1
|
El Brouzi MY, Adadi N, Lamtai M, Boulahfa H, Zghari O, Fath N, Rezqaoui A, El Hamzaoui A, Njimat S, El Hessni A, Mesfioui A. Effects of Nickel Bioaccumulation on Hematological, Biochemical, Immune Responses, Neuroinflammatory, Oxidative Stress Parameters, and Neurotoxicity in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04528-x. [PMID: 39891830 DOI: 10.1007/s12011-025-04528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Nickel (Ni) exposure is linked to numerous health issues, including dermatitis, immunotoxicity, and cancer. Emerging evidence suggests Ni may cross the blood-brain barrier, accumulating in the brain and causing neuroinflammation, oxidative stress, and neuronal apoptosis. Herein, we investigated the effect of Ni exposure through the intraperitoneal route, studying the Ni effect in subacute and chronic toxicity, on various health parameters in Wistar rats. Rats were randomly divided into four groups (n = 10 per group): two groups received a daily intraperitoneal injection of NiCl₂ at a dose of 0.25 mg/kg for subacute (21 days) or chronic (60 days) exposure periods, while the other two groups were treated with NaCl solution (0.9%) as a control for equivalent durations. The study assessed behavioral, biochemical, hematological, immunological, neurobiochemical, and histopathological effects over 21 and 60 days. Neurobehavioral tests, blood and tissue analyses, and organ examinations were conducted. This study demonstrates that Ni bioaccumulation in subacute and chronic exposure has significant health impacts in Wistar rats, including hematological, immunological, biochemical, AchE activity, neuroinflammatory, oxidative stress, and neurobehavioral changes. Chronic exposure results in higher Ni accumulation, particularly in the brain, causing neurotoxicity, inflammation, and behavioral disorders such as anxiety, depression, and memory impairment. The findings highlight the importance of limiting Ni exposure to prevent adverse health effects.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.
| | - Najlae Adadi
- Higher Institute of Nursing and Health Professions of Dakhla, Dakhla, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Hafsa Boulahfa
- Laboratory of Biology and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
- Physiology and Pathophysiology Laboratory, Department of Biology, Faculty of Sciences, Mohamed V University, Rabat, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Smail Njimat
- Laboratory of Materials, Electrochemistry and Environment, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
El-Banna MH, Abdelgawad MH, Eltahawy N, Algeda FR, Elsayed TM. Hematological and neurological impact studies on the exposure to naturally occurring radioactive materials. Appl Radiat Isot 2024; 211:111424. [PMID: 38970986 DOI: 10.1016/j.apradiso.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Naturally Occurring Radioactive Materials (NORM) contribute to everyone's natural background radiation dose. The technologically advanced activities of the gas and oil sectors produce considerable amounts of radioactive materials as industrial by-products or waste products. The goal of the current study is to estimate the danger of long-term liability to Technologically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) on blood indices, neurotransmitters, oxidative stress markers, and β-amyloid in the cerebral cortex of rats' brains. Twenty adult male albino rats were divided into two equal groups (n = 10): control and irradiated. Irradiated rats were exposed to a total dose of 0.016 Gy of TE-NORM as a whole-body chronic exposure over a period of two months. It should be ''The results showed no significant changes in RBC count, Hb concentration, hematocrit percentage (HCT%), and Mean Corpuscular Hemoglobin Concentration (MCHC). However, there was a significant increase in the Mean Corpuscular Volume of RBCs (MCV) and a significant decrease in cell distribution width (RDW%) compared to the control. Alteration in neurotransmitters is noticeable by a significant increase in glutamic acid and significant decreases in serotonin and dopamine. Increased lipid peroxidation, decreased glutathione content, superoxide dismutase, catalase, and glutathione peroxidase activities indicating oxidative stress were accompanied by increased β-amyloid in the cerebral cortex of rats' brains. The findings of the present study showed that chronic radiation liability has some harmful effects, that may predict the risks of future health problems in occupational radiation exposure in the oil industries. Therefore, the control of exposure and application of sample dosimetry is recommended for health and safety.
Collapse
Affiliation(s)
- Mohamed H El-Banna
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud H Abdelgawad
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Noaman Eltahawy
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma R Algeda
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Elsayed
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Iijima Y, Miki R, Takasugi N, Fujimura M, Uehara T. Characterization of pathological changes in the olfactory system of mice exposed to methylmercury. Arch Toxicol 2024; 98:1163-1175. [PMID: 38367039 PMCID: PMC10944439 DOI: 10.1007/s00204-024-03682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Methylmercury (MeHg) is a well-known environmental neurotoxicant that causes severe brain disorders such as Minamata disease. Although some patients with Minamata disease develop olfactory dysfunction, the underlying pathomechanism is largely unknown. We examined the effects of MeHg on the olfactory system using a model of MeHg poisoning in which mice were administered 30 ppm MeHg in drinking water for 8 weeks. Mice exposed to MeHg displayed significant mercury accumulation in the olfactory pathway, including the nasal mucosa, olfactory bulb, and olfactory cortex. The olfactory epithelium was partially atrophied, and olfactory sensory neurons were diminished. The olfactory bulb exhibited an increase in apoptotic cells, hypertrophic astrocytes, and amoeboid microglia, mainly in the granular cell layer. Neuronal cell death was observed in the olfactory cortex, particularly in the ventral tenia tecta. Neuronal cell death was also remarkable in higher-order areas such as the orbitofrontal cortex. Correlation analysis showed that neuronal loss in the olfactory cortex was strongly correlated with the plasma mercury concentration. Our results indicate that MeHg is an olfactory toxicant that damages the central regions involved in odor perception. The model described herein is useful for analyzing the mechanisms and treatments of olfactory dysfunction in MeHg-intoxicated patients.
Collapse
Affiliation(s)
- Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Ryohei Miki
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, 867‑0008, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan.
| |
Collapse
|
4
|
Hayoz S, Jia C, Hegg CC. Constitutive and evoked release of ATP in adult mouse olfactory epithelium. Open Life Sci 2024; 19:20220811. [PMID: 38250473 PMCID: PMC10795008 DOI: 10.1515/biol-2022-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
In adult olfactory epithelium (OE), ATP plays a role in constant cell turnover and post-injury neuroregeneration. We previously demonstrated that constitutive and ATP-evoked ATP release are present in neonatal mouse OE and underlie continuous cell turn-over and post-injury neuroregeneration, and that activation of purinergic P2X7 receptors is involved in the evoked release. We hypothesized that both releases are present in adult mouse OE. To study the putative contribution of olfactory sensory neurons to ATP release, we used olfactory sensory neuronal-like OP6 cells derived from the embryonic olfactory placode cells. Calcium imaging showed that OP6 cells and primary adult OE cell cultures express functional purinergic receptors. We monitored ATP release from OP6 cells and whole adult OE turbinates using HEK cells as biosensors and luciferin-luciferase assays. Constitutive ATP release occurs in OP6 cells and whole adult mouse OE turbinates, and P2X7 receptors mediated evoked ATP release occurs only in turbinates. The mechanisms of ATP release described in the present study might underlie the constant cell turn-over and post-injury neuroregeneration present in adult OE and thus, further studies of these mechanisms are warranted as it will improve our knowledge of OE tissue homeostasis and post-injury regeneration.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | - Colleen Cosgrove Hegg
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
5
|
Mohan K, Omar BJ, Chacham S, Bharti A. Perinatal Exposure to Trace Elements: The Dubious Culprit of Autistic Spectrum Disorder in Children. Curr Pediatr Rev 2024; 21:18-28. [PMID: 37937576 DOI: 10.2174/0115733963251295231031102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023]
Abstract
There is evidence that few trace elements in the environment work as hazardous materials in terms of their exposure in the perinatal period, causing autistic spectrum disorder (ASD) in children, and avoiding these exposures in the environment can reduce the number of new cases. This perspective study provides preliminary evidence to consider a few trace elements as culprits for ASD. More studies with larger cohorts are needed, but meanwhile, as per available evidence, exposure to these hazardous materials must be warranted during pregnancy and early stages of life.
