1
|
Abstract
The embryotoxicity associated with exposure to exogenous compounds such as drugs and environmental chemicals can be assessed using the mouse whole embryo culture technique. This method has several advantages over traditional in vivo studies including the exclusion of any confounding maternal and placental effects, the selection of embryos that are at similar stages of development, and the control of exposure concentrations of exogenous agents and modifiers of interest. This chapter will detail the steps involved in using this technique to assess embryotoxicity following exposure to a toxicant. Briefly, embryos are explanted from murine dams on gestational day 9.0 (vaginal plug, day 1) and cultured in CO2 saturated male rat serum for up to 24 h at 37 °C in the presence or absence of a specific toxicant. Embryonic morphological and developmental parameters (e.g., anterior neuropore closure) are then evaluated using a dissecting microscope 24 h later. Potential biochemical analyses are also listed and limitations discussed.
Collapse
Affiliation(s)
- Emily W Y Tung
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture. Toxicology 2017; 392:96-105. [DOI: 10.1016/j.tox.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
|
4
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. Embryotoxic and pharmacologic potency ranking of six azoles in the rat whole embryo culture by morphological and transcriptomic analysis. Toxicol Appl Pharmacol 2017; 322:15-26. [DOI: 10.1016/j.taap.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
|
5
|
Dimopoulou M, Verhoef A, van Ravenzwaay B, Rietjens IM, Piersma AH. Flusilazole induces spatio-temporal expression patterns of retinoic acid-, differentiation- and sterol biosynthesis-related genes in the rat Whole Embryo Culture. Reprod Toxicol 2016; 64:77-85. [DOI: 10.1016/j.reprotox.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022]
|
6
|
Robinson JF, Gormley MJ, Fisher SJ. A genomics-based framework for identifying biomarkers of human neurodevelopmental toxicity. Reprod Toxicol 2016; 60:1-10. [PMID: 26827931 PMCID: PMC4867143 DOI: 10.1016/j.reprotox.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
Human embryonic stem cell (hESC) neural differentiation models have tremendous potential for evaluating environmental compounds in terms of their ability to induce neurodevelopmental toxicity. Genomic based-approaches are being applied to identify changes underlying normal human development (in vitro and in vivo) and the effects of environmental exposures. Here, we investigated whether mechanisms that are shared between hESC neural differentiation model systems and human embryos are candidate biomarkers of developmental toxicities for neurogenesis. We conducted a meta-analysis of transcriptomic datasets with the goal of identifying differentially expressed genes that were common to the hESC-model and human embryos. The overlapping NeuroDevelopmental Biomarker (NDB) gene set contained 304 genes which were enriched for their roles in neurogenesis. These genes were investigated for their utility as candidate biomarkers in the context of toxicogenomic studies focused on the effects of retinoic acid, valproic acid, or carbamazepine in hESC models of neurodifferentiation. The results revealed genes, including 13 common targets of the 3 compounds, that were candidate biomarkers of neurotoxicity in hESC-based studies of environmental toxicants.
Collapse
Affiliation(s)
- J F Robinson
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States.
| | - M J Gormley
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States
| | - S J Fisher
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States; Division of Maternal Fetal Medicine, University of California, San Francisco (UCSF), United States; Department of Anatomy, University of California, San Francisco (UCSF), United States; Human Embryonic Stem Cell Program, University of California, San Francisco (UCSF), United States
| |
Collapse
|
7
|
Le Duc D, Spataru A, Ceanga M, Zagrean L, Schöneberg T, Toescu EC, Zagrean AM. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures. Brain Res 2015; 1614:1-13. [PMID: 25881894 DOI: 10.1016/j.brainres.2015.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/18/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023]
Abstract
Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.
