.3390/toxins3101263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 12/14/2022] Open
Abstract
Ribosome-inactivating (ribotoxic) xenobiotics are capable of using cleavage and modification to damage 28S ribosomal RNA, which leads to translational arrest. The blockage of global protein synthesis predisposes rapidly dividing tissues, including gut epithelia, to damage from various pathogenic processes, including epithelial inflammation and carcinogenesis. In particular, mucosal exposure to ribotoxic stress triggers integrated processes that are important for barrier regulation and re-constitution to maintain gut homeostasis. In the present study, various experimental models of the mucosal barrier were evaluated for their response to acute and chronic exposure to ribotoxic agents. Specifically, this review focuses on the regulation of epithelial junctions, epithelial transporting systems, epithelial cytotoxicity, and compensatory responses to mucosal insults. The primary aim is to characterize the mechanisms associated with the intestinal epithelial responses induced by ribotoxic stress and to discuss the implications of ribotoxic stressors as chemical modulators of mucosa-associated diseases such as ulcerative colitis and epithelial cancers.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Korea.
| |
Collapse
|
49
|
Abstract
Shiga toxins and ricin are ribosome-inactivating proteins which share the property of inhibiting protein synthesis by catalytic inactivation of eukaryotic ribosomes. There is now abundant evidence that Shiga toxins and ricin induce apoptosis in epithelial, endothelial, lymphoid and myeloid cells in vitro, and in multiple organs in animals when administered these toxins. Many studies suggest that protein synthesis inhibition and apoptosis induction mediated by Shiga toxins and ricin may be dissociated. In some cells, non-enzymatic toxin components (Shiga toxin B-subunits, ricin B-chain) appear capable of inducing apoptosis. The toxins appear capable of activating components of both the extrinsic or death receptor-mediated and intrinsic or mitochondrial-mediated pathways of apoptosis induction. Although the toxins have been shown to be capable of activating several cell stress response pathways, the precise signaling mechanisms by which Shiga toxins and ricin induce apoptosis remain to be fully characterized. This chapter provides an overview of studies describing Shiga toxin- and ricin-induced apoptosis and reviews evidence that signaling through the ribotoxic stress response and the unfolded protein response may be involved in apoptosis induction in some cell types.
Collapse
|
50
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|