Collapse
Affiliation(s)
- Kriti Mohan
- Department of Pediatrics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Swathi Chacham
- Department of Pediatrics, All India Institute of Medical Sciences, Bibinagar, India
| | - Ajay Bharti
- Department of Orthopedics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
6
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Patrick-Iwuanyanwu K, Thuppil V, Orisakwe OE. Ni and Al mixture amplifies cerebellar oxido-inflammatory responses, down regulates AChE and BDNF/NGF levels in motor impairment in male albino rats. J Trace Elem Med Biol 2023; 80:127318. [PMID: 37864919 DOI: 10.1016/j.jtemb.2023.127318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Aluminum and nickel are potent neurotoxicants to which humans are constantly exposed. Previous studies have demonstrated that these two metals can affect the motor system, but their effects on the cerebellum, a central nervous system region with the highest number of neurons, have remained largely unexplored. Therefore, we conducted a study to investigate the adverse effects of Al, Ni, and Al+Ni in vivo. METHODS In our study, seven male Sprague Dawley rats per group were orally exposed to deionized water, 0.2 mg/kg of Ni, 1 mg/kg of Al, and 0.2 mg/kg of Ni + 1 mg/kg of Al (as a binary heavy metals mixture; HMM), respectively. RESULTS Ni, Al, and HMM exposed rats accumulated higher levels of Al and Ni compared to controls, and HMM treated animals had higher levels of Ca and Fe in the cerebellum (p < 0.05). Malondialdehyde (MDA) levels were significantly (p < 0.05) higher in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) activities were significantly (p < 0.05) reduced in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Ni, Al, and HMM significantly (p < 0.05) shortened the length of time of the grip in comparison to the control. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels were significantly decreased in the nickel, Al, and heavy metal mixture groups compared with the control group. Moreover, there was a significant decrease in the activity of acetylcholinesterase (AChE) and a increase in cyclooxygenase-2 (COX-2) activity in the Ni, Al, and HMM treated groups compared to the control group. CONCLUSION HMM exposed animals had significantly poorer performance in the Rotarod test (p < 0.05) than controls. Al and Ni induced impairment of cerebellar function at various levels.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Kingsley Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | | | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria.
| |
Collapse
|
7
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Orisakwe OE. Nickel and aluminium mixture elicit memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus of male albino rats. Curr Res Toxicol 2023; 5:100129. [PMID: 37841055 PMCID: PMC10569962 DOI: 10.1016/j.crtox.2023.100129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.
Collapse
Affiliation(s)
- Chidinma P. Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N. Orish
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| |
Collapse
|
8
|
Butowt R, Bilinska K, von Bartheld CS. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46:75-90. [PMID: 36470705 PMCID: PMC9666374 DOI: 10.1016/j.tins.2022.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The mechanisms of olfactory dysfunction in COVID-19 are still unclear. In this review, we examine potential mechanisms that may explain why the sense of smell is lost or altered. Among the current hypotheses, the most plausible is that death of infected support cells in the olfactory epithelium causes, besides altered composition of the mucus, retraction of the cilia on olfactory receptor neurons, possibly because of the lack of support cell-derived glucose in the mucus, which powers olfactory signal transduction within the cilia. This mechanism is consistent with the rapid loss of smell with COVID-19, and its rapid recovery after the regeneration of support cells. Host immune responses that cause downregulation of genes involved in olfactory signal transduction occur too late to trigger anosmia, but may contribute to the duration of the olfactory dysfunction.
Collapse
Affiliation(s)
- Rafal Butowt
- Global Consortium of Chemosensory Research - Poland, Przybory Str 3/2, 85-791 Bydgoszcz, Poland
| | - Katarzyna Bilinska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland.
| | - Christopher S von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA.
| |
Collapse
|
9
|
Verma AK, Zheng J, Meyerholz DK, Perlman S. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight 2022; 7:e160277. [PMID: 36378534 PMCID: PMC9869979 DOI: 10.1172/jci.insight.160277] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of olfactory function has been commonly reported in SARS-CoV-2 infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.
Collapse
Affiliation(s)
| | - Jian Zheng
- Department of Microbiology and Immunology and
| | | | | |
Collapse
|
10
|
Alves de Sousa F, Tarrio J, Sousa Machado A, Costa JR, Pinto C, Nóbrega Pinto A, Moreira B, Meireles L. Olfactory Cleft Length: A Possible Risk Factor for Persistent Post-COVID-19 Olfactory Dysfunction. ORL J Otorhinolaryngol Relat Spec 2022; 85:119-127. [PMID: 36318894 PMCID: PMC9747724 DOI: 10.1159/000527141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION To date, little is known about predisposing factors for persistent COVID-19-induced olfactory dysfunction (pCIOD). The objective was to determine whether olfactory cleft (OC) measurements associate with pCIOD risk. MATERIAL AND METHODS Three subgroups were recruited: group A included patients with pCIOD, group B included patients without olfactory dysfunction following SARS-CoV-2 infection (ntCIOD), and group C consisted in controls without past history of SARS-CoV-2 infection (noCOVID-19). Olfactory perception threshold (OPT) and visual analog scale for olfactory impairment (VAS-olf) were obtained. OC measurements were obtained through computed tomography scans. Results were subsequently compared. RESULTS A total of 55 patients with a mean age of 39 ± 10 years were included. OPT was significantly lower in pCIOD patients (group A: 4.2 ± 2.1 vs. group B: 12.3 ± 1.8 and group C: 12.2 ± 1.5, p < 0.001). VAS-olf was significantly higher in pCIOD (group A: 6 ± 2.6 vs. group B: 1.7 ± 1.6 and group C: 1.6 ± 1.5, p < 0.001). OC length was significantly higher in group A (42.8 ± 4.6) compared to group B (39.7 ± 3.4, p = 0.047) and C (39.8 ± 4, p = 0.037). The odd of pCIOD occurring after COVID-19 infection increased by 21% (95% CI [0.981, 1.495]) for a one unit (mm) increase in OC length. The odd of pCIOD occurring was 6.9 times higher when OC length >40 mm. CONCLUSION Longer OC may be a predisposing factor for pCIOD. This study is expected to encourage further research on OC morphology and its impact on olfactory disorders.