Collapse
Affiliation(s)
- Diana Le Duc
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | - Ana Spataru
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihai Ceanga
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Emil C Toescu
- Translational Neuroscience, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ana-Maria Zagrean
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
8
|
Tonk ECM, Pennings JLA, Piersma AH. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol 2014; 55:104-13. [PMID: 25461899 DOI: 10.1016/j.reprotox.2014.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Baack ML, Wang C, Hu S, Segar JL, Norris AW. Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: an in vivo test of the fuel mediated teratogenesis hypothesis. Reprod Toxicol 2014; 46:129-36. [PMID: 24721120 DOI: 10.1016/j.reprotox.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
Abstract
Embryonic exposure to excess circulating fuels is proposed to underlie diabetic embryopathy. To isolate the effects of hyperglycemia from the many systemic anomalies of diabetes, we infused 4 mg/min glucose into the left uterine artery of non-diabetic pregnant rats on gestation days (GD) 7-9. Right-sided embryos and dams exhibited no glucose elevation. Embryos were assessed on GD13, comparing the left versus right uterine horns. Hyperglycemic exposure increased rates of embryopathy, resorptions, and worsened embryopathy severity. By contrast, saline infusion did not affect any of these parameters. To assess for possible embryopathy susceptibility bias between uterine horns, separate dams were given retinoic acid (25mg/kg, a mildly embryopathic dose) systemically on GD7.5. The resultant embryopathy rates were equivalent between uterine horns. We conclude that hyperglycemia, even in the absence of systemic maternal diabetes, is sufficient to produce in vivo embryopathy during organogenesis.
Collapse
Affiliation(s)
- Michelle L Baack
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Chunlin Wang
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Shanming Hu
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Jeffrey L Segar
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Andrew W Norris
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA.
| |
Collapse
|
10
|
Muzic V, Katusic Bojanac A, Juric-Lekic G, Himelreich M, Tupek K, Serman L, Marn N, Sincic N, Vlahovic M, Bulic-Jakus F. Epigenetic drug 5-azacytidine impairs proliferation of rat limb buds in an organotypic model-system in vitro. Croat Med J 2013; 54:489-95. [PMID: 24170728 PMCID: PMC3816559 DOI: 10.3325/cmj.2013.54.489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To establish an organotypic in vitro model of limb bud development to verify whether epigenetic drug and teratogen 5-azacytidine (5azaC) has an effect on limb buds independent of its effects on the placenta. METHODS Fischer strain rat fore- and hindlimb buds were microsurgically isolated from 13 days old embryos and cultivated in vitro for two weeks at the air-liquid interface in Eagle's minimum essential medium (MEM) with 50% rat serum. 30 μmol of 5azaC was added to the fresh medium. Overall growth was measured by an ocular micrometer. Routine histology, immunohistochemical detection of the proliferating cell nuclear antigen (PCNA), and stereological quantification of PCNA expression were performed. RESULTS At four time points, significantly lower overall growth was detected for fore- and hindlimb bud explants cultivated with 5azaC in comparison to controls. After the culture period, numerical density of the PCNA signal for both types of limb buds was lower than for controls (P<0.001). Limb buds were initially covered by immature epithelium and contained mesenchyme, myotubes, single hemangioblasts, hemangioblast aggregates, blood islands, and capillaries. Regardless of the treatment, cartilage and epidermis differentiated, but cells and structures typical for vasculogenesis disappeared. CONCLUSION Our findings, obtained outside of the maternal organism, stress the importance of compromised cell proliferation for 5azaC impact on limb buds. This investigation points to the necessity to establish alternatives to in vivo research on animals using teratogenic agents.
Collapse
Affiliation(s)
- Vedrana Muzic
- Ana Katusic Bojanac, Department of Medical Biology, School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li X, Yang Z, Zeng Y, Xu H, Li H, Han Y, Long X, You C. Cell cycle-related genes p57kip2, Cdk5 and Spin in the pathogenesis of neural tube defects. Neural Regen Res 2013; 8:1863-71. [PMID: 25206495 PMCID: PMC4145975 DOI: 10.3969/j.issn.1673-5374.2013.20.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/19/2013] [Indexed: 02/05/2023] Open
Abstract
In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified several genes involved in the development of neural tube defects. In this study, we established a model of developmental neural tube defects by administration of retinoic acid to pregnant rats. Gene chip hybridization analysis showed that genes related to the cell cycle and apoptosis, signal transduction, transcription and translation regulation, energy and metabolism, heat shock, and matrix and cytoskeletal proteins were all involved in the formation of developmental neural tube defects. Among these, cell cycle-related genes were predominant. Retinoic acid ment caused differential expression of three cell cycle-related genes p57kip2, Cdk5 and Spin, the expression levels of which were downregulated by retinoic acid and upregulated during normal neural tube formation. The results of this study indicate that cell cycle-related genes play an important role in the formation of neural tube defects. P57kip2, Cdk5 and Spin may be critical genes in the pathogenesis of neural tube defects.