Collapse
Affiliation(s)
- Francisco Alves de Sousa
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Tarrio
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Neurorradiology Department, Hospital Central do Funchal Dr. Nélio Mendonça, Funchal, Portugal
| | - André Sousa Machado
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Joana Raquel Costa
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Catarina Pinto
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Nóbrega Pinto
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Bruno Moreira
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Meireles
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
11
|
Shahbaz MA, De Bernardi F, Alatalo A, Sachana M, Clerbaux LA, Muñoz A, Parvatam S, Landesmann B, Kanninen KM, Coecke S. Mechanistic Understanding of the Olfactory Neuroepithelium Involvement Leading to Short-Term Anosmia in COVID-19 Using the Adverse Outcome Pathway Framework. Cells 2022; 11:3027. [PMID: 36230989 PMCID: PMC9563945 DOI: 10.3390/cells11193027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022] Open
Abstract
Loss of the sense of smell (anosmia) has been included as a COVID-19 symptom by the World Health Organization. The majority of patients recover the sense of smell within a few weeks postinfection (short-term anosmia), while others report persistent anosmia. Several studies have investigated the mechanisms leading to anosmia in COVID-19; however, the evidence is scattered, and the mechanisms remain poorly understood. Based on a comprehensive review of the literature, we aim here to evaluate the current knowledge and uncertainties regarding the mechanisms leading to short-term anosmia following SARS-CoV-2 infection. We applied an adverse outcome pathway (AOP) framework, well established in toxicology, to propose a sequence of measurable key events (KEs) leading to short-term anosmia in COVID-19. Those KEs are (1) SARS-CoV-2 Spike proteins binding to ACE-2 expressed by the sustentacular (SUS) cells in the olfactory epithelium (OE); (2) viral entry into SUS cells; (3) viral replication in the SUS cells; (4) SUS cell death; (5) damage to the olfactory sensory neurons and the olfactory epithelium (OE). This AOP-aligned approach allows for the identification of gaps where more research should be conducted and where therapeutic intervention could act. Finally, this AOP gives a frame to explain several disease features and can be linked to specific factors that lead to interindividual differences in response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Francesca De Bernardi
- Division of Otorhinolaryngology, Department of Biotechnologies and Life Sciences, University of Insubria, Ospedale di Circolo e Fondazione Macchi, 21100 Varese, Italy
| | - Arto Alatalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Cooperation and Development (OECD), 75775 Paris, France
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | - Surat Parvatam
- Centre for Predictive Human Model Systems, Atal Incubation Centre-Centre for Cellular and Molecular Biology (AIC-CCMB), Habsiguda, Hyderabad 500039, India
| | | | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| |
Collapse
|
12
|
Sousa FAD, Machado AS, da Costa JC, Silva AC, Pinto AN, Coutinho MB, Meireles L, Sousa CAE. Tailored Approach for Persistent Olfactory Dysfunction After SARS-CoV-2 Infection: A Pilot Study. Ann Otol Rhinol Laryngol 2022; 132:657-666. [PMID: 35822286 DOI: 10.1177/00034894221111093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE So far, no original studies explored non-randomized, standardized protocols for COVID-19 associated olfactory dysfunction. The main objective was to determine the efficacy of a new protocol for post-COVID olfactopathy while assessing the benefit of adding adjuvant therapies to olfactory training. METHODS Patients suffering from long-lasting post-COVID-19 olfactory dysfunction were evaluated. A non-randomized protocol based on individual nasal endoscopy findings and patient's preferences was applied. Patients were assigned for olfactory training alone or olfactory training + adjuvant therapy. Participants performed olfactory objective and subjective evaluations at first consultation and 3 months after treatment, and results were compared. RESULTS A total of 47 patients were enrolled. All groups showed significant improvement in olfactory thresholds at 3-month follow-up suggesting protocol effectiveness (olfactory training group alone showed a mean threshold difference of 2.9, P < .001; Olfactory training + Topical Corticosteroid showed a mean threshold difference of 4, P = .006; Olfactory training + Topical Corticosteroid + Vitamin B complex showed a mean threshold difference of 4.4, P = .006; Olfactory training + Intranasal Vitamin A and E showed a mean threshold difference of 4.4, P < .001). Olfactory training alone showed lower mean olfactory threshold improvement, when compared to patients undergoing olfactory training + adjuvant therapy (olfactory training alone mean improvement 2.9 ± 2.3 vs olfactory training + adjuvants mean improvement 4.3 ± 2.458, P = .03). CONCLUSIONS This is one of the first studies to demonstrate results in the treatment of post-COVID-19 persistent olfactory impairment. A customized approach based on endoscopy findings and patient's preferences may be a valid option for the management of persistent post-COVID-19 olfactory disorder. Adjuvant therapy could be considered in addition to olfactory training, but further studies are needed in order to confirm their effectiveness in this setting. LEVEL OF EVIDENCE 2c (outcomes research).
Collapse
Affiliation(s)
- Francisco Alves de Sousa
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - André Sousa Machado
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Joana Carvalho da Costa
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Costa Silva
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Nóbrega Pinto
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Miguel Bebiano Coutinho
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Meireles
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Cecília Almeida E Sousa
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
13
|
Ojha P, Dixit A. Olfactory training for Olfactory dysfunction in COVID-19: A promising mitigation amidst looming neurocognitive sequelae of the pandemic. Clin Exp Pharmacol Physiol 2022; 49:462-473. [PMID: 35090056 DOI: 10.1111/1440-1681.13626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022]
Abstract
Olfactory dysfunction (OD) is a recognized symptom of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is independently associated with neurodegenerative disorders. Moreover, the central nervous system manifestations in patients infected with the coronavirus -2019 (COVID-19) have demonstrated cognitive decline and neuropsychiatric manifestations. Hence, OD in COVID -19 necessitates perusal of its' mechanism and available treatment options to avert possible development of neurocognitive sequelae of the pandemic. The article presents a literature review organized from the published information about olfactory training (OT) for OD during COVID-19. The methodology comprised retrieval of available literature from database searches and subsequent scrutinization of relevant information. Inferentially, Injury to the sustentacular cells, possessing angiotensin-converting enzyme 2 (ACE-2) receptors, is an important mechanism causing OD in COVID-19. OD may be prolonged in severe cases of anosmia predisposing to neurodegenerative and cognitive impairment in COVID-19 infection. OT demonstrates an effective treatment for OD based on human and animal-derived evidence through recent studies. It curtails the progression of OD, besides inducing neural rearrangement and changes in functional connectivity in patients receiving OT. Additionally, contemporary reports support that the administration of OT for COVID-induced anosmia is effective and encompasses no significant adverse effects. The present review highlights the prominence of olfactory training as a recommended intervention for OD in COVID-19. This review can guide the clinicians in curbing neurological repercussions of COVID besides enhancing cognitive rehabilitation through olfactory training.
Collapse
Affiliation(s)
- Pooja Ojha
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Abhinav Dixit
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
14
|
Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist 2021; 27:582-603. [PMID: 32914699 PMCID: PMC7488171 DOI: 10.1177/1073858420956905] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent months it has emerged that the novel coronavirus-responsible for the COVID-19 pandemic-causes reduction of smell and taste in a large fraction of patients. The chemosensory deficits are often the earliest, and sometimes the only signs in otherwise asymptomatic carriers of the SARS-CoV-2 virus. The reasons for the surprisingly early and specific chemosensory dysfunction in COVID-19 are now beginning to be elucidated. In this hypothesis review, we discuss implications of the recent finding that the prevalence of smell and taste dysfunction in COVID-19 patients differs between populations, possibly because of differences in the spike protein of different virus strains or because of differences in the host proteins that enable virus entry, thus modifying infectivity. We review recent progress in defining underlying cellular and molecular mechanisms of the virus-induced anosmia, with a focus on the emerging crucial role of sustentacular cells in the olfactory epithelium. We critically examine the current evidence whether and how the SARS-CoV-2 virus can follow a route from the olfactory epithelium in the nose to the brain to achieve brain infection, and we discuss the prospects for using the smell and taste dysfunctions seen in COVID-19 as an early and rapid diagnostic screening tool.
Collapse
Affiliation(s)
- Rafal Butowt
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Department of Anatomy, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Christopher S. von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
15
|
AlMatrouk A, Lemons K, Ogura T, Lin W. Modification of the Peripheral Olfactory System by Electronic Cigarettes. Compr Physiol 2021; 11:2621-2644. [PMID: 34661289 DOI: 10.1002/cphy.c210007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electronic cigarettes (e-cigs) are used by millions of adolescents and adults worldwide. Commercial e-liquids typically contain flavorants, propylene glycol, and vegetable glycerin with or without nicotine. These chemical constituents are detected and evaluated by chemosensory systems to guide and modulate vaping behavior and product choices of e-cig users. The flavorants in e-liquids are marketing tools. They evoke sensory percepts of appealing flavors through activation of chemical sensory systems to promote the initiation and sustained use of e-cigs. The vast majority of flavorants in e-liquids are volatile odorants, and as such, the olfactory system plays a dominant role in perceiving these molecules that enter the nasal cavity either orthonasally or retronasally during vaping. In addition to flavorants, e-cig aerosol contains a variety of by-products generated through heating the e-liquids, including odorous irritants, toxicants, and heavy metals. These harmful substances can directly and adversely impact the main olfactory epithelium (MOE). In this article, we first discuss the olfactory contribution to e-cig flavor perception. We then provide information on MOE cell types and their major functions in olfaction and epithelial maintenance. Olfactory detection of flavorants, nicotine, and odorous irritants and toxicants are also discussed. Finally, we discuss the cumulated data on modification of the MOE by flavorant exposure and toxicological impacts of formaldehyde, acrolein, and heavy metals. Together, the information presented in this overview may provide insight into how e-cig exposure may modify the olfactory system and adversely impact human health through the alteration of the chemosensory factor driving e-cig use behavior and product selections. © 2021 American Physiological Society. Compr Physiol 11:2621-2644, 2021.
Collapse
Affiliation(s)
- Abdullah AlMatrouk
- General Department of Criminal Evidence, Forensic Laboratories, Ministry of Interior, Farwaniyah, Kuwait.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kayla Lemons
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
16
|
El Brouzi MY, Lamtai M, Zghari O, Ouakki S, Azizoun I, El Hessni A, Mesfioui A, Ouichou A. Intrahippocampal Effects of Nickel Injection on the Affective and Cognitive Response in Wistar Rat: Potential Role of Oxidative Stress. Biol Trace Elem Res 2021; 199:3382-3392. [PMID: 33230633 DOI: 10.1007/s12011-020-02457-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The present study focused on affective and cognitive behaviors in male Wistar rats, following direct and unique exposure to nickel chloride (NiCl2), as well as the possible involvement of oxidative stress. The rats were exposed to NiCl2 (300 μM), by intracerebral administration of 2 μL of this metal at the right hippocampus, using the stereotaxic approach. Five days after the surgery, a battery of behavioral tests was performed, including the open-field test (OFT) and elevated plus maze test (EPM) to assess the state of anxiety-like behavior and forced swimming test (FST) for depressive-like behavior. Y-maze and Morris Water Maze (MWM) were used to evaluate working memory and spatial learning. Thereafter, oxidative stress markers of the hippocampus were evaluated. The results confirm that NiCl2 exerts anxiogenic effects in both anxiety tests and depressogenic effects in the FST. In addition, MWM and Y-maze data show that NiCl2 causes memory and spatial learning disorders. The biochemical assay results showed that intrahippocampal injection of NiCl2 increased the levels of nitric oxide and lipid peroxidation (p < 0.001), while the activities of catalase and superoxide dismutase were significantly decreased in the hippocampus (p < 0.01). Overall, these results suggest that NiCl2 causes affective and cognitive disorders and oxidative stress in rats.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco.
| | - Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Ibrahim Azizoun
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| |
Collapse
|
17
|
Zhou C, Liu M, Mei X, Li Q, Zhang W, Deng P, He Z, Xi Y, Tong T, Pi H, Lu Y, Chen C, Zhang L, Yu Z, Zhou Z, He M. Histone hypoacetylation contributes to neurotoxicity induced by chronic nickel exposure in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147014. [PMID: 34088129 DOI: 10.1016/j.scitotenv.2021.147014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) is a heavy metal that is both an environmental pollutant and a threat to human health. However, the effects of Ni on the central nervous system in susceptible populations have not been well established. In the present study, the neurotoxicity of Ni and its underlying mechanism were investigated in vivo and in vitro. Ni exposure through drinking water (10 mg Ni/L, 12 weeks) caused learning and memory impairment in mice. Reduced dendrite complexity was observed in both Ni-exposed mouse hippocampi and Ni-treated (200 μM, 72 h) primary cultured hippocampal neurons. The levels of histone acetylation, especially at histone H3 lysine 9 (H3K9ac), were reduced in Ni-exposed mouse hippocampi and cultured neurons. RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing analyses revealed that H3K9ac-modulated gene expression were downregulated. Treatment with sodium butyrate, a histone deacetylase inhibitor, attenuated Ni-induced H3K9 hypoacetylation, neural gene downregulation and dendrite complexity reduction in cultured neurons. Sodium butyrate also restored Ni-induced memory impairment in mice. These results indicate that Ni-induced H3K9 hypoacetylation may be a contributor to the neurotoxicity of Ni. The finding that Ni disturbs histone acetylation in the nervous system may provide new insight into the health risk of chronic Ni exposure.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Mengyu Liu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China; Department of Medical Laboratory, General Hospital of the Central Theater Command of the Chinese People's Liberation Army, 430070 Wuhan, People's Republic of China
| | - Xiang Mei
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Qian Li
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University, 400037 Chongqing, People's Republic of China
| | - Wenjuan Zhang
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Zhixin He
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Yu Xi
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | - Tong Tong
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China.