Collapse
Affiliation(s)
- Xinjun Li
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Zhong Yang
- Department of Neurobiology, the Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Yi Zeng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, Chengdu 610041, Sichuan Province, China
| | - Hong Xu
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Hongli Li
- Department of Neurobiology, the Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Yangyun Han
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Xiaodong Long
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Chao You
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
12
|
Tonk ECM, Robinson JF, Verhoef A, Theunissen PT, Pennings JLA, Piersma AH. Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models. Reprod Toxicol 2013; 41:57-66. [PMID: 23811354 DOI: 10.1016/j.reprotox.2013.06.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Transcriptomic evaluations may improve toxicity prediction of in vitro-based developmental models. In this study, transcriptomics was used to identify VPA-induced gene expression changes in rat whole embryo culture (WEC). Furthermore, VPA-induced responses were compared across in vitro-based developmental models, such as the cardiac and neural embryonic stem cells (ESTc and ESTn, respectively) and the zebrafish embryotoxicity model. VPA-induced gene regulation in WEC corresponded with observed morphological effects and previously suggested mechanisms of toxicity. Gene Ontology term-directed analysis showed conservation of VPA-induced gene expression changes across in vitro-based developmental models, with ESTc and ESTn exhibiting complementary responses. Furthermore, comparison of in vitro-based developmental and non-developmental models revealed that more generalized VPA-induced effects can be detected using non-developmental models whereas developmental models provide added value when assessing developmental-specific effects. These analyses can be used to optimize test batteries for the detection of developmental toxicants in vitro.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Robinson JF, Verhoef A, van Beelen VA, Pennings JL, Piersma AH. Dose–response analysis of phthalate effects on gene expression in rat whole embryo culture. Toxicol Appl Pharmacol 2012; 264:32-41. [DOI: 10.1016/j.taap.2012.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 01/05/2023]
|
14
|
Robinson JF, Tonk EC, Verhoef A, Piersma AH. Triazole induced concentration-related gene signatures in rat whole embryo culture. Reprod Toxicol 2012; 34:275-83. [DOI: 10.1016/j.reprotox.2012.05.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 02/04/2023]
|
15
|
Robinson JF, Verhoef A, Pennings JLA, Pronk TE, Piersma AH. A comparison of gene expression responses in rat whole embryo culture and in vivo: time-dependent retinoic acid-induced teratogenic response. Toxicol Sci 2012; 126:242-54. [PMID: 22262565 DOI: 10.1093/toxsci/kfr342] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The whole embryo culture (WEC) model serves as a potential alternative for classical in vivo developmental toxicity testing. In the WEC, cultured rat embryos are exposed during neurulation and early organogenesis and evaluated for morphological effects. Toxicogenomic-based approaches may improve the predictive ability of WEC by providing molecular-based markers associated with chemical exposure, which can be compared across multiple parameters (e.g., exposure duration, developmental time, experimental model). Additionally, comparisons between in vitro and in vivo models may identify objective relevant molecular responses linked with developmental toxicity endpoints in vivo. In this study, using a transcriptomic approach, we compared all-trans retinoic acid (RA)-exposed and nonexposed Wistar rat embryos derived using WEC (RA, 0.5 μg/ml) or in vivo (RA, 50 mg/kg, oral gavage) to identify overlapping and nonoverlapping effects of RA on RNA expression in parallel with morphological changes. Across six time points (gestational day 10 + 2-48 h), we observed strong similarities in RA response at the gene (directionality, significance) and functional (e.g., embryonic development, cell differentiation) level which associated with RA-induced adverse morphological effects, including growth reduction as well as alterations in neural tube, limb, branchial, and mandible development. We observed differences between models in the timing of RA-induced effects on genes related to embryonic development and RA metabolism. These observations on the gene expression level were associated with specific differential morphological outcomes. This study supports the use of WEC to examine compound-induced molecular responses relative to in vivo and, furthermore, assists in defining the applicability domain of the WEC in determining complementary windows of sensitivity for developmental toxicological investigations.
Collapse
Affiliation(s)
- Joshua F Robinson
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | | | | | | |
Collapse
|