| | - Mindi He
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Ijomone OM, Aluko OM, Okoh COA, Ebokaiwe AP. N ω-nitro-L-arginine, a nitric oxide synthase inhibitor, attenuates nickel-induced neurotoxicity. Drug Chem Toxicol 2021; 45:2202-2211. [PMID: 34013798 DOI: 10.1080/01480545.2021.1917382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The various mediums of exposure to nickel (Ni) compounds have raised enormous public health concerns, as it has been illustrated to exert toxic effects in biological organs, including the brain. We have previously implicated the involvement of elevated nitric oxide (NO) in Ni-induced oxidative stress in the brain. Hence, the present study investigated the ameliorative potential of Nω-nitro-L-arginine (L-NA), a NO synthase inhibitor, following Ni-induced neurotoxicity. Adult male rats were divided into four groups; control (normal saline), 10 mg/kg Ni chloride (NiCl2) only, 1 mg/kg L-NA, or 2 mg/kg L-NA co-administered with NiCl2. The administration was via daily intraperitoneal injections for three weeks. Neurobehavioural assessments performed thereafter ascertained short-term spatial memory and anxiety. Furthermore, histological evaluations of the cortex, hippocampus, and striatum were carried out using routine hematoxylin and eosin technique, while the phosphotungstic acid hematoxylin method was used to express the degree of astrogliosis. Biochemical analysis of NO levels was examined along with other oxidative stress markers (superoxide dismutase, catalase, glutathione, glutathione S transferase, glutathione peroxidase, myeloperoxidase, and lipid peroxidation). The results illustrated altered behavioral responses, a higher population of degenerating neurons, and astrocytes in the NiCl2 group. There was also an elevation in the NO level and a corresponding reduction in antioxidant activities. However, these debilitating changes were ameliorated in the L-NA treated groups. These results demonstrate an association between alterations in NO synthesis pathway and Ni neurotoxicity, which may render neuronal cells susceptible to damage by oxidative stress. This may yet be another mechanism and useful therapeutic marker in deciphering Ni-induced neurotoxicity.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Comfort O A Okoh
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Azubuike P Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Abakaliki, Nigeria
| |
Collapse
|
19
|
Goyak KO, Lewis RJ. Application of adverse outcome pathway networks to integrate mechanistic data informing the choice of a point of departure for hydrogen sulfide exposure limits. Crit Rev Toxicol 2021; 51:193-208. [PMID: 33905294 DOI: 10.1080/10408444.2021.1897085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acute exposure to hydrogen sulfide initiates a series of hallmark biological effects that occur progressively at increasing exposure levels: odor perception, conjunctivitis, olfactory paralysis, "knockdown," pulmonary edema, and apnea. Although effects of exposure to high concentrations of hydrogen sulfide are clear, effects associated with chronic, low-level exposure in humans is under debate, leading to uncertainty in the critical effect used in regulatory risk assessments addressing low dose exposures. This study integrates experimental animal, observational epidemiology, and occupational exposure evidence by applying a pathway-based approach. A hypothesized adverse outcome pathway (AOP) network was developed from 34 studies, composed of 4 AOPs sharing 1 molecular initiating events (MIE) and culminating in 4 adverse outcomes. A comparative assessment of effect levels and weight of evidence identified an AOP leading to a biologically-plausible, low-dose outcome relative to the other outcomes (nasal lesions, 30 ppm versus olfactory paralysis, >100 ppm; neurological effects, >80 ppm; pulmonary edema, >80 ppm). This AOP (i.e. AOP1) consists of the following key events: cytochrome oxidase inhibition (>10 ppm), neuronal cell loss (>30 ppm), and olfactory nasal lesions (defined as both neuronal cell loss and basal cell hyperplasia; >30 ppm) in rodents. The key event relationships in this pathway were supported by moderate empirical evidence and have high biological plausibility due to known mechanistic understanding and consistency in observations for diverse chemicals.
Collapse
Affiliation(s)
- Katy O Goyak
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | | |
Collapse
|
20
|
Zeng M, Wang DY, Mullol J, Liu Z. Chemosensory Dysfunction in Patients with COVID-19: What Do We Learn from the Global Outbreak? Curr Allergy Asthma Rep 2021; 21:6. [PMID: 33537862 PMCID: PMC7857344 DOI: 10.1007/s11882-020-00987-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Chemosensory dysfunction in the patients with COVID-19 has been reported frequently in the studies from different regions of the world. However, the prevalence of smell and/or taste disorders presents significant ethnic and geographic variability. In addition, the pathogenesis of chemosensory dysfunction remains unclarified. RECENT FINDINGS This is a narrative review on the recent state of the prevalence, mechanism, and diagnostic and therapeutic strategy of chemosensory dysfunction in COVID-19 patients during the global pandemic. The chemosensory dysfunction was analysis based on recent studies, which either used questionnaires, Likert scales (0-10), or smell tests to estimate the smell and taste dysfunction. The ethnic and geographic difference of the prevalence of smell and/or taste disorders and the potential underlying mechanisms have been discussed. Several suggestions on the diagnosis and treatment of COVID-19 patients with smell and taste disorders were summarized for the physicians. This review provides a comprehensive overview of the current studies regarding the chemosensory dysfunction during the COVID-19 worldwide outbreak.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joaquim Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Catalonia, Spain
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
21
|
Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V, Egervari K, Lobrinus JA, Landis BN, Carleton A, Rodriguez I. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience 2020; 23:101839. [PMID: 33251489 PMCID: PMC7685946 DOI: 10.1016/j.isci.2020.101839] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Reports indicate an association between COVID-19 and anosmia, as well as the presence of SARS-CoV-2 virions in the olfactory bulb. To test whether the olfactory neuroepithelium may represent a target of the virus, we generated RNA-seq libraries from human olfactory neuroepithelia, in which we found substantial expression of the genes coding for the virus receptor angiotensin-converting enzyme-2 (ACE2) and for the virus internalization enhancer TMPRSS2. We analyzed a human olfactory single-cell RNA-seq dataset and determined that sustentacular cells, which maintain the integrity of olfactory sensory neurons, express ACE2 and TMPRSS2. ACE2 protein was highly expressed in a subset of sustentacular cells in human and mouse olfactory tissues. Finally, we found ACE2 transcripts in specific brain cell types, both in mice and humans. Sustentacular cells thus represent a potential entry door for SARS-CoV-2 in a neuronal sensory system that is in direct connection with the brain.
Collapse
Affiliation(s)
- Leon Fodoulian
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Joël Tuberosa
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Daniel Rossier
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Madlaina Boillat
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Véronique Pauli
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Service of Clinical Pathology, Department of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Johannes A. Lobrinus
- Service of Clinical Pathology, Department of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Basile N. Landis
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology, Head and Neck Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| |
Collapse
|
22
|
Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V, Egervari K, Lobrinus JA, Landis BN, Carleton A, Rodriguez I. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience 2020; 23:101839. [PMID: 33251489 DOI: 10.1101/2020.03.31.013268] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023] Open
Abstract
Reports indicate an association between COVID-19 and anosmia, as well as the presence of SARS-CoV-2 virions in the olfactory bulb. To test whether the olfactory neuroepithelium may represent a target of the virus, we generated RNA-seq libraries from human olfactory neuroepithelia, in which we found substantial expression of the genes coding for the virus receptor angiotensin-converting enzyme-2 (ACE2) and for the virus internalization enhancer TMPRSS2. We analyzed a human olfactory single-cell RNA-seq dataset and determined that sustentacular cells, which maintain the integrity of olfactory sensory neurons, express ACE2 and TMPRSS2. ACE2 protein was highly expressed in a subset of sustentacular cells in human and mouse olfactory tissues. Finally, we found ACE2 transcripts in specific brain cell types, both in mice and humans. Sustentacular cells thus represent a potential entry door for SARS-CoV-2 in a neuronal sensory system that is in direct connection with the brain.
Collapse
Affiliation(s)
- Leon Fodoulian
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Joël Tuberosa
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Daniel Rossier
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Madlaina Boillat
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Véronique Pauli
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Service of Clinical Pathology, Department of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Johannes A Lobrinus
- Service of Clinical Pathology, Department of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Basile N Landis
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology, Head and Neck Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Yubolphan R, Phuagkhaopong S, Sangpairoj K, Sibmooh N, Power C, Vivithanaporn P. Intracellular nickel accumulation induces apoptosis and cell cycle arrest in human astrocytic cells. Metallomics 2020; 13:6035243. [PMID: 33570137 DOI: 10.1093/mtomcs/mfaa006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Nickel, a heavy metal found in electronic wastes and fume from electronic cigarettes, induces neuronal cell death and is associated with neurocognitive impairment. Astrocytes are the first line of defense against nickel after entering the brain; however, the effects of nickel on astrocytes remain unknown. Herein, we investigated the effect of nickel exposure on cell survival and proliferation and the underlying mechanisms in U-87 MG human astrocytoma cells and primary human astrocytes. Intracellular nickel levels were elevated in U-87 MG cells in a dose- and time-dependent manner after exposure to nickel chloride. The median toxic concentrations of nickel in astrocytoma cells and primary human astrocytes were 600.60 and >1000 µM at 48 h post-exposure, respectively. Nickel exposure triggered apoptosis in concomitant with the decreased expression of anti-apoptotic B-cell lymphoma protein (Bcl-2) and increased caspase-3/7 activity. Nickel induced reactive oxygen species formation. Additionally, nickel suppressed astrocyte proliferation in a dose- and time-dependent manner by delaying G2 to M phase transition through the upregulation of cyclin B1 and p27 protein expression. These results indicate that nickel-induced cytotoxicity of astrocytes is mediated by the activation of apoptotic pathway and disruption of cell cycle regulation.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Suttinee Phuagkhaopong
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kant Sangpairoj
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Christopher Power
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Pornpun Vivithanaporn
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
24
|
Jia C, Oliver J, Gilmer D, Lovins C, Rodriguez-Gil DJ, Hagg T. Inhibition of focal adhesion kinase increases adult olfactory stem cell self-renewal and neuroregeneration through ciliary neurotrophic factor. Stem Cell Res 2020; 49:102061. [PMID: 33130470 PMCID: PMC7903807 DOI: 10.1016/j.scr.2020.102061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Constant neuroregeneration in adult olfactory epithelium maintains olfactory function by basal stem cell proliferation and differentiation to replace lost olfactory sensory neurons (OSNs). Understanding the mechanisms regulating this process could reveal potential therapeutic targets for stimulating adult olfactory neurogenesis under pathological conditions and aging. Ciliary neurotrophic factor (CNTF) in astrocytes promotes forebrain neurogenesis but its function in the olfactory system is unknown. Here, we show in mouse olfactory epithelium that CNTF is expressed in horizontal basal cells, olfactory ensheathing cells (OECs) and a small subpopulation of OSNs. CNTF receptor alpha was expressed in Mash1-positive globose basal cells (GBCs) and OECs. Thus, CNTF may affect GBCs in a paracrine manner. CNTF−/− mice did not display altered GBC proliferation or olfactory function, suggesting that CNTF is not involved in basal olfactory renewal or that they developed compensatory mechanisms. Therefore, we tested the effect of increased CNTF in wild type mice. Intranasal instillation of a focal adhesion kinase (FAK) inhibitor, FAK14, upregulated CNTF expression. FAK14 also promoted GBC proliferation, neuronal differentiation and basal stem cell self-renewal but had no effective in CNTF−/− mice, suggesting that FAK inhibition promotes olfactory neuroregeneration through CNTF, making them potential targets to treat sensorineural anosmia due to OSN loss.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| | - Joe Oliver
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Dustin Gilmer
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Diego J Rodriguez-Gil
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
25
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
26
|
DosSantos MF, Devalle S, Aran V, Capra D, Roque NR, Coelho-Aguiar JDM, Spohr TCLDSE, Subilhaga JG, Pereira CM, D'Andrea Meira I, Niemeyer Soares Filho P, Moura-Neto V. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat 2020; 14:37. [PMID: 32612515 PMCID: PMC7308495 DOI: 10.3389/fnana.2020.00037] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have suggested the neuroinvasive potential of severe acute respiratory coronavirus 2 (SARS-CoV-2). Notably, neuroinvasiveness might be involved in the pathophysiology of coronavirus disease 2019 (COVID-19). Some studies have demonstrated that synapse-connected routes may enable coronaviruses to access the central nervous system (CNS). However, evidence related to the presence of SARS-CoV-2 in the CNS, its direct impact on the CNS, and the contribution to symptoms suffered, remain sparse. Here, we review the current literature that indicates that SARS-CoV-2 can invade the nervous system. We also describe the neural circuits that are potentially affected by the virus and their possible role in the progress of COVID-19. In addition, we propose several strategies to understand, diagnose, and treat the neurological symptoms of COVID-19.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Medicina (Radiologia), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
| | - Sylvie Devalle
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Daniela Capra
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Natália Roberta Roque
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tânia Cristina Leite de Sampaio e Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janice Gonçalves Subilhaga
- Setor de Pneumologia, Serviço de Clínica Médica, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| | - Cláudia Maria Pereira
- Programa de Pós-Graduação em Biomedicina Translacional e Odontologia Clínica e Experimental, Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| | - Isabella D'Andrea Meira
- Departamento de Neurologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Epilepsia do Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Martínez-Martínez MI, Muñoz-Fambuena I, Cauli O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr Metab Immune Disord Drug Targets 2019; 20:985-991. [PMID: 31789138 DOI: 10.2174/1871530319666191202141209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nickel ions (Ni2+) are a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for brain dysfunction and behavioral and neurological symptoms in humans. METHODS We reviewed the current evidence about neurochemical and behavioral alterations associated with Ni exposure in laboratory animals and humans. RESULTS Ni2+ exposure can alter (both inhibition and stimulation) dopamine release and inhibit glutamate NMDA receptors. Few reports claim an effect of Ni2+ at the level of GBA and serotonin neurotransmission. At behavioral levels, exposure to Ni2+ in rodents alters motor activity, learning and memory as well as anxiety and depressive-like symptoms. However, no analysis of the dose-dependent relationship has been carried out regarding these effects and the levels of the Ni2+ in the brain, in blood or urine. CONCLUSION Further research is needed to correlate the concentration of Ni2+ in biological fluids with specific symptoms/deficits. Future studies addressing the impact of Ni2+ under environmental or occupational exposure should consider the administration protocols to find Ni2+ levels similar in the general population or occupationally exposed workers.
Collapse
Affiliation(s)
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
28
|
Henriques T, Agostinelli E, Hernandez-Clavijo A, Maurya DK, Rock JR, Harfe BD, Menini A, Pifferi S. TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium. J Gen Physiol 2019; 151:954-966. [PMID: 31048412 PMCID: PMC6605691 DOI: 10.1085/jgp.201812310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.
Collapse
Affiliation(s)
- Tiago Henriques
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | - Emilio Agostinelli
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | | | | | - Jason R Rock
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL
| | - Anna Menini
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
29
|
Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J Occup Med Toxicol 2018. [PMID: 30202422 DOI: 10.1186/s12995‐018‐0209‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Occupational exposure to numerous individual chemicals has been associated with olfactory dysfunction, mainly in individual case descriptions. Comprehensive epidemiological investigations into the olfactotoxic effect of working substances show that the human sense of smell may be impaired by exposure to metal compounds involving cadmium, chromium and nickel, and to formaldehyde. This conclusion is supported by the results of animal experiments. The level of evidence for a relationship between olfactory dysfunction and workplace exposure to other substances is relatively weak.
Collapse
Affiliation(s)
- Sabine Werner
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| | - Eberhard Nies
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| |
Collapse
|
30
|
Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J Occup Med Toxicol 2018; 13:28. [PMID: 30202422 PMCID: PMC6124006 DOI: 10.1186/s12995-018-0209-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
Occupational exposure to numerous individual chemicals has been associated with olfactory dysfunction, mainly in individual case descriptions. Comprehensive epidemiological investigations into the olfactotoxic effect of working substances show that the human sense of smell may be impaired by exposure to metal compounds involving cadmium, chromium and nickel, and to formaldehyde. This conclusion is supported by the results of animal experiments. The level of evidence for a relationship between olfactory dysfunction and workplace exposure to other substances is relatively weak.
Collapse
Affiliation(s)
- Sabine Werner
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| | - Eberhard Nies
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| |
Collapse
|
31
|
Lamtai M, Chaibat J, Ouakki S, Zghari O, Mesfioui A, El Hessni A, Rifi EH, Marmouzi I, Essamri A, Ouichou A. Effect of Chronic Administration of Nickel on Affective and Cognitive Behavior in Male and Female Rats: Possible Implication of Oxidative Stress Pathway. Brain Sci 2018; 8:brainsci8080141. [PMID: 30065183 PMCID: PMC6119950 DOI: 10.3390/brainsci8080141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Nickel (Ni) toxicity has been reported to produce biochemical and behavioral dysfunction. The present study was undertaken to examine whether Ni chronic administration can induce alterations of affective and cognitive behavior and oxidative stress in male and female rats. Twenty-four rats, for each gender, divided into control and three test groups (n = 6), were injected intraperitoneally with saline (0.9% NaCl) or NiCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After treatment period, animals were tested in the open-field, elevated plus maze tests for anxiety-like behavior, and forced swimming test for depression-like behavior. The Morris Water Maze was used to evaluate the spatial learning and memory. The hippocampus of each animal was taken for biochemical examination. The results showed that Ni administration dose dependently increased anxiety-like behavior in both tests. A significant increase in depression-like symptoms was also exhibited by Ni treated rats. In the Morris Water Maze test, the spatial learning and memory were significantly impaired just in males treated with 1 mg/kg of Ni. With regard to biochemical analysis, activity of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased, while the levels of nitric oxide (NO) and lipid peroxidation (LPO) in the hippocampus were significantly increased in the Ni-treated groups. Consequently, chronic Ni administration induced behavioral and biochemical dysfunctions.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Jihane Chaibat
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Sihame Ouakki
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Oussama Zghari
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Abdelhalem Mesfioui
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Aboubaker El Hessni
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - El-Housseine Rifi
- Laboratory of Synthesis Organic and Extraction Processes, Department of Chemistry, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médecine et de Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Azzouz Essamri
- Laboratory of Agro-Resources and Process Engineering, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ali Ouichou
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| |
Collapse
|
32
|
Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 2017; 392:47-54. [PMID: 29032222 DOI: 10.1016/j.tox.2017.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
Abstract
Nickel (Ni) is widely used in many industrial sectors such as alloy, welding, printing inks, electrical and electronics industries. Excessive environmental or occupational exposure to Ni may result in tumor, contact dermatitis, as well as damages to the nervous system. In recent years, more and more research has demonstrated that Ni induced nerve damages are related to mitochondrial dysfunction. In this paper, we try to characterize Ni induced neurotoxicity as well as the underlying mechanisms, and how to find new drugs for chemoprevention, by reviewing chemicals with neuroprotective effects on Ni induced neurotoxicity.
Collapse
Affiliation(s)
- Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
33
|
Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien MS, You H, Chi Q, Kubota M, Yohda M, Ehlers M, Matsunami H. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. eLife 2017; 6. [PMID: 28262096 PMCID: PMC5362263 DOI: 10.7554/elife.21895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Yoshiro Ishimaru
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ian Davison
- Department of Biology, Boston University, Boston, United States
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Helena You
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Quiyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Momoka Kubota
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Masafumi Yohda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Biogen Inc, Cambridge, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Durham, United States
| |
Collapse
|
34
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
35
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
36
|
Effet de l’exposition chronique au nickel sur les fonctions neurocomportementales chez les rats Wistar pendant la période de développement. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2014. [DOI: 10.1016/j.toxac.2014.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Jia C, Hegg CC. Effect of IP3R3 and NPY on age-related declines in olfactory stem cell proliferation. Neurobiol Aging 2014; 36:1045-56. [PMID: 25482245 DOI: 10.1016/j.neurobiolaging.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
Losing the sense of smell because of aging compromises health and quality of life. In the mouse olfactory epithelium, aging reduces the capacity for tissue homeostasis and regeneration. The microvillous cell subtype that expresses both inositol trisphosphate receptor type 3 (IP3R3) and the neuroproliferative factor neuropeptide Y (NPY) is critical for regulation of homeostasis, yet its role in aging is undefined. We hypothesized that an age-related decline in IP3R3 expression and NPY signaling underlie age-related homeostatic changes and olfactory dysfunction. We found a decrease in IP3R3(+) and NPY(+) microvillous cell numbers and NPY protein and a reduced sensitivity to NPY-mediated proliferation over 24 months. However, in IP3R3-deficient mice, there was no further age-related reduction in cell numbers, proliferation, or olfactory function compared with wild type. The proliferative response was impaired in aged IP3R3-deficient mice when injury was caused by satratoxin G, which induces IP3R3-mediated NPY release, but not by bulbectomy, which does not evoke NPY release. These data identify IP3R3 and NPY signaling as targets for improving recovery following olfactotoxicant exposure.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Colleen C Hegg
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
38
|
Purinergic neuron-glia interactions in sensory systems. Pflugers Arch 2014; 466:1859-72. [DOI: 10.1007/s00424-014-1510-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
|
39
|
An IP3R3- and NPY-expressing microvillous cell mediates tissue homeostasis and regeneration in the mouse olfactory epithelium. PLoS One 2013; 8:e58668. [PMID: 23516531 PMCID: PMC3596314 DOI: 10.1371/journal.pone.0058668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Calcium-dependent release of neurotrophic factors plays an important role in the maintenance of neurons, yet the release mechanisms are understudied. The inositol triphosphate (IP3) receptor is a calcium release channel that has a physiological role in cell growth, development, sensory perception, neuronal signaling and secretion. In the olfactory system, the IP3 receptor subtype 3 (IP3R3) is expressed exclusively in a microvillous cell subtype that is the predominant cell expressing neurotrophic factor neuropeptide Y (NPY). We hypothesized that IP3R3-expressing microvillous cells secrete sufficient NPY needed for both the continual maintenance of the neuronal population and for neuroregeneration following injury. We addressed this question by assessing the release of NPY and the regenerative capabilities of wild type, IP3R3(+/-), and IP3R3(-/-) mice. Injury, simulated using extracellular ATP, induced IP3 receptor-mediated NPY release in wild-type mice. ATP-evoked NPY release was impaired in IP3R3(-/-) mice, suggesting that IP3R3 contributes to NPY release following injury. Under normal physiological conditions, both IP3R3(-/-) mice and explants from these mice had fewer progenitor cells that proliferate and differentiate into immature neurons. Although the number of mature neurons and the in vivo rate of proliferation were not altered, the proliferative response to the olfactotoxicant satratoxin G and olfactory bulb ablation injury was compromised in the olfactory epithelium of IP3R3(-/-) mice. The reductions in both NPY release and number of progenitor cells in IP3R3(-/-) mice point to a role of the IP3R3 in tissue homeostasis and neuroregeneration. Collectively, these data suggest that IP3R3 expressing microvillous cells are actively responsive to injury and promote recovery.
Collapse
|
40
|
Lucero MT. Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol 2012; 24:58-70. [PMID: 22986099 DOI: 10.1016/j.semcdb.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
Abstract
Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.
Collapse
Affiliation(s)
- Mary T Lucero
- Department of Physiology, School of Medicine, University of Utah, 420 Chipeta Way Ste, 1700 Salt Lake City, UT 84108, USA.
| |
Collapse
|
41
|
Hayoz S, Jia C, Hegg C. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium. BMC Neurosci 2012; 13:53. [PMID: 22640172 PMCID: PMC3444318 DOI: 10.1186/1471-2202-13-53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s) by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP) and a G protein-coupled P2Y receptor agonist (UTP). Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP release following injury could lead to progenitor cell proliferation, differentiation and regeneration. Thus, understanding mechanisms of ATP release is of paramount importance to improve our knowledge about tissue homeostasis and post-injury neuroregeneration. It will lead to development of treatments to restore loss of smell and, when transposed to the central nervous system, improve recovery following central nervous system injury.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
42
|
Neuropeptide Y and extracellular signal-regulated kinase mediate injury-induced neuroregeneration in mouse olfactory epithelium. Mol Cell Neurosci 2011; 49:158-70. [PMID: 22154958 DOI: 10.1016/j.mcn.2011.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/02/2011] [Accepted: 11/17/2011] [Indexed: 12/29/2022] Open
Abstract
In the olfactory epithelium (OE), injury induces ATP release, and subsequent activation of P2 purinergic receptors by ATP promotes neuroregeneration by increasing basal progenitor cell proliferation. The molecular mechanisms underlying ATP-induced increases in OE neuroregeneration have not been established. In the present study, the roles of neuroproliferative factors neuropeptide Y (NPY) and fibroblast growth factor 2 (FGF2), and p44/42 extracellular signal-regulated kinase (ERK) on ATP-mediated increases of neuroregeneration in the OE were investigated. ATP increased basal progenitor cell proliferation in the OE via activation of P2 purinergic receptors in vitro and in vivo as monitored by incorporation of 5'-ethynyl-2'-deoxyuridine, a thymidine analog, into DNA, and proliferating cell nuclear antigen (PCNA) protein levels. ATP induced p44/42 ERK activation in globose basal cells (GBCs) but not horizontal basal cells (HBCs). ATP differentially regulated p44/42 ERK over time in the OE both in vitro and in vivo with transient inhibition (5-15 min) followed by activation (30 min-1 h) of p44/42 ERK. In addition, ATP indirectly activated p44/42 ERK in the OE via ATP-induced NPY release and subsequent activation of NPY Y1 receptors in the basal cells. There were no synergistic effects of ATP and NPY or FGF2 on OE neuroregeneration. These data clearly have implications for the pharmacological modulation of neuroregeneration in the olfactory epithelium.
Collapse
|
43
|
Jia C, Sangsiri S, Belock B, Iqbal TR, Pestka JJ, Hegg CC. ATP mediates neuroprotective and neuroproliferative effects in mouse olfactory epithelium following exposure to satratoxin G in vitro and in vivo. Toxicol Sci 2011; 124:169-78. [PMID: 21865290 DOI: 10.1093/toxsci/kfr213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intranasal aspiration of satratoxin G (SG), a mycotoxin produced by the black mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) in mouse olfactory epithelium (OE) through unknown mechanisms. Here, we show a dose-dependent induction of apoptosis 24 h post-SG exposure in vitro as measured by increased activated caspases in the OP6 olfactory placodal cell line and increased propidium iodide staining in primary OE cell cultures. Intranasal aspiration of SG increased TUNEL (Terminal dUTP Nick End Labeling) staining in the neuronal layer of the OE and significantly increased the latency to find a buried food pellet, confirming that SG selectively induces neuronal apoptosis and demonstrating that SG impairs the sense of smell. Next, we investigated whether ATP can prevent SG-induced OE toxicity. ATP did not decrease apoptosis under physiological conditions but significantly reduced SG-induced OSN apoptosis in vivo and in vitro. Furthermore, purinergic receptor inhibition significantly increased apoptosis in OE primary cell culture and in vivo. These data indicate that ATP is neuroprotective against SG-induced OE toxicity. The number of cells that incorporated 5'-bromodeoxyuridine, a measure of proliferation, was significantly increased 3 and 6 days post-SG aspiration. Treatment with purinergic receptor antagonists significantly reduced SG-induced cell proliferation, whereas post-treatment with ATP significantly potentiated SG-induced cell proliferation. These data indicate that ATP is released and promotes cell proliferation via activation of purinergic receptors in SG-induced OE injury. Thus, the purinergic system is a therapeutic target to alleviate or restore the loss of OSNs.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
44
|
He MD, Xu SC, Lu YH, Li L, Zhong M, Zhang YW, Wang Y, Li M, Yang J, Zhang GB, Yu ZP, Zhou Z. L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol Appl Pharmacol 2011; 253:38-44. [PMID: 21419151 DOI: 10.1016/j.taap.2011.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is thought to be a part of the mechanism underlying nickel-induced neurotoxicity. L-carnitine (LC), a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine in all mammalian species, manifests its neuroprotective effects by improving mitochondrial energetics and function. The purpose of this study was to investigate whether LC could efficiently protect against nickel-induced neurotoxicity. Here, we exposed a mouse neuroblastoma cell line (Neuro-2a) to different concentrations of nickel chloride (NiCl₂) (0.25, 0.5, 1, and 2 mM) for 24 h, or to 0.5 mM and 1 mM NiCl₂ for various periods (0, 3, 6, 12, or 24 h). We found that nickel significantly increased the cell viability loss and lactate dehydrogenase (LDH) release in Neuro-2a cells. In addition, nickel exposure significantly elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, disrupted the mitochondrial membrane potential (ΔΨ(m)), reduced adenosine-5'-triphosphate (ATP) concentrations and decreased mitochondrial DNA (mtDNA) copy numbers and mtRNA transcript levels. However, all of the cytotoxicities and mitochondrial dysfunctions that were triggered by nickel were efficiently attenuated by pretreatment with LC. These protective effects of LC may be attributable to its role in maintaining mitochondrial function in nickel-treated cells. Our results suggest that LC may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.
Collapse
Affiliation(s)
- Min-Di He
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jia C, Cussen AR, Hegg CC. ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor α in neonatal and adult mice: effect on neuroproliferation. Neuroscience 2011; 177:335-46. [PMID: 21187124 PMCID: PMC3049987 DOI: 10.1016/j.neuroscience.2010.12.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/21/2010] [Indexed: 02/05/2023]
Abstract
Multiple neurotrophic factors play a role in proliferation, differentiation and survival in the olfactory epithelium (OE); however, the signaling cascade has not been fully elucidated. We tested the hypotheses that ATP induces the synthesis and secretion of two neurotrophic factors, fibroblast growth factor 2 (FGF2) and transforming growth factor alpha (TGFα), and that these neurotrophic factors have a role in inducing proliferation. Protein levels of FGF2 and TGFα were increased 20 h post-intranasal instillation of ATP compared to vehicle control in adult Swiss Webster mice. Pre-intranasal treatment with purinergic receptor antagonist pyridoxal-phosphate-6-azophenyl-20,40-disulfonic acid (PPADS) significantly blocked this ATP-induced increase, indicating that upregulation of FGF2 and TGFα expression is mediated by purinergic receptor activation. However, in neonatal mouse, intranasal instillation of ATP significantly increased the protein levels of FGF2, but not TGFα. Likewise, ATP evoked the secretion of FGF2, but not TGFα, from neonatal mouse olfactory epithelial slices and PPADS significantly blocked ATP-evoked FGF2 release. To determine the role of FGF2 and TGFα in inducing proliferation, 5-bromo-2-deoxyuridine (BrdU) incorporation was examined in adult olfactory epithelium. Intranasal treatment with FGF receptor inhibitor PD173074 or epidermal growth factor receptor inhibitor AG1478 following ATP instillation significantly blocked ATP-induced BrdU incorporation. Collectively, these data demonstrate that ATP induces proliferation in adult mouse olfactory epithelium by promoting FGF2 and TGFα synthesis and activation of their receptors. These data suggest that different mechanisms regulate neurogenesis in neonatal and adult OE, and FGF2 and TGFα may have different roles throughout development.
Collapse
Affiliation(s)
- C Